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Nonimprovable, in a certain sense, sufficient conditions are established for the solvability and unique
solvability of the boundary-value problem

W(t) = Fu)(t),  u(a) + Mu(b) = h(u),

where F : C([a,b]; R) — L([a,b]; R) is a continuous operator satisfying the Carathéodory conditions,
h : C([a,b]; R) — R is a continuous functional, and A € R,.

Ompumano HenoANULY8aHi y NEBHOMY CEHCI OOCMAMHI YMO8U 04 ICHYBAHHA PO38’A3KI6 A060 €OUH020
PO36’A3KY 2PAHUYHOL 3a0aHi

(1) = F)(t),  ula) + Mu(d) = hw),

oe F' : C([a,b]; R) — L([a,b]; R) — HenepepsHuii onepamop, wo 3a0080avHae ymosu Kapameooopi,
h: C(la,b]; R) — R — HenepepsHuli ¢pynkuyionas i A € R.

Introduction. The following notation is used throughout.

R is the set of all real numbers, R = [0, 4o00].

C([a,b]; R) is the Banach space of continuous functions v : [a,b] — R with the norm
|lullc = max{|u(t)] : a <t < b}.

C(la,b]; Ry) = {u € C([a,b]; R) : u(t) > 0fort € [a,b]}.

C([a,b]; R) is the set of absolutely continuous functions u : [a,b] — R.
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B, ([a,b]; R) = {u € C([a,b]; R) : (u(a)+Au(b))sgn((2—i)u(a)+ (i—1)u(b)) < c}, where
ce R,i=1,2.

L([a,b]; R) is the Banach space of Lebesgue integrable functions p : [a,b] — R with the
b

norm [[pllz, = [ [p(s)|ds.

L([a,b]; Ry) = {p € L([a,b]; R) : p(t) > 0 for almost all ¢ € [a, b]}.
My is the set of measurable functions 7 : [a,b] — [a, b].

L is the set of linear operators ¢ : C([a,b]; R) — L([a,b]; R) for which there is a function
n € L([a,b]; Ry) such that

(L)) < n()llvllc fort € [a,b], v e C([a,b]; R).

P, is the set of linear operators ¢ € L, transforming the set C([a,b]; Ry ) into the set
L([a, b]; R..).

K,y is the set of continuous operators F' : C([a, b]; R) — L([a,b]; R) satisfying the Caratheo-
dory conditions, i.e., for every » > 0 there exists ¢, € L([a, b]; R+) such that

F)(t)] < g:(t)  fort € [a,], [loflc <r

K([a,b] x A; B), where A C R%, B C R, is the set of functions f : [a,b] x A — B satisfying
the Caratheodory conditions, i.e., f(-,z) : [a,b] — B is a measurable function for all x € A,
f(t,-) : A — B is a continuous function for almost all ¢ € [a, b], and for every > 0 there
exists ¢, € L([a,b]; R+ ) such that

[ft o) < g (t)  fort € fa,b], x € A, [lzf <r

o = (el +2), [l = (] )
By a solution of the equation
u'(t) = Fu)(t), (0.1)

where F' € K, we understand a function . € C([a, b]; R) satisfying the equation (0.1) almost
everywhere in [a, b].

Consider the problem on the existence and uniqueness of a solution of (0.1) satisfying the
boundary condition

u(a) + Au(b) = h(u), (0.2)

where A € Ry and h : C([a,b]; R) — Ris a continuous functional.

The general boundary-value problems for functional differential equations have been studi-
ed very intensively. There are a lot of interesting general results (see, e.g., [1-27] and the
references therein), but still only a few effective criteria for the solvability of special boundary-
value problems for functional differential equations are known even in the linear case. In the
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present paper, we try to fill to some extent the existing gap. More precisely, in Section 1 there are
established nonimprovable effective sufficient conditions for the solvability and unique solvabi-
lity of the problem (0.1), (0.2). Sections 2, 3 and 4 are devoted respectively to the auxiliary
propositions, the proofs of the main results and the examples verifying their optimality.

All results will be concretized for the differential equation with deviating arguments of the
form

u'(t) = p(Ou(r(t)) — g(t)u(u(t)) + f(£ ult), u(v (1)), (0.3)

where p,g € L([a,b]; Ry), T, v € My, and f € K([a,b] x R% R).

The special case of the discussed boundary-value problem is the Cauchy problem (for A = 0
and h = Const). In this case, the below theorems coincide with the results obtained in [5]. The
periodic type boundary-value problem (i.e. the case A < 0) for the linear equation and for the
nonlinear one is studied respectively in [14] and [15].

From the general theory of linear boudary-value problems for functional differential equati-
ons we need the following well-known result (see, e.g., [3, 19, 27]).

Theorem 0.1. Let/ € Eab. Then the problem
u'(t) = L(u)(t) + qo(t), u(a) + Au(b) = co, (0.4)

where qo € L([a,b]; R), co € R, isuniquely solvable if and only if the corresponding homogeneous
problem

u'(t) = L(u)(t), (0.19)

u(a) + Au(b) =0 (0.20)

has only the trivial solution.

