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We establish new efficient conditions sufficient for the unique solvability of the Cauchy problem for two-
dimensional systems of linear functional differential equations with monotone operators.

3HatioeHo HO8I echeKMUBHI yMOBU, WO € OOCMAMHIMU 0AA ICHYBAHHA €0OUHO20 P038’A3KYy 3adaui Kowi
0414 080BUMIPHUX CUCEM ATHILHUX QYHKYIOHAAbHO-OUDEPEeHUIANbHUX PIBHAHb 3 MOHOMOHHUMU ONe-
pamopamu.

1. Introduction and rotation. On the interval [a, b], we consider two-dimensional differential

system
ug(t) = o iy (u1)(t) + oz lio(u2) (1) + @i(t), i =1,2, (1.1)
with the initial conditions
ui(a) = ¢, wa(a) = ca, (1.2)
where ¢, : C([a,b;R) — L([a,b];R) are linear nondecreasing operators, o;; €

€ {—-1,1}, ¢ € L([a,b];R), and ¢; € R, i,k = 1,2. By a solution of the problem (1.1), (1.2)
we understand an absolutely continuous vector function v = (ug,u2)? : [a,b] — R? satisfying
(1.1) almost everywhere on [a, b] and verifying also the initial conditions (1.2).

The problem of solvability of the Cauchy problem for linear functional differential equa-
tions and their systems has been studied by many authors (see, e.g., [1—6] and references
therein). There are a lot of interesting results but only a few efficient conditions is known
at present. Furthermore, most of them are available for the one-dimensional case only or for
systems with the so-called Volterra operators (see, e.g., [2, 3, 5, 7-9]). Let us mention that
the efficient conditions guaranteeing the unique solvability of the initial value problem for n-
dimensional systems of linear functional differential equations are given, e.g., in [4, 10-13].

In this paper, we establish new efficient condition sufficient for the unique solvability of the
problem (1.1), (1.2) with 611 = 1 and 092 = 1. The cases where 11092 = —1 and 011 = 092 =
= —1 are studied in [14] and [15], respectively.
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The integral conditions given in Theorems 2.1 and 2.2 are optimal in a certain sense which
is shown by counter-examples constructed in the last part of the paper.

The following notation is used throughout the paper:

(1) R is the set of all real numbers, Ry = [0, +o0[;

(2) C(Ja,b];R) is the Banach space of continuous functions u : [a,b] — R equipped with
the norm

ullc = max{\u(t)y te [a,b]};

(3) L([a, b]; R) is the Banach space of Lebesgue integrable functions & : [a,b] — R equipped
with the norm

b
Ihll, = / Ih(s)]ds:

(4) L([a,0); Ry) = {h € L([a,b];R) : h(t) > Oforaa.t € [a, b]};
(5) an operator ¢ : C([a,b];R) — L([a,b]; R) is said to be nondecreasing if the inequality

L(uy)(t) < l(uz)(t) foraa. t € [a,b
holds for every functions uj,us € C([a,b]; R) such that
ur(t) < wug(t) for t € [a,b];

(6) Py is the set of linear nondecreasing operators ¢ : C([a, b];R) — L([a, b]; R).
In what follows, the equalities and inequalities with integrable functions are understood to
hold almost everywhere.

2. Main results. In this section, we present the main results of the paper. The proofs are
given later, in Section 3. Theorems formulated below contain the efficient conditions sufficient
for the unique solvability of the problem (1.1), (1.2) with o3; = 1 and 092 = 1. Recall that
the operators /;;, are supposed to be linear and nondecreasing, i.e., such that ¢;;, € P, for
i,k =1,2.

Put
b

Aik:/&-k(l)(s)ds for i,k =1,2. (2.1)

a
At first, we consider the case where o12091 > 0.

Theorem 2.1. Let 011 = 1, 099 = 1, and o12091 > 0. Let, moreover,
A < 1, Aoy < 1, (22)

and
A12 A21 < (1 — All)(l — AQQ), (23)
where the numbers Ay, i,k = 1,2, are defined by (2.1). Then the problem (1.1), (1.2) has

a unique solution.
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Remark 2.1. Neither one of the strict inequalities (2.2) and (2.3) can be replaced by the
nonstrict one (see Examples 4.1 and 4.2).

