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We investigate a class of entire functions f(z1,22) with property Vb= (b, bs) € C2\ {0} V29, 2§ € C, the
function f(2{ + tby, 2 + tbs), as a function of one variable ¢ € C, has a bounded index but the function
f (21, 22) has an unbounded index in every direction b. In particular, we prove that, for an arbitrary even
entire function f(¢) that has an infinite sequence of complex zeros, the corresponding function f(y/z122)
has an unbounded index in every direction b. It improves our similar result [Bandura A. I. A class of
entire functions of unbounded index in each direction // Mat. Stud. — 2015. — 44, Ne 1. — P. 107-112]
proved for even entire functions f () with complex zeros ¢ such that ¢} € R.

Hocnimkyerbest Kiaac uinux GyHKUiN f(21, z2) 3 Takow Baactusictio: Vb = (by,be) € C?\ {0} V 27,
29 € C oyukuist f(z? + tby, 29 + thy) Mae obMexenwuii iHIeKC K GyHKIs Bix omHiei 3miHHOI ¢t € C,
ane GYHKIISA f(z1,22) € HEOOMEXEHOTO iHIEKCY 3a KOXKHUM HamnpsiMKoM b. 30kpema, TOBeneHO, 110
IUTST MOBUTBHOI TapHOi miioi ¢yHKMii f(t), SKa Mae HeCKiHYeHHY MOCHTiTOBHICTh KOMIUIEKCHUX HYIIIB,
BinnosingHa ¢yHKUiA f(,/Z122) € HEOOMEXEHOro iHIeKCy 3a KOXHMM HampamkoMm b. Lle mokpainye
nomiOHMi pe3yabrar 3 [Bandura A. 1. A class of entire functions of unbounded index in each direction //
Mat. Stud. —2015.—44,Ne 1. —P. 107 — 112], noBeneHuit 1uis mapHUX UiTNX GYHKILHN f(¢) 3 KOMIUIEKCHUMU
HYJISIMU ¢, TaKUMH, O c; € R.

1. Introduction. To state a problem and a main result, we need some denotations. Let b €
€ C™\ {0} be a direction, L: C* — R, be a continuous function, F': C" — C be an entire
function, g.o(t) := F (2° +tb), l,0(t) :== L (z° +tb), t € C.

Definition 1 [1, 2]. An entire function F(z), z € C", is said to be of bounded L-index in
the direction b, if there exists my € Zy such that for all m € Z, and every z € C™ the next
inequality is true:

1 O"F () 1 |0FF(2)
< 0<k<L
mlLm(2) ’ gpm | =X { KILF () ’ ok | 0Sksmoy, M
where
F(z2) 0F(z) n  OF(z) OFF(2) 0 (0F1F(2)
gpo L) b = D bz, Ui abk b < b1 ) k=22
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The least such integer my is called the L-index in the direction b of F(z) and is denoted
by Ny (F,L). If such m does not exist, then we put N,(F,L) = oo and F' is said to be of
unbounded L-index in the direction.

If L(z) =1 then the function F is called of bounded index in the direction b and Ny, (F') =
= Np(F,1) is called the index in the direction b. If n =1, b =1 and L(z) = I(z), z € C,
inequality (1) defines a bounded [-index with the /-index N(F,l) = N1(F,!1) [3]. And in the case
L(z) =1 we get a notion of bounded index with the index N(F) = N;(F,1) [4].

These functions have been used in the theory value distribution and differential equations
([see bibliography in [5]). In particular, every entire function is a function of bounded value
distribution if and only if its derivative is a function of bounded index [6], and every entire

solution of the differential equation £ (¢) + Z a] f (J = 0 is a function of bounded index

[7]. More general results for PDE’s are obtamed by ours [1 2 8]. There are sufficient conditions
that every entire function satisfying some PDE is of bounded L-index in direction.