Remark 0.1. From the Riesz—Schauder theory it follows that if ¢/ € L, and the problem
(0.1p), (0.20) has a nontrivial solution, then there exist g9 € L([a,b]; R) and ¢y € R such that
the problem (0.4) has no solution.

1. Main results. Throughout the paper we assume that ¢ € K([a, b] x R+; R4+ ) is nondecrea-
sing in the second argument, and satisfies

r—-+4oco I

b
1
lim —/q(s,x)ds = 0. (L.1)

Theorem 1.1. Let A € ]0,1], c € R,
h(v)sgnv(a) < c¢  for v e C(la,b];R), (1.2)
and let there exist

Lo, 1 € Pap (1.3)
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such that on the set B} _([a, b]; R) the inequality
[F'(0)(t) = Lo(v)(t) + & (v)(B)] sgnv(t) < q(t, [[vllc)  for t € [a,b] (1.4)
holds. If, moreover,
oMz <1, Mz < ad), (1.5)
where

A+ 2¢/1—[llo(D)][r  for |lo(1)]|r < 1—\%
1
A

(1.6)
(1= [leo(1)]L) for |lto(D)llL > 1 - X

then the problem (0.1), (0.2) has at least one solution.

Remark 1.1. Theorem 1.1 is nonimprovable in a certain sense. More precisely, the second
inequality in (1.5) cannot be replaced by

[z < (1 +e)a(d)

no matter how small £ > 0 would be (see Examples 4.1-4.3).

Theorem 1.2. Let A € ]0,1], c € R,
h(v)sgnv(b) < ¢  for v e C([a,b];R), (1.7)
and let there exist Ly, (1 € Pgp such that on the set B3 ([a, b]; R) the inequality
[F(v)(t) = Lo(v)(t) + &a(v) ()] sgno(t) = —q(t, [[vlc)  for t € [a,b] (1.8)
holds. If, moreover,
oWl + MMz < A, (1.9)

then the problem (0.1), (0.2) has at least one solution.

Remark 1.2. Theorem 1.2 is nonimprovable in a certain sense. More precisely, the inequality
(1.9) cannot be replaced by

oDl +Ala(D)le < A+e
no matter how small ¢ > 0 would be (see Examples 4.4 and 4.5).

Remark 1.3. Let \ € [1,+oc[. Define an operator ¢ : L([a,b]; R) — L([a,b]; R) by
vw)t) Lwa+b—t) fort € [a,b].
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1
Let ¢ be a restriction of 1) to the space C([a, b]; R). Put 9 = e and

It is clear that if « is a solution of the problem (0.1), (0.2), then the function v dt p(u) is a
solution of the problem

V() = F)(t),  v(a)+ 9o(b) = h(v), (1.10)

and vice versa, if v is a solution of the problem (1.10), then the function u & (v) is a solution
of the problem (0.1), (0.2).
Therefore, the following theorems immediately follow from Theorems 1.1 and 1.2.

Theorem 1.3. Let A € [1,+00|, ¢ € Ry, the condition (1.7) be fulfilled, and let there exist
Co, 1 € Pap such that on the set B3 ([a, b]; R) the inequality (1.8) holds. If, moreover,

6Ol <1 oMl < SOV, (111)
where
ST G for Ml <15
B\ = \ (1.12)
A=) fer 1Ml 2155,

then the problem (0.1), (0.2) has at least one solution.

Theorem 1.4. Let A € [1,+00|, ¢ € Ry, the condition (1.2) be fulfilled, and let there exist
o, 01 € Py such that on the set B} ([a, b]; R) the inequality (1.4) holds. If, moreover,

Al Wl + oWl < 1, (1.13)

then the problem (0.1), (0.2) has at least one solution.

Remark 1.4. On account of Remarks 1.1-1.3, it is clear that Theorems 1.3 and 1.4 are also
nonimprovable.

Next we establish theorems on the unique solvability of the problem (0.1), (0.2).
Theorem 1.5. Let )\ € 0, 1],

[h(v) — h(w)]sgn(v(a) —w(a)) <0  for wv,w € C([a,b]; R), (1.14)
and let there exist Ly, (1 € Pgp such that on the set B} _([a,b]; R), where ¢ = |h(0)], the inequality
[F(v)(t) = F(w)(t) = fo(v — w)(t) + £1(v — w) ()] sgn(v(t) —w(t)) < 0 (1.15)

holds. Let, moreover, (1.5) be fulfilled, where a(\) is defined by (1.6). Then the problem (0.1),
(0.2) is uniquely solvable.
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Theorem 1.6. Let A € 10, 1],
[h(v) = h(w)]sgn(v(b) —w(b)) <0 for wv,w e C([a,b]; R), (L16)
and let there exist Ly, (1 € Pgp such that on the set B3 ([a, b]; R), where ¢ = |h(0)], the inequality
[F'(v)(t) = F(w)(t) — Lo(v —w)(t) + €1 (v — w)(t)] sgn(v(t) —w(t)) =0 (1.17)

holds. Let, moreover, (1.9) be fulfilled. Then the problem (0.1), (0.2) is uniquely solvable.
According to Remark 1.3, Theorems 1.5 and 1.6 imply the following results.