Remark 2.2. Let H; be the set of triplets (z,y,z) € R3 satisfying
r<l y<l z<(l-2)(1-y)

(see Fig. 2.1). According to Theorem 2.1, the problem (1.1), (1.2) is uniquely solvable if ¢;;, €
€ P, 1,k = 1,2, are such that

b b b b
/611(1)(8)d8,/622(1)(8)(18,/Eu(l)(S)dS/ggl(l)(s)dS S Hl.

Remark 2.3. It should be noted that Theorem 2.1 can be derived as a consequence of Corol-
lary 1.3.1 given in [4]. However, we shall prove this theorem using the technique common for

both theorems given in this paper.
Remark 2.4, 1t follows from Corollary 3.2 of [16] thatif 011 = 1,099 = 1, 012091 > 0, and

A+ A <1, A + Az < 1, (2.4)

where the numbers A, i,k = 1,2, are defined by (2.1), then the problem (1.1), (1.2) has
a unique solution (uy,us)”. Moreover, this solution satisfies

ul(t) > 0, 012U2(t) >0 for t e [a, b}
provided that ¢; > 0, 12¢9 > 0, and

ql(t) >0, O'12(]2(t) >0 for te [CL, b}
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Fig. 2.2

On the other hand, if the assumption (2.4) is weakened to the assumptions (2.2), (2.3) then
the problem (1.1), (1.2) has still a unique solution but no information about the sign of this
solution is guaranteed in general.

Now we consider the case where 012021 < 0.

Theorem 2.2. Let 011 = 1,092 = 1, and 012091 < 0. Let, moreover, the condition (2.2) be
satisfied and

2
A0Ag < 4\/(1 — All)(l — A22) + (\/l — A+ \/1 — A22> , (25)

where the numbers A, i,k = 1,2, are defined by (2.1). Then the problem (1.1), (1.2) has
a unique solution.

Remark 2.5, The strict inequalities (2.2) in Theorem 2.2 cannot be replaced by the non-
strict ones (see Example 4.1). Furthermore, the strict inequality (2.5) cannot be replaced by
the nonstrict one provided A7 = Ass (see Example 4.3).

Remark 2.6. Let H, be the set of triplets (z,y, z) € R3 satisfying

2
r<l1l, y<l1l, z<4 (1x)(1y)+<\/1x+\/1y>

(see Fig. 2.2). According to Theorem 2.2, the problem (1.1), (1.2) is uniquely solvable if /;;, €
€ Puw, 1,k = 1,2, are such that
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b b b b
/511(1)(5)615,/622(1)(3)(15,/€12(1)(s)ds/€21(1)(s)d5 € H,.

At last, we give consequences of Theorems 2.1 and 2.2 for the system with argument devia-
tions,

u'l(t) = hll(t)ul (Tll(t)) + 01h12(t)’LL2 (le(t)) + (h(t),
(2.6)
’UJIQ(t) = 02h21(t)u1 (Tgl(t)) + h22<t)’lL2 (ng(t)) + QQ(t),

where hiy; € L([a,b;Ry), 7 : [a,b] — [a,b] are measurable functions, o; € {—1,1}, and
¢ € L([a,b];R), i,k = 1,2.
Corollary 2.1. Let 0102 > 0 and let the conditions (2.2) and (2.3) be fulfilled, where

b
Aik = /hik(3>d8 fOl’ i,k = 1,2. (27)
Then the problem (2.6), (1.2) has a unique solution.
Corollary 2.2. Let 0109 < 0 and let the conditions (2.2) and (2.5) be fulfilled, where the
numbers A;r, i,k = 1,2, are defined by (2.7). Then the problem (2.6), (1.2) has a unique solution.

3. Proofs of the main results. In this section, we shall prove the statements formulated
above. Recall that the numbers A;x, i, k = 1,2, are defined by (2.1).

It is well-known from the general theory of boundary-value problems for functional differ-
ential equations (see, e.g., [4, 11, 17, 18]) that the following lemma is true.

Lemma 3.1. The problem (1.1), (1.2) is uniquely solvable if and only if the corresponding
homogeneous problem

u;(t) = 0;1 Eil(ul)(t) + g2 Eig(UQ)(t), 1= 1, 2, (31)
ui(a) = 0, uz(a) = 0, (3.2)

has only the trivial solution.

In order to simplify the discussion in the proofs, we formulate the following obvious lemma.