Another definition of bounded index in C? is considered in the paper of F. Nuray and
R. F. Patterson [9]. Using this notion they presented a series of sufficient conditions that bivariate
entire function is of exponential type. The presented conditions are weaker than known necessary
and sufficient conditions of bounded index in joint variables. Besides, they [10] established the
relationship between the concept of bounded index and the radius of univalence, respectively
p-valence, of entire bivariate functions and their partial derivatives at arbitrary points in C2.

Recently we published the paper [11], which is devoted to interesting and important open
problems in the theory of entire functions of bounded index. In particular, there was formulated
the following

Problem 1 ([11], Problem 17). What are conditions on zero sets and growth of entire functi-
ons providing the bounded index of F(2)+bit, 28+bat) forevery (29, 28) € C? and the unbounded
index of F(z1, z2) in the direction b = (by,b2) ?

For example, f(z1,22) = cos./z1z2 has described properties [12]. It was proved by a
construction of some PDE and investigation of properties of its entire solutions.

We solved the mentioned problem [13], supposing ¢ € R, where ¢, k € N, are zeros of
entire function f(¢). We got the next theorem as our decision.

Theorem 1 [13]. Let f(t), t € C, be an even entire transcendental function of bounded
index. Then:

() for each direction b = (b1,by) € C?\ {0} and for every fixed 29,29 € C the function
gt)=f <\/(z‘1) + b1t) (28 + bat) ) is an entire function of bounded index t € C;

(i) if f(t) has no zeros or has a finite number of zeros, then f(\/z122) is of unbounded index
in each direction b;

(iii) if {cx} is an infinite sequence of zeros of f(t), |c1| < |c2| < ... < |ex| < ... and for
every k € N, ¢ € R, then the function f(\/z122) is of unbounded index in each direction b.

The following remark will be useful in this paper.

Remark 1 [13]. The condition ¢ € R can be replaced by the condition that there exists an
infinite subsequence of zeros of the form ¢}, = |c}| - €%, i.e., all ¢}, lay on a some ray. Then in the
case by # 0, by # 0 we choose ¢ = 20 + arg(b1bz) and in the case b; # 0, by = 0 we choose
) = e’<29+9") Other considerations are remained without changes in the proof of Theorem 1.

In 2015 at the Lviv seminar on the theory of analytic functions Prof. O. Skaskiv assumed that
condition “for every k € N, ¢Z € R” is excessive. It leads to a new next problem.
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Problem 2. If f(t), t € C, is an even entire transcendental function of bounded index, which
has an infinite number of zeros, then a function f(\/z1z2) is of unbounded index in each direction
b. Is it true or false?

In this paper, we prove that mentioned proposition is true. Note that for the function
cos (/z122) there exists a partial differential equation and a positive continuous function L: C* —
— R, with properties [14]:

(i) f (y/z122) is its solution;

(i1) every entire solution of the PDE has bounded L-index in the direction b.

2. Auxiliary proposition. We need some notation. If for a given 2° € C" one has g,0(t) # 0
forall ¢ € C, then GP (F, 2°) := @; if for a given 2° € C" we get g.o(t) = 0, then

GP (F,zo) = {zo +tb:teC}.
And if for a given z° € C™ we have g,0(t) # 0 and a} are zeros of g,o(t), then
G:? (F,zo) ::U{z0+tb: }t—agl gr}, r > 0.
k
Let

Gr(F) = |J GR(F.2)

20eCnr

0 _ - : 0
By n (r,2% t,1/F) = Z|a2—to|§r 1 we denote the counting function of the zero sequence (af) .

The following criterion is convenient for a proof of index boundedness in direction.

Theorem 2 [1, 2]. Let F(z) be an entire function in C". A function F(z) is of bounded
index in the direction b if and only if:

() forevery r > 0 there exists P = P(r) > 0 that for each z € C"\GP(F)

‘ 1 OF(z) < p.