Theorem 1.7. Let \ € [1, +oc], the condition (1.16) be satisfied, and let there exist {y, {1 € Pgyp
such that on the set B3 ([a,b]; R), where ¢ = |h(0)|, the inequality (1.17) holds. Let, moreover,
(1.11) be fulfilled, where B3(\) is defined by (1.12). Then the problem (0.1), (0.2) is uniquely
solvable.

Theorem 1.8. Let \ € [1, +0o0|, the condition (1.14) be satisfied, and let there exist Ly, {1 € Pyp
such that on the set B} ([a,b]; R), where ¢ = |h(0)|, the inequality (1.15) holds. Let, moreover,
(1.13) be fulfilled. Then the problem (0.1), (0.2) is uniquely solvable.

Remark 1.5. Theorems 1.5-1.8 are nonimprovable in a certain sense (see Examples
4.1-4.5).

For the equation of the type (0.3), from Theorems 1.1 -1.8 we get the following assertions.

Corollary 1.1. Let A € 0,1], ¢ € Ry, the condition (1.2) be fulfilled, and let
f(ta,y)sea < qlt)  for tefad], aye R, (L18)

where q € L([a,b]; Ry). If, moreover,

b b
/p(s)ds <1, /g(s)ds < v(N), (1.19)

where

() = (1.20)
. b b
X (1 - /p(s)ds) for /p(s)ds >1- )2
then the problem (0.3), (0.2) has at least one solution.
Corollary 1.2. Let \ € 10,1], ¢ € Ry, the condition (1.7) be fulfilled, and let
f(t,z,y)sgnx > —q(t)  for t € [a,b], z,y € R, (1.21)
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where g € L([a,b]; Ry). If, moreover,

b b

)\/g(s)ds—i-/p(s)ds < A, (1.22)

a a

then the problem (0.3), (0.2) has at least one solution.
Corollary 1.3. Let \ € [1,+00[, ¢ € Ry, the conditions (1.7) and (1.21) be fulfilled, and let

b b
/g(s)ds < 1, /p(s)ds < 0(N), (1.23)

where

(1.24)

Then the problem (0.3), (0.2) has at least one solution.
Corollary 1.4. Let \ € [1,+00|, ¢ € Ry, the conditions (1.2) and (1.18) be fulfilled, and let

b b

A/M$@+/M$m<1. (125)

a a

Then the problem (0.3), (0.2) has at least one solution.
Corollary 1.5. Let \ € ]0,1], the condition (1.14) be fulfilled and let

[f(t,z1,91) — f(t, 22, y2)]sgn(z1 —22) <0

for t € [a,b], x1,72,y1,y2 € R. (1.26)

If, moreover, (1.19) holds, where v(\) is defined by (1.20), then the problem (0.3), (0.2) is uniquely
solvable.

Corollary 1.6. Let \ € ]0,1], the conditions (1.16),

[f(t,x1,y1) — f(t, 22, y2)] sgn(z1 — 22) > 0

fOr le [CL, b]? T1,%2,Y1,Y2 € Ra (127)

and (1.22) hold. Then the problem (0.3), (0.2) is uniquely solvable.
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Corollary 1.7. Let \ € [1,+400], and the conditions (1.16) and (1.27) be fulfilled. Let, moreover,
(1.23) hold, where 6()\) is defined by (1.24). Then the problem (0.3), (0.2) is uniquely solvable.

Corollary 1.8. Let A € [1,+00|, and the conditions (1.14), (1.25), and (1.26) hold. Then the
problem (0.3), (0.2) is uniquely solvable.

2. Auxiliary propositions. First we formulate the result from [22] (Theorem 1) in a suitable
for us form.

Lemma 2.1. Let there exist a positive number p and an operator { € Loy such that the
homogeneous problem (0.1p), (0.29) has only the trivial solution, and let for every § € 10,1] and
for an arbitrary function v € C([a,bl; R) satisfying

' (t) = L(u)(t) + S[F (u)(t) — L(u)(t)], u(a) + Au(b) = dh(u), (2.1)
the estimate
lullc < p (2.2)

hold. Then the problem (0.1), (0.2) has at least one solution.

Definition 2.1. We say that the operator { € L, belongs to the set U;(\), i € {1,2}, if there
exists_a positive number r such that for any ¢* € L(la,b]; Ry) and ¢ € Ry, every function
u € C([a,b]; R), satisfying the inequalities

[u(a) + Au(b)] sgn ((2 — i)u(a) + (i — Du(b)) < c, (2.3)
(—1) (1) — L)) sgnult) < ¢*(t)  fort € [a,b], (2.4)

admits the estimate
ulle < 7 (c+llg”[|z)- (2.5)

Lemma 2.2. Leti € {1,2}, c € R,
h(v)sgn((2 — i)v(a) + (i — Do) < ¢ for v € C([a,b]; R), (2.6)
and let there exist { € U;(\) such that on the set B ([a, b]; R) the inequality
(1) F()(t) = L) (®)]sgnv(t) < gt |lvllc)  for t € [a,b] (2.7)

is fulfilled. Then the problem (0.1), (0.2) has at least one solution.