Lemma 3.2. (uy,u2)” is a solution of the problem (3.1), (3.2) if and only if (u1, —u2)” is
a solution of the problem

U;(t) = (71)1'—10_“ Eil(vl)(t) + (*1)i0i2 fig(’vz)(t), = 1,2, (33)
vi(a) =0, va(a) = 0. (3.4)
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Lemma 3.3 ([19], Remark 1.1). Let ¢ € Py, be such that

b
/zu)(s)ds <1

Then every absolutely continuous function u : [a,b] — R such that
u'(t) > L(u)(t) for t € [a,b], u(a) > 0,

satisfies u(t) > 0 fort € [a,b).
Now we are in a position to prove the main results.

Proof of Theorem 2.1. According to Lemmas 3.1 and 3.2, in order to prove the theorem it
is sufficient to show that the system

u;(t) = Eil(ul)(t) +£i2(u2)(t)v i=1,2, (35)

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, (u,u2)” is a nontrivial solution of the problem (3.5), (3.2).
If the inequality

ui(t) >0 for t € [a,b] (3.6)

holds for some i € {1,2} then, by virtue of (2.2), the assumption ¢3_;; € P,p, and Lemma 3.3,
we get

U3_,~(t) >0 for te [a, b] (37)

Consequently, the functions u; and wy satisfy one of the following alternatives.

(a) Both functions u; and us do not change their signs. Then, without loss of generality, we
can assume that (3.6) holds for i = 1, 2.

(b) Both functions u; and us change their signs.

Put
M; = max {u;(t) : t € [a,b]}, i=1,2, (3.8)
and choose «; € [a,b],7 = 1,2, such that
ui(a;) = M; for i=1,2. (3.9)
Obviously, in both cases (a) and (b), we have
M, >0, My >0, M+ M;>D0. (3.10)

The integration of (3.5) from a to oy, in view of (3.8) —(3.10), and the assumptions ;1, £;2 € Pyp,
yield
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M; = /Eil(ul)(s)ds—i—/&z(uQ)(s)ds <

< M1/&1(1)(3)615+Mg/&2(1)(s)ds <

< MyAig + MyAg, i =1,2. (3.11)
By virtue of (2.2) and (3.10), we get from (3.11) that
0< M;(1—Ay) < M3 Az, i=1,2. (3.12)
Using (2.2) and (3.10) once again, (3.12) implies M; > 0, My > 0, and
(1= A11)(1— Ag) < A1pAa,

which contradicts (2.3).
The contradiction obtained proves that the problem (3.5), (3.2) has only the trivial solution.

Proof of Theorem 2.2. According to Lemmas 3.1 and 3.2, in order to prove the theorem it
is sufficient to show that the system

u’l (t) = ﬁll(ul)(t) + elg(uﬁ(t), (313)

uhy(t) = —Llo1 (u1)(t) + Lo (u2)(t) (3.14)

has only the trivial solution satisfying (3.2).

Suppose that, on the contrary, (u;,u2)” is a nontrivial solution of the problem (3.13), (3.14),
(3.2). It is clear that u; and uy satisfy one of the following.

(a) One of the functions u; and us is of a constant sign. According to Lemma 3.2, we can
assume without loss of generality that u;(t) > 0 for ¢ € [a, b].

(b) Both functions u; and ug change their signs.

Case (a): ui(t) > Ofort € [a,b]. In view of (2.2) and the assumption ¢9; € P,p, Lemma 3.3
yields ua(t) < 0fort € [a,b]. Now, by virtue of (2.2) and the assumption /15 € P,p, Lemma 3.3
again implies u1(t) < 0 for¢ € [a,b]. Consequently, u; = 0 and Lemma 3.3 once again results
in uo = 0, which is a contradiction.

Case (b): u; and ugy change their signs. For i = 1,2, we put
M; = max {u;(t) : t € [a,b]}, m; = —min{w;(t) : t € [a,b]}. (3.15)
Choose «;, §; € [a,b], i = 1,2, such that the equalities

ur(on) = My, ur(f1) = —my (3.16)
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and
uz(ag) = My, u2(f2) = —ma

are satisfied. Obviously,
M; >0, m; >0 for ¢=1,2.

Furthermore, for 7, k = 1,2, we denote

min{e;,5} max{a;,B;}

Bik = / &k(l)(s)ds, Dik = / Eik(l)(s)ds.

a min{«;,0; }

It is clear that
B, + D, < Ay, for ik =1,2.