F(z) 0b

(ii) forevery r > 0 there exists n(r) € Z, that for every 2° € C" satisfying F(z°+tb) # 0,
and for all ty € C

n(mwxm;)s%w» @)

Recently, we obtained weaker sufficient conditions [15, 16] than in Theorem 2 replacing the
universal quantifier by the existence quantifier. Besides, we need following property of bounded
index in direction.

Theorem 3 [1, 2]. Let m € C\ {0}. An entire function F(z), z € C", is of bounded index
in the direction b if and only if F(z) is of bounded index in the direction mb.

3. Main theorem.

Theorem 4. If f(t), t € C, is an even entire transcendental function of bounded index,

which has an infinite number of zeros, then the function f (\ /z1 22) is of unbounded index in each
direction b.

ISSN 1562-3076. Heninitini koausanns, 2018, m. 21, Ne 4



438 A.BANDURA, O.SKASKIV

Proof. Let (¢;)72, be an infinite sequence of zeros of f(t), |c1| < |e2] < ... <]k <....In
view of Theorem 1 and Remark 1 we suppose that there are located a finite number of zeros ¢
on every ray with origin. It remains to prove that function f (\/@) is of unbounded index in
the direction b. We show that condition (2) of Theorem 2 does not hold.

Obviously, for every ¢ > 0 there exists a sector with a vertex at the origin and a central angle
2¢ where an infinite number of zeros ¢ is located inside. Let argz = 6 be a bisector of the
sector. In view of Remark 1 we suppose # = 0 without loss of generality. Below in the proof
we consider only zeros ¢; containing in the specified sector. In fact, it shall be proven that the

condition (2) does not hold for zeros of function f (\/ (29 + bit) (29 + bat) ), generating by ¢

from that sector.

Case 1. Let by # 0, by =0 and a; € Ry, ap — oo. Later we will impose more conditions

on the sequence (ay)°,. We put 2 = (27, 29), where

z? =1, zg = a%, to = 0. 3)

The zeros of the function f <\/ (29 + bit) (29 + bat) ) are found from the equation

(z? + blt)zg =20t + 2929 =¢f, 1eZ.

Consider its root

(b2l 4 by 20) + \/(b2zg) — b20)2 + Ac2by by
2b1bo ’
The condition of a zero ¢; belongs to r-neighborhood of the point ¢, has the form |t; —to| < r.

t =

2 2ip _ 2
Let ¢; = arg¢. It implies W—Qa <7 or
|b1] - ag
r|by| az > “Cl|2€2iw - ai! = HCZIQCOS 201 — az —I—i\cl|2sin2gpl‘ =

= \/(|cl|2 cos2p; — a2)? + |¢g]*sin? 2¢; = \/]cl|4 — 2|¢]? cos 2¢1a2 + af.
Hence, we deduce a biquadratic inequality
ler|* = 2ler] cos 21 - i + aj, — r?[ba]? - aj < 0. “4)

Solving (4), we obtain an estimate for |¢;|:

a; <cos 2¢; — \/r2]b1]2 — sin? 2(,01) <c<a; <cos 21 + 1/ 72|b1|2 — sin? 2¢; > (5)

1
We choose r > —. It follows r2|b1|> > 1 or 72|bi|? — sin®2¢; > cos?2¢;. Therefore, the

1] -
left-hand side in (5) is nonpositive. Besides, we pick ¢ € (0, %), ie. ¢ € (—g5¢) C (—%; %)
The right-hand side in (5) implies
2
a2 > i

cos 2¢; + /r2[by 2 — sin? 2¢;
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For k + 1 zeros of f(t) we choose

Els

2
ag >  max .
1SISkH1 cos 2¢; + /r2]b1 |2 — sin® 2¢;

Thus, 3Ir > 0 (WC have r € Lbl’ oo>> Vk e N 320 € C% 3¢° e C (see (3)) that
1

1
n<r,z0,t0,) >k+1>k.
f
Hence, the function f(,/z122) is of unbounded index in the direction b.