Proof. First note that due to the condition ¢ € U;(\), the homogeneous problem (0.1p),
(0.29) has only the trivial solution.
Let r be the number appearing in Definition 2.1. According to (1.1) there exists p > 2rc
such that
b
= / ds < 1 for x>
. q(s,x)ds 5y p-

a
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Now assume that a function v € C([a, b]; R) satisfies (2.1) for some & € ]0, 1[. Then, accor-
ding to (2.6), u satisfies the inequality (2.3), i.e., u € Bj_([a,b]; R). By (2.1) and (2.7) we obtain
that the inequality (2.4) is fulfilled for ¢*(¢t) = ¢(¢, |u|/c). Hence, by the condition ¢ € U;(A)
and the definition of the number p, we get the estimate (2.2).

Since p depends neither on u nor on §, from Lemma 2.1 it follows that the problem (0.1),
(0.2) has at least one solution.

The lemma is proved.

Lemma 2.3. Leti € {1,2},

[h(u1) = h(uz)] sgn((2 — i) (u1(a) — uz(a)) + (i — 1)(u1(b) — u2(a))) < 0

fOl" ui, u2 € C([avb]vR)v (28)
and let there exist ¢ € U;(\) such that on the set B ([a, b]; R), where ¢ = |h(0)|, the inequality
(= 1) HF (ua)(t) = Fu2)(t) — £(ur — uz)(t)] sgn(ur (t) — ua(t)) < 0 2.9)

holds. Then the problem (0.1), (0.2) is uniquely solvable.

Proof. From (2.8) it follows that the condition (2.6) is fulfilled, where ¢ = |h(0)|. By (2.9),
on the set Bl ([a,b]; R) the inequality (2.7) holds, where ¢ = |F(0)|. Consequently, all the
assumptions of Lemma 2.2 are fulfilled and this guarantees that the problem (0.1), (0.2) has at
least one solution. It remains to show that the problem (0.1), (0.2) has at most one solution.

Let uy, ug be arbitrary solutions of the problem (0.1), (0.2). Put u(t) = wui(t) — ua(t) for
t € [a,b]. Then by (2.8) and (2.9) we get

[u(a) + Au(b)]sgn((2 — i)u(a) + (i — )u(b)) < 0,
(=1)" /() — £(u)(t)] sgnu(t) <0 fort € [a,b).
This, together with the condition ¢ € U;(\), results in v = 0. Consequently, u; = uo.

The lemma is proved.

Lemma 2.4. Let A € 0, 1], the operator { admit the representation { = {y — {1 with {y and
01 satisfying the conditions (1.3) and (1.5), where « is defined by (1.6). Then ¢ belongs to the set
Ur(N).

Proof. Suppose ¢* € L([a,b]; R.),c € Ry and u € C([a,b]; R) satisfies (2.3) and (2.4) for
i = 1. We show that (2.5) holds, where
[ (D)lz +1+A
1
L=tz = (1@l + 2

it |[lo(1)]|L < 1— A%

(2.10)
[l +1+A
L—[lo(D][ — Allr(1)]|z

if |61 > 1— A%
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It is clear that

u'(t) = Lo(u)(t) — La(u)(t) +q(t), (2.11)
where
qt) = u'(t) — L(u)(t)  for t € [a,b]. (2.12)
Obviously,
(t)sgnu(t) < ¢*(t)  for t € [a,b], (2.13)
and
[u(a) + u(b)] sgnu(a) < c. (2.14)

First suppose that u does not change its sign. According to (2.14) and the assumption \ €
€ 10, 1], we obtain

lu(a)| < e (2.15)
Choose ty € [a,b] such that
|u(to)| = [lullc- (2.16)
Due to (1.3) and (2.13), (2.11) implies
lu)” < |lulle L(1)(t) +¢"(t)  for t € [a,b]. (2.17)

The integration of (2.17) from a to ty, on account of (1.3), (2.15) and (2.16), results in
to to

lulle = ¢ < flulle = lu(a)] < HU\\c/%(l)(S)dH/q*(S)ds < llullelboMll + gz

a

Thus

[ulle (1 =1[leo(DllL) < c+llg*le
and, consequently, the estimate (2.5) holds.
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Now suppose that v changes its sign. Put
M = max{u(t) : t € [a,b]}, m = —min{u(t) : t € [a,b]}
and choose ¢y, t,, € [a,b] such that
u(tyr) = M, u(ty) = —m.
Obviously, M > 0, m > 0, and either
tm < tar,
or
tm >t
First suppose that (2.20) is fulfilled. It is clear that there exists ay € |t,,, tas[ such that
u(t) >0 forag <t < ty, u(ag) = 0.
Let
a; = inf{t € [a,ty] : u(s) < O0fort < s < t,}.
Obviously,
u(t) <0 forag <t <ty and u(lag) =0 if oy > a.
From (2.14), (2.23) and the assumption A € ]0, 1] it follows that

u(ar) > =Au(b)]+ —¢ > =AM —c.