567

(3.17)

(3.18)

(3.19)

(3.20)

According to Lemma 3.2, we can assume without loss of generality that «; < 1 and ay < fa.
The integrations of (3.13) from a to o and from «; to 31, in view of (3.15), (3.16), (3.19), and

the assumptions ¢11, {12 € Pgp, result in

M, = /Ell(ul)(s)ds—i-/ﬁlg(ug)(s)ds <

aq aq

S M1/611(1)(8)d8+M2/€12(1)(8)d8 = MlBll +M2B12

and
B1 51
My +mq = —/fll(ul)(s)ds — /612(u2)(s)ds <
aq a1

IN

«aq
The last relations, by virtue of (2.2) and (3.18), imply

M,

M
0< 7(1—]311)4‘@(1—1711)4—71 < Bia+ D1z < Ajs.
meo mo

My

B1 B1
mi /@11(1)(8)d8 +m2/€12(1)(s)ds = m1D11 + maD1s.
aq

(3.21)

On the other hand, the integrations of (3.14) from a to «y and from as to (2, using (3.15),
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(3.17), (3.19), and the assumptions {21, f2o € Py, give

My = —/ﬂgl(ul)(s)ds+ /Ezz(uQ)(s)ds <

g a2
< mq /521(1)(8)618 + Mg/ggg(l)(s)ds = mlBgl + M2B22
and
B2 B2
MQ +m2 = /fgl(ul)(s)ds — /ﬂgg(l@)(s)ds S
a2 a2

< My /@21 ds —|—m2/€22 )ds = Mi1Do1 + moDosy .

a2

The last relations, by virtue of (2.2) and (3.18), yield

Mo M,
— (1- B — (1-D —~2 < B Dy < A 3.22
0< ml( 22)+M1( 22)+M 21 + Doy 21 - (3.22)

Now, it follows from (3.21) and (3.22) that

M m
AppAy > —F (1 —=B11)(1 — Ba2) + —2 (1-B11)(1 —Dg)+1—Bn+
mq M2

M, mi Mo
—(1—-D 1-B —1—D 1-D 1-D
+ . ( 11)( 22) + M, ( 11)( 22) + oM ( 1)+
My M M.
+ =21 (1~ Byp) +1— Dog + —. (3.23)
mims mo

Using the relation

r4+y >2yxy for =z >0,y >0,
it is easy to verify that

M (1= B11)(1 — Ba) + M (1 =D11)(1 = Da2) >
ma 1
> 24/(1 — B11)(1 — Baa)(1 — D11)(1 — Dag) >
> 24/(1 — Bi1 — D11)(1 — Bag — Da2) > 2¢/(1 — A11)(1 — Aga),
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Mo My M.

m1M2 2
1-D 1-B > 2= 1—-D 1-B 3.24
v ( 11) + ep—. ( 22) > . V( 11)( 22) (3.24)
M, My M;
—(1-D 1-B 2 — 1-D 1-B — =
- ( 11)( 22) + - V( 11)( 22) + -
M 2
= (\/(1 —DH)(1—BQQ)+1) ,

and

]% (1= B11)(1 — D) + ]\ﬂﬁ (\/(1 — D11)(1 — By) + 1)2 >

>2y/(1—Bu)(1 - D22)<\/(1 = D11)(1 = Ba2) + 1) >

> 2y/(1 = By — D11)(1 — Baya — Dg2) +2+/(1 — B11)(1 — Dyp) >

> 2¢/(1 = A1) (1 — Ag) +2¢/(1 — Bur)(1 — Daa) . (3.25)
Therefore, by virtue of (3.24), (3.25), (3.23) implies

A12A91 >

> 4y/(1— Ap1)(1 — Age) + 1 — By +2v/(1 = B11)(1 — Do) +1 — Doy >

> 4y/(1— Ap)(1— Ag) + (\/1 — A+ V1- A22)27

which contradicts (2.5).
The contradictions obtained in (a) and (b) prove that the problem (3.13), (3.14), (3.2) has
only the trivial solution.

Proof of Corollary 2.1. The validity of the corollary follows immediately from Theorem 2.1.

Proof of Corollary 2.2. The validity of the corollary follows immediately from Theorem 2.2.

4. Counter-examples. In this part, the counter-examples are constructed verifying that the
results obtained above are optimal in a certain sense.