Case 2. Let by # 0, by # 0 and a; € Ry, ap — oo. Later we will impose more conditions
on the sequence (ay)?2,. By Theorem 3 an entire function F(z), z € C? is of bounded index

by by
VIb1ba] " \/Tbaba] )
Hence, without loss of generality we suppose that |b;b2| = 1.

Put o = arg (b1b2), 2° = (2{,23), where 2{ is arbitrary complex number,

in direction (b1, by) if and only if F(z) is of bounded index in direction <

o bazl+(1— a?)e'#/? b a2e!? — byz) ©)
2 = by ’ 0— .

“ b1bs

The zeros of f <\/ (29 + bat) (29 + bot) > can be found from the equation

(2 + bit) (29 + bot) = bibot® + (V0o + 28b1) t + 2020 = ¢}, €N

Consider its roots

—(bgz? + blzg) + \/(bgz? — blzg)Q + 4612[)1172

t =
! 2b1 by

Let ¢; = arg¢;. The condition of a zero t; belongs to r-neighborhood of the point ¢y has the
form |t; —to| < r or

. 9 . .
r > aiei%’/2 — b2 — _(2b22(1) : (1 - az) GW/?) —; \/(az B 1) el 4 4et?|o|?

= 2r>|af +1+ \/(a% — 1)2 + 4% (cos 2¢; + i sin 2¢y)

= a2 +1+ \/(ai —2a3 + 1+ 4]¢;|? cos 2¢;) + 4i|c?|sin2¢; | . (7

To calculate a square root of complex number we suppose = € R, y € R and use

2 2 2 2 _

Tty =
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Applying (8) to (7), we obtain

1

V2

2r > |az + 1+

2
(\/((ai - 1)2 + 4|¢g)? cos 2@;) + 16|+ sin? 2¢0; +

1/2
+ 4|¢)* cos 2¢; + (af — 1)2> +

) 2 2 .
4+ — \/( a? — 1) + 4|¢|? cos 2 ) + 16|¢|4 sin2 2¢; —
\/5< (k ) !l! 2 !l! 2

1/2
— 4|¢;|? cos 2¢; — (ai — 1)2) ) 9

We choose a minus before square roots in (9). But for real = and y the inequality |z+iy| < |z|+]|y|
holds. We suppose that real and image parts of expression in modulus (9) don’t exceed r, i.e.,

V2r > V2 (az +1) — (4]cl|2c082g01 + (af — 1)2 +
) 9 ) 2 42 1/2
+ ((ak —1)" +4|q cos2gol> + 16|¢;|* sin 2@;) (10)
and
) 5 1/2
7 4)c1|? cos 2y + (a — 1)2 — \/((ai - 1)2 + 4]¢]? cos 2gol) + 16| cy]* sin? 2¢; <.
(11)

At first we prove that for some » and some ¢ and for all a; the inequality (11) holds. From (11)
it follows that

(4]ci|? cos 2y + aj, — 2aj + 1 — 27"2)2 < (ap —2a3 + 1+ 4|¢|* cos 2@;)2 +
+ 16|cl\2 sin? 2¢; < (4|cl\2 cos 2p; + ai - 2ai +1+ 27"2)2
or
(4|cl\2 cos 2¢; + aj — 2a; + 1)2 + 4rt — 4r? (4|cl|2 cos 2¢; + ap — 2a3 + 1) <
< (ai —2a2 4+ 1 + 4|¢;|* cos 2<pl)2 + 16]¢;|* sin? 2¢; <
< (4|cl\2 cos 2¢; + aj — 2a; + 1)2 + 4rt 4 4r? (4\cl|2 cos 2¢; + ajp — 2a3 + 1).
Simplifying and reducing by 4 we deduce

rt — 1% (4]er]? cos 2¢; + ap — 2a2 + 1) < 4|¢*sin® 2¢; <
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rd 42 (4|cl\2(3082cp1—|—ai —2&%—}—1) ) (12)

m . .
Now we choose ¢ < <3 Since aj, — oo we suppose (aj — 1)2 > 9, ie., |ap? > 4.
From here it follows that

rt — 12 (4]er? cos 2, + af — 2a3 + 1) =1° (7”2 —4darf? cos 2, — (af, — 1)2) <0

for || < % Therefore, the left-hand side in (12) is negative.
The right-hand side in (12) is equivalent to
4le? (sin2 2p; — 1% cos 2¢1) < 4 r? (az — 1)2 :