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

The integration of (2.11) from «; to ¢, and from as to ¢/, in view of (1.3), (2.13), (2.18), (2.19),

(2.22), (2.23) and (2.24), yields

tm

m—AM —c<m+u(a) < / ds+m/€o ds+/ *(s)ds,
[e5] a1
tar 124
M<M/£0 d8+m/€1 ds—i—/ *(s)ds.
as

From the last two inequalities we obtain

m(l—C1) < M(A1+ N+ ||¢"]|z + ¢, M(1—Dy) <mBi + |l¢*||z,

(2.25)
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where
Ay = /'51(1)(3)@, By = /zlu)(s)ds,
Cl == /60(1)(s)d5, D1 == /fo(l)(S)dS

Due to the first inequality in (1.5), C1 < 1, D; < 1. Consequently, (2.25) implies

0 <m(l—=C1)(1—=D1) < (A +A)(mBi+|¢"[[L) + [lg*]lz + ¢ <

< m(Ar +X)B1 + ([l¢*]|lL + ) (14 (D) ]| + 1+ A),

(2.26)
0 < M1—Cy)(1—D1) < Bi(MAL+ N+ |l¢"l+¢) +ld*]l. <
< MAL+MBi+ (ld*le + o) (e ()] + 1+ N).
Obviously,
(1—Cy)(1—Dy) > 1—(Cy+Dy) > 1—|[lo(1)||, > 0. (2.27)

If |[6o(1)]l > 1 — A2, then, according to (1.6) and the second inequality in (1.5), we obtain
141(1)||z < A.Hence, By < A and

(Al + )\)Bl = A1B1 + A\B; < )\(Al + Bl) < )‘”El(l)HL
By the last inequality and (2.27), from (2.26) we get

m < ro([[(D)[z+ 1+ M) (e+ llg]|z),

(2.28)
M < ro(les(Wlz + 14+ M) (e + llg”llz),
where
ro = (1= [[eo(V)llz = AMa@)r) ™" (2:29)
Therefore, the estimate (2.5) holds.
If |[6o(1)||L < 1 — A2, then by the inequalities
A4(A1+ N)By < (Ar+ Bi+ )2 < ([ (D)l + A)?
and (2.27), (2.26) implies
m < ([l +1+ M) (e+ lld]z),
(2.30)
M < ([l +14+M(e+ g,
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where

-1
no= 1= Ml — A + 22| (2.31)

Therefore, the estimate (2.5) is valid.
Now suppose that (2.21) is satisfied. Obviously there exists ay € |t tas] such that

u(t) <0 forag <t < tp, u(ay) = 0. (2.32)
Let
az = inf{t € [a,ty] 1 u(s) > 0fort < s < tp}.
Obviously,
u(t) >0 forag <t <ty and u(az) =0 if az > a. (2.33)
From (2.14), (2.33) and the assumption A € |0, 1] we get
u(ag) < Afu(b)]- +¢ < Adm+ec. (2.34)

The integration of (2.11) from «g to ¢j; and from oy to t,,, in view of (1.3), (2.13), (2.18), (2.19),
(2.32), (2.33) and (2.34), results in

tar tar
M- m—-—c<M-—u(az) <M /50 ds—l—m/fl d5+/ *(s)ds,

a3

tm

m<M/€1 ds—i—m/Eo ds+/ *(s)ds.

From the last two inequalities we obtain

M= Co) < m(As+ N+l e, m-Dy) < MByt ¢l (239)
where

tar tm

A= [a@@ds, B= [ a0
[o %} Qg
tar tm

Oy = /eou)(s)ds, Dy = /50(1)(5)@.
[o%} Q4
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Due to the first inequality in (1.5), Cy < 1, Dy < 1. Consequently, (2.35) implies

0 < M(1—=Co)(1=D2) < (A2+N(MBy+ l¢"[|lz) + g7z + ¢ <

< M(Az+A) Bz + ([lg"llz + ) (I (D)2 + 1+ 4),

0 <m(l—=C)(1 = Dg) < Ba(m(A2+A) + [¢"[l +¢) + [l¢7llz < 230
< m(A2 + ) By + ([¢"[lz + ) (1Dl + 14 ).
Obviously,
(1—Cy)(1—=Dy) >1—(Cy+Ds) >1—|[6o(1)| > 0. (2.37)

If ||6o(1)]lz > 1 — M2, then according to (1.6) and the second inequality in (1.5), we obtain
II41(1)|l < A. Hence, B, < X and

(A2 + )\)BQ = A9By + \By < )\<A2 + Bg) < AH€1<1)HL

By the last inequality and (2.37), (2.36) implies (2.28), where rq is defined by (2.29). Therefore,
the estimate (2.5) is valid.
If |[6o(1)||L < 1 — A2, then by the inequalities

4(Ag 4+ N)By < (Ag + By + N)? < (|11 + N)?

and (2.37), (2.36) implies (2.30), where r; is defined by (2.31). Therefore, the estimate (2.5)
holds.
The lemma is proved.

Lemma 2.5. Let A € 0, 1], the operator { admit the representation { = {y — {1, where (o and
¢y satisfy the conditions (1.3) and (1.9). Then { belongs to the set Ua(\).