Example 4.1. Let o, € {—1,1}, hy, € L([a,b;Ry), i,k = 1,2, be such that

b
011 = 1, /hn(s)ds 2 1.

a
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It is clear that there exists ¢y € ]a, b] such that

to

/MKWM:L

a

Let the operators ¢;;, € Py, i, k = 1,2, be defined by

i) (t) L ha()v(min(t)) for t € [a,b], v € C(la, bl R), (4.1)

where 7’11(15) = 1o, 7’12(15) = a, TQl(t) = a, and ng(t) =aqgfort e [a, b] Put
u(t) = /hn(s)ds for t € [a,b].

It is easy to verify that (u,0)? is a nontrivial solution of the problem (1.1), (1.2) with ¢; = 0 and
¢ =0,i=1,2
An analogous example can be constructed for the case where

b
099 = 1, /hQQ(S)dS 2 1.

a

This example shows that the constant 1 in the right-hand side of the inequalities in (2.2) is
optimal and cannot be weakened.

Example 4.2. 1Let 0;;, = 1fori,k = 1,2 and let h;, € L([a, bl; R+), 1,k = 1,2, be such that

b b
/hn(s)ds <1, /h22(8)ds <1, (4.2)
and
b b b b
/hlg(s)ds/hgl(s)ds Z 1 —/hu(s)ds 1—/h22(8)d8

It is clear that there exists ¢y € |a, b] such that

to

/h12 ds/h21 = 1 —/hn 1—/h22($)d8

a
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Let the operators ¢;;; € Py, i,k = 1,2, be defined by (4.1), where 7;,(t) = to for t € [a,b],
i,j = 1,2. Put

to
t 1— fhn(S)dS t
ui(t) = /hn(s)ds—i-toa /h12(s)ds for ¢ € [a,b],
a fhlg(s)ds a

to
t fhgl(s)ds t
ug(t) = /hgl(s)ds—l— ato— hoo(s)ds for t € [a,b].
a 1— thQ(S)dS a

It is easy to verify that (u1,uz)” is a nontrivial solution of the problem (1.1), (1.2) with ¢; = 0
and¢; = 0,7 =1,2.

This example shows that the strict inequality (2.3) in Theorem 2.1 cannot be replaced by the
nonstrict one.

Example 4.3. Let 011 = 1,012 = 1,091 = —1,and 092 = 1. Let a € [0,1] and hy2,ho1 €
€ L([a,b];Ry) be such that

b b
/hlg(s)ds/hgl(s)ds > 8(1 — ).

It is clear that there exist ¢y € ]a,b] and ¢1,%2 € ]a,to[ such that

to to

/hlg(s)ds/hgl(s)ds =8(1—a)

a a

and

11 1 to to 1 to
/hlg(s)ds = 4/h12($)d8, /hgl(s)ds = 2/h21($)d8.

a

Furthermore, we choose hy1, hos € L([a, b]; R4) with the properties
hll(t) =0 for te€ [a,tl] U [to,b], hgz(t) =0 for t¢€ [tz,b],

and
b

/ B (s)ds = /b has(s)ds = .

a

ISSN 1562-3076. Heainitni koausanns, 2007 m. 10, N> 4



572

J.SREMR, R. HAKL

Let the operators £;; € Py, i,k = 1,2, be defined by (4.1), where 711 (t) = tg, T22(t) = t for

t € [a,b], and
t fi t t t f t t
() = 0 or t € [a,ty], () = 1 or t € [a,tof,
to for t € [tl,b}, to for t € [tg,b].
Put
to t
/hgl(s)ds/hlg(s)ds for t e [a,tl[,
Ul(t) =q" ta to t
l—a-— 2/h11(8)d8 — /hgl(s)ds/hlg(s)ds for t e [tl, b],
\ t1 to t1
t to t
—(1 —a)/hgl(s)ds—/h21(5)ds/h22(s)ds for ¢ € [a,ta],
U2(t) - to ¢ t 2 ¢
—/hgl(s)d8+2/h21(s)d8 for t e [tg,b].
to to

It is easy to verify that (u, ug

)T is a nontrivial solution of the problem (1.1), (1.2) with ¢; = 0

andc¢; = 0,7 = 1,2.
This example shows that the strict inequality (2.5) in Theorem 2.2 cannot be replaced by the
nonstrict one provided A1 = Aga.
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