(13)

For validity of (13) we choose r € (2;3).
Then sin? 2¢; — 72 cos 2¢; < sin? 2p; — 4 cos 2¢;. Now we require sin? 2¢; — 4 cos 2¢; < 0. It
means that
cos? 2p; 4+ 4cos 20 — 1 > 0.

Its solution is
cos2p; < —2—/5 or cos 2¢; > —2 + /5.
1 . . . .
Hence, for ¢ < 5 arccos (-2+V5) < Z and r € (2;3) the inequality (11) is valid for all

]ak]2 > 4.
Now we shall choose r and ¢ and construct sequence (ay) such that inequality (10) is true.
That inequality is equivalent to the following estimate:

\/i(ai+1—7“)<

1/2
2
< (4\0;]2 cos 2, + (aj — 1)2 + \/((az - 1)2 + 4|¢g)? cos 2@;) + 16]cy|* sin? 2<pl> <

<\f2(a%+1+r)<:)2(ai+1—r)2<

2
< 4ey|? cos 2¢; + (af, — 1)2 + \/((a% - 1)2 + 4]¢;]? cos 2@;) + 16|c;|* sin? 2¢; <

<2(a%+1+r)2. (14)
Putting » = 2 in (14), we strengthen that inequality:

2(61%—1)2 <

2
< 4er? cos 2, + (af — 1)2 + \/((a% — 1)2 + 4|¢;)? cos 2<pl> + 16|c; |4 sin? 2y <

<2} +3)? =

2
— (aj — 1)2 < 4l¢|? cos 2¢; + \/((ai - 1)2 + 4|¢g)? cos 2g0;) + 16| * sin? 2¢; <
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< aj + 14a? 4+ 17. (15)

But

2
4‘cl|2cos 2¢; + \/((az — 1)2 + 4|¢;)? cos 2<pl> + 16]¢;|4 sin? 2¢p; >

> (aj — 1)2 + 4)c|? cos 2¢; > (aj — 1)2.

Thus, the left inequality in (15) is obvious. The middle expression in (15) does not exceed
(af — 1)2 + 8]cy|? cos 2 + 4|c;|?| sin 2¢;|. We obtain inequality

ap — 2a; + 1+ 4]e)*(2cos 2¢; + | sin2¢y|) < aj + 14a} + 17 <=
= 4]¢1|*(2 cos 2¢; + | sin 2¢;|) — 16 < 16a3.

Hence, we must choose a; such that
2 1 9 .
ap > Z‘Cl’ (2cos 2¢; + |sin2¢;|) — 1.

For k + 1 zeros of f(t) we pick ay, satisfying this condition

2
2 e .
> L (2c0s2 2¢1]) — 1.
ak > max ——(2c0s2¢; +[sin 201)

Thus, 3r > 0 (we have r € (2;3)) Yk € N 320 € C? 3t° € C (see (6)) that
0,0 1
n<r,z ,t ’f) >k+1>k.

We conclude that function f(,/z122) is of unbounded index in direction b.

Combining Theorem 1 and Theorem 4 in one statement, we get the following

Theorem 5. Let f(t), t € C, be an even entire transcendental function of bounded index.
Then:

() for each direction b = (b1,by) € C2\ {0} and for every fixed 29,29 € C the function

g(t) = f<\/(z? + bit) (28 + th)) is an entire function of bounded index (t € C);
(ii) the function f (, /z1 zg) is of unbounded index in each direction b.
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