Proof. Let ¢* € L([a,b]; Ry), c € Ry and u € C([a,b]; R) satisfy (2.3) and (2.4) for i = 2.
We show that (2.5) holds, where

Aol +1+ A

e Y Y P 6y P 239
Obviously, u satisfies (2.11), where ¢ is defined by (2.12). Clearly,
—q(t)sgnu(t) < q*(t) for ¢ € [a,b], (2.39)
and
[u(a) + Au(b)] sgnu(b) < c. (2.40)
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First suppose that u does not change its sign. According to (2.40) and the assumption \ €
€ 10, 1], we obtain

[u(®)] < 5. (2.41)
Choose ty € [a,b] such that (2.16) holds. Due to (1.3) and (2.41), (2.11) implies
—[u@®)|" < llulle (1)) +¢°(t)  for t € [a,b]. (242)

The integration of (2.42) from ¢, to b, on account of (1.3), (2.41) and (2.16), results in
b b
C *
lulle =+ < llulle = lu(®)] < IIUIlc/fl(l)(S)d«9+/q (s)ds <
to to

< JullelitaMiz + llg™| -

Thus

Julle (@~ a()z) < I
and, consequently, the estimate (2.5) holds.

Now suppose that u changes its sign. Define numbers M and m by (2.18) and choose
trstm € [a,b] such that (2.19) is fulfilled. Obviously, M > 0, m > 0, and either (2.20) or
(2.21) is valid.

First suppose that (2.21) holds. It is clear that there exists a1 € |tas, ¢y, [ such that

u(t) >0 forty <t < ai, u(aq) = 0. (2.43)
Let
ag = sup{t € [tm,b] : u(s) < 0fort,, <s <t}
Obviously,
u(t) <0 fort, <t<ay and wu(ag) =0 if g <b. (2.44)

From (2.40), (2.44) and the assumption A € |0, 1] we obtain

1

u(ar) = —fu(@)s - 5 > -

M
= (2.45)

> o
> o
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The integration of (2.11) from ¢, to a; and from ¢, to s, in view of (1.3), (2.18), (2.19), (2.39),
(2.43), (2.44) and (2.45), implies

M<M/£1 ds—i—m/ﬁo ds+/ *(s)ds,

tm M

M

m_T_x<m+u(a2 <M/£0 ds—l—m/& d3+/ ()ds'

t m

From the last two inequalities we get

1 c
M(l—Al) S mCl—i—Hq*HL, m(l—Bl) S M(Dl+x> +Hq*||L+X, (246)
where
o (65)]
A= [a@ds, B= [a)eis
tar tm
a1 @2
Cl = /60(1)(3)ds, D1 = /fo(l)(S)dS.
tav tm
Due to (1.9), A; < 1, B; < 1. Consequently, (2.46) implies
1
0<M(1-A)(1-B) < (M <D1 + X) +lla" [z + §> +lallz <
1 1 .
< MCy (D1 - X) + (||€o(1)HL +1+ X> (lg*lz + ),
(2.47)
1 c
0 <mt = A0 - B) < (D3 )+ ) + e+ <
1 1
<y (D4 3) + (Il +1+ 1) (el + ),
Obviously,
(1-A)(1—=B1)>1— (A1 +B1) > 1—|ta(1)||r > 0. (2.48)

1 1
According to (1.9) and the assumption A € |0, 1], we obtain ||{y(1)| < R Hence, C} < X and

1 1 1 1
Ch (D1 + X) = C1Dy + XCI < X(Cl + D) < XHfo(l)”L-
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By the last inequality, (2.48) and the assumption A € |0, 1], from (2.47) we get

M < ro(Mlo(W)llz +1+A) (c+ llg*llz),

(2.49)
m < ro (Aol +1+A) (c+lg"L),
where
ro = (A=Al ()2 — b)) (2.50)
Therefore, the estimate (2.5) holds.
Now suppose that (2.20) is valid. Obviously there exists ag € t,,, tas[ such that
u(t) < 0 fort, <t < as, u(az) = 0. (2.51)
Let
ag = sup{t € [ta,b] : u(s) > 0fortpy < s < t}.
It is clear that
u(t) >0 fortyr <t <ay and u(ayg) =0 if ay < 0. (2.52)
From (2.40), (2.52), and the assumption A € ]0, 1] it follows that
u(a) < %[ u(@)-+5 < T +5 (2.53)

The integration of (2.11) from ¢,,, to a3 and from ¢y, to ay, in view of (1.3), (2.18), (2.19), (2.39),
(2.51), (2.52) and (2.53), yields

m<M/€0 ds+m/€1 ds+/ *(s)ds,

=
|
>3
|
A
E

044 SM/fl ds—l—m/éo d8+/ ()ds

M

>0

From the last two inequalities we get

1 c
m(1 = 4) < MOyl M-8 <m (Dot 5) +llivs @59

ISSN 1562-3076. Heainitini koausarnns, 2003, m. 6, N 4



ON AN ANTIPERIODIC TYPE BOUNDARY-VALUE PROBLEM FOR FIRST ORDER NONLINEAR FUNCTIONAL... 567

where

Ay = 7361(1)(s)d3, By = 7451(1)(3)@,

tm

02 == fg(l)(s)ds, DQ == fo(l)(s)ds.
] ]

