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In this work we analyse stability of a gravity wave generated on the separation surface of two immiscible li-
quids inside a moving container and perturbed by a capillary wave. Such a phenomenon is experimentally
observed when the amplitude and the frequency of the motion imposed to the container attain certain
values. Evolution of the system is described by the variational principle. We assume that motion of the
system is decomposed into two modes: the gravity mode and the capillary mode. With suitable scaling
assumptions it is possible to show that the evolution of the gravity mode is determined by the forcing
motion, while the capillary mode is excited by the nonlinear interactions between the capillary and gravity
modes. At last, an analytical dispersion relation is obtained for the pulsation of the capillary mode. This
relation is a function of several quantities, all depending on the capillary wavenumber and the characteri-
stics of the exciting motion.

AHanizyemubca CmilKicmy 2pasimayitiHux Xeuab, W0 YmMeopombuca Ha NO8ePXHI NOOLLY 080X PIOUH,
AKI He 3MIUULYIOMDBCSA, 8 PYXOMOMY pe3epayapi ma 30ypenol kaninaprol xeuai. Taxe asuuje ekcnepumer-
MAAbHO CNOCMEPI2AEMBCA, KOAU AMRAINYOA [ HACOMA PYXy pe3epayapa 00CA2at0mb 0eAKUX 3HAYEHb.
Esoaroyin cucmemu onucyemscsa Ha 0CHOSL sapiayitinozo npunyuny. Mu npunyckaemo, wio pyx cucme-
MU POZKAAOAEMBCA HA 081 POPMU: 2PABIMAYIUHY MA KANIAAPHY. 34 OONOMO20H0 HANEHCHO0 MACUUMA-
0YBAHHA MONCHA NOKA3AMU, U0 €BOAIOULA 2PABIMAYILIHOT hOpMU PYXY BUSHAYAEMBCA BUMYULEHUM DY~
XOM, @ KaniaapHa popma pyxy 30yproemubca 3a paxyHOK HeAIHIUHOL 63AeMO0IL MiXC KANIAAPHOW ma 2pa-
simauitinoro popmamu pyxy. O0epucano 8 aHaALIMUHHOMY 8UAA0T OUCNEDPCILIHY 3AAEHCHICb A5 NYAb-
cayiit kaniaaproi popmu pyxy. Taxe cnie8iOHOUEHH € (PYHKUIEIO KIALKOX 8EAUHUH, U0 3AAEHCAMb 8i0
KAniAAPHUX X8UALOBUX HUCEA [ XAPAKMePUCMUK 30YPeHHA PYXY CUCHIEMU.

1. Introduction. Short scale wave phenomena, for which surface-tension effects are important,
have been actively studied in literature. Considerable attention has been paid, in particular,
to parasitic capillary wave trains — or capillary ripples — riding on steep gravity free surface
waves, because such capillary ripples, although small, influence the dissipative and other dynami-
cal properties of the surface waves [1]. The state of the art is well represented by the works of
[1-4].

In this work we want to study the generation of capillary ripples riding on longer waves
on the separation surface of two immiscible liquid layers, inside of a prismatic, squared-section,
moving container. The phenomenon under consideration is analogous to the generation of capi-
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llary ripples on free-surface waves and its analysis is motivated, for example, by the necessi-
ty of understanding the dynamics of sloshing of stratified liquids in petro-chemical industry.
Good tools for such analysis are both the Hamiltonian and the variational formulation of the
problem, widely used in many recent studies. In particular, the works [5 - 8] are concerned with
the Hamiltonian formulation of the waves in a stratified fluid, while in [9], the authors apply
the variational formulation to the sloshing of a two-layer liquid without free-surface.

The variational formulation, based on the theoretical frameworks [10, 11], revealed some
peculiar features that make it attractive for the application to the dynamics of interfacial waves.
Among such features, one of them has to be mentioned: the possibility of taking account easily
of both surface-tension and dissipative effects.

The above mentioned studies however are not directly focused on the generation and the
stability of gravity-capillary waves. In this work the variational formulation presented in [9]
will be applied to the study of the generation and the stability of gravity-capillary waves on the
separation surface existing between two immiscible liquid layers subject to sloshing. The variati-
onal approach permits to obtain a nonlinear dynamical system for the evolution of the gravity-
capillary wave. The nonlinear interactions are crucial for the generation and the stability of the
capillary wave, considered as a perturbation of the gravity wave. Adopting a suitable scaling of
the variables, it is possible to model the evolution of the dominant gravity wave independently
from the evolution of the capillary wave. The latter, to the contrary, is influenced by the former
via nonlinear interactions. In this work, considering the interaction between a dominant gravi-
ty wave and a capillary perturbation wave (both characterized by a single wavenumber), a di-
spersion relation depending on the capillary wavenumber, the frequency and the amplitude of
the dominant wave is found. Such a dispersion relation permits to predict if, given the amplitude
and the frequency of the dominant wave, the capillary wave is unstable or not. Experimental
observations confirm quite well the theoretical predictions.

Finally, it can be stated that the followed approach is promising and future work could be
done in order to account for dissipative effects and interactions of a more complex wave (i. e.
waves characterized by more than a single wavenumber).

2. Variational formulation. A closed, prismatic container of height H and side B is completely
filled with two immiscible liquids whose densities are p; and p2 (p1 > p2). At rest, the layer of
the liquid, whose density is p;, reaches the level H;, measured with respect to the bottom of
the tank, while the thickness of the second liquid layer is Hs. Let the frame of reference Oxyz
be attached to the container, with i, j,k unit vectors of x, y, z axes respectively. The level z = 0
coincides with the separation surface between the two layers at rest.

The container is subject to a rigid motion consisting in a rotation # around an axis R parallel
to the y-axis, where § = 6 (t) is a given function of the time ¢. As a consequence of such rigid
motion the fluid system is set in motion, which — for the sake of simplicity — will be assumed
two-dimensional and irrotational in the absolute frame of reference.

The purpose of the present work is to study the generation and the stability of gravity-
capillary waves on the separation surface z = 7 (z,t) by means of a variational formulation.

As it is well known, the crucial point in a variational formulation is the definition of a sui-
table functional ' whose extrema coincide with the solution of the examined problem. In this
work, the following definition for F'is adopted:
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Hy

/p2d2> + <T (m - 1)> dt 1)

n

F= 7Ldt = 7 <Z1p1dz> + <

to to

where 7 is the surface-tension at the separation surface between the two liquid layers and the
operator (e) is defined as
B
/ odz @)
0

and L is the Lagrangian of the motion [11]. Such a definition is nothing else but that of [9]
with the addition of the ”surface-tension” term <7' (\/ 1