Due to (1.9), A2 < 1, B2 < 1. Consequently, (2.54) implies

1 c
0< it~ A1~ B2) < Co (m (Dot 5 )+l + 5 ) + 'l <

1 1
< mCy (Dot 3 )+ (Il + 145 ) (o'l +o),

(2.55)
1
0 < M(1-A2)(1—-Bsy) < <D2 + X) (MCo+|¢"(|z) + ll¢*]lz + ; <
1 N
< MGy (Dot 3 )+ (a0l 41+ 3 ) (a7l + o)
Obviously,
(1= A2)(1=B2) 21— (A2+ B2) > 1—[[{1(1)]| > 0. (2.56)

1 1
According to (1.9) and the assumption A € ]0, 1], we obtain ||/y(1)]|r < X Hence, Cy < X and

1 1 1 1
Gy (D:, ; X) — CaDy 105 < 1 (Co+ D) < LoD

By the last inequality and (2.56), (2.55) implies (2.49), where rq is defined by (2.50). Therefore,
the estimate (2.5) is valid.
The lemma is proved.

3. Proofs of the main results. Theorem 1.1 follows from Lemmas 2.2 and 2.4, Theorem 1.2
follows from Lemmas 2.2 and 2.5, Theorem 1.5 follows from Lemmas 2.3 and 2.4, and Theo-
rem 1.6 follows from Lemmas 2.3 and 2.5.

Proof of Corollary 1.1. Obviously, the conditions (1.18) and (1.19), with ~ defined by (1.20),
yield the conditions (1.4) and (1.5) with « defined by (1.6), where
F(o)(t) £ p(t)o(r(t)) — g(t)u(u(t)) + f(t v(), v(v(1))),
(3.1)
lo(v)(t) E ptu(r(t)), L)) F g)u(u(t).

Consequently, all the assumptions of Theorem 1.1 are fulfilled.
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Proof of Corollary 1.5. Obviously, the conditions (1.26) and (1.19), with ~ defined by (1.20),
yield the conditions (1.15) and (1.5) with « defined by (1.6), where F, ¢y and ¢; are defined by
(3.1). Consequently, all the assumptions of Theorem 1.5 are fulfilled.

Corollaries 1.2-1.4 and 1.6— 1.8 can be proved analogously.

4. On remarks 1.1 and 1.2. On Remark 1.1. Let A € ]0,1] (for the case A = 0, see [5]).
Denote by G the set of pairs (z,y) € Ry x R4 such that either

r<1—\2 Yy < 2V1l—x— A,

or

1—=x
A

1-X <2<, y <

According to Theorem 1.1, if (1.2) is fulfilled and there exist ¢y, {1 € Py, such that (||¢p(1)]|z,
141(1)||) € G, and on the set B3 ([a, b]; R) the inequality (1.4) holds, then the problem (0.1),
(0.2) is solvable.

Below we give examples which show that for any pair (zo,y0) € G, 2o > 0,90 > 0, there
exist functions py € L([a,b]; R), —p1 € L([a,b]; R+), and 7 € M, such that

b b
/[po(s)]+ds = o, /[po(s)]_ds = Y0, (4.1)
and the problem
W'(t) = po(t)u(r(t)) + pr(t)u(t), wula)+ Iu(b) =0 (42)

has a nontrivial solution. Then by Remark 0.1, there exist g9 € L([a,b]; R) and ¢y € R such
that the problem (0.1), (0.2) with

F(v)(t) € po(t)u(r() + pr(t)u(t) + qo(t),  h(v) = co (4.3)
has no solution, while the conditions (1.2) and (1.4) are fulfilled with ¢y(v)(t) df [po(t)]+v(T(t)),

df
G (v)(t) = [po()]-v(7(1)), ¢ = |go| and ¢ = [co|.
It is clear that if xg,yo € R+ and (zo,40) € G, then (zg, 7o) belongs to at least one of the
following sets

Gi={(r,y) e Ry xRy : 1<z, 0<y},

1—
GQ:{($,y)€R+XR+11)\2§{L‘S1, >\$<y},

Gs={(z,y) €ER xRy : 02 <1-X,2/T-2-)<y}.
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Example 4.1. Let (z¢,y0) € G1,ande > Obe suchthatzy —e > 1, A —¢ > 0. Puta = 0,
b=4,tg =3+

2

1+e¢

(0 fort € [0,1[;

-0 fort € [1,2[;
po(t) =
xo—1—¢e fort e [2,3];
1+e¢ fort € [3,4],
A—c¢
2T fort e [0,1];
0 fort e [1,4],

to fort € [0,3[;
7(t) =
4 fort € [3,4].

Then (4.1) holds, and the problem (4.2) has the nontrivial solution
—(A=e)t+A fort € [0,1];
u(t) =<e fort € [1,3];

—(1+4¢e)(t—3)+¢ fort e [3,4].

1—
Example 4.2. Let (z9,y0) € G2, and ¢ > 0 be such that %—FE < yo, A —¢e > 0. Put
5
=0,b=41t=24+———,
@ 0 + 1—x9+¢
(0 for ¢ € [0, 1];
1—
o+ ”;OJFE fort € [1,2[;
po(t) = | — w0 te
-0 rs fort € [2,3];
A
L0 fort € [3,4],
A—e¢
————— fort e [0,1];
pi(t) = A=(A—et
0 fort e [1,4],

to fort € [0,2[;
7(t) =<0 fort e [2,3];

4 fort e [3,4].
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Then (4.1) holds, and the problem (4.2) has the nontrivial solution
—(A=e)t+A fort € [0,1];
5 fort € [1,2];

—(l—a20+¢e)(t—2)+¢c forte [2,3];

—Cﬂo(t — 3) — (1 — SL‘Q) fort € [3,4]

Example 4.3. Let (zg,y0) € Gs, and ¢ > 0 be such that yo > 2y/1—29 — A + ¢,
e<1l—+1—x9.Puta=0,b=>5,

—V1—=x0+A fort € [0, 1];
0 fort € [1,3 — /1 —xz9—¢];
po(t) = < —1 fort € [3—+/1—x9—¢,3[;
—yo+2v/1—xzg—A+e fort e [3,4];
[ 2o fort € [4,5],
0 fort € [0,1[U[3 — /1 —x0 —¢&,5];
1—x
_ ) - fort € [1,2];
n®) = 0w N vim e
1—$0
_ v fort € [2,3 — 1 — a0 — €|,
=m0 -1z el @0 — ¢l
(5 fort € [0,1];
1 fort € [1,3[;
T(t) =
3—V1I—=xzg forte [3,4];
5 fort € [4,5].

Then (4.1) holds, and the problem (4.2) has the nontrivial solution

(VI =20 —Nt+ A fort € [0,1[;
(1—m0)(1—t)++1—x¢ forte [1,2[;
u(t) = ¢ V1—x0(3—1t)— (1 —z9) fort e [2,3];

—(1 — =) fort € [3,4[;

(05— 1) — 1 fort € [4,5].
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On Remark 1.2. Let \ € ]0,1]. Denote by H the set of pairs (z,y) € Ry x R4 such that
T+ Ay < A

By Theorem 1.2, if (1.7) is fulfilled and there exist ¢y, /1 € P, and ¢ € L([a,b]; R4+) such
that (||€o(1)||z, |€1(1)||z) € H, and on the set B ([a,b]; R) the inequality (1.8) holds, then the
problem (0.1), (0.2) is solvable.

Below we give examples which show that for any pair (xg,v0) ¢ H, o > 0, yo > 0, there
exist functions pg € L([a,b]; R), p1 € L([a,b]; Ry),and 7 € M, such that (4.1) is fulfilled and
the problem (4.2) has a nontrivial solution. Then by Remark 0.1, there exist gy € L([a, b]; R) and
co € R such that the problem (0.1), (0.2), where F' and h are defined by (4.3), has no solution,
while the conditions (1.7) and (1.8) are fulfilled with £o(v)(t) £ [po(t)] v(r(t)), b (v)(t) 2
df
= [po(t)]-v(7(t)). ¢ = |qol and ¢ = |col. _

It is clear that if zg,y0 € Ry and (x0,y0) ¢ H, then (x0,yo) belongs to at least one of the
following sets

Hl:{(xay)ERerRJr : )\<1‘,0§y}’

HQ:{(:c,y)eR+xR+ 0 < x <A —§+1<y}.

Example 4.4. Let (xo,y0) € Hi,ande > Obesuchthatzg — A > ¢,1—¢ > 0. Puta = 0,

A
-
Ate fort € [0, 1[;
) fort € [1,2[;
po(t) =

xo—A—e fort e [2,3];

0 fort € [3,4],
0 fort € [0, 3[;

pi(t) = l1—¢
fort 4
A_o@-n51 orteBd
4  fort e [0,1];
7(t) =

to fort e [1,4].
Then (4.1) holds, and the problem (4.2) has the nontrivial solution
A+e)t—A fort € [0,1];
u(t) = e fort € [1,3];

(1—e)(t—4)+1 fort € [3,4].

ISSN 1562-3076. Heainitini koausarnsa, 2003, m. 6, N> 4



572 R.HAKL, A. LOMTATIDZE, J. SREMR

Example 4.5. Let (z¢,y0) € H2,and € > 0 be such that % < yp, 1 —e > 0. Put
5
a=0,b=4,t :2—m,

zo fort¢ € [0, 1];
_AzTofe fort e [1,2];

po(t) = );\—mo—l—s
—Yo + — fort € [2,3];
0 fort € [3,4],
0 fort € [0,3];

P = 1-c fort € [3,4],

1-(1—¢e)4—1)
4  fort e [0,1];

T(t) = q0 fort € [1,2];
to fort € [2,4].

Then (4.1) holds, and the problem (4.2) has the nontrivial solution

;

—xot + A fort € [0,1[;

A—zo+e)(2—1t)—e fort e [l,2];
u(t) =

—€ fort € [2,3[;

(1—e)d4—t)—1 fort € [3,4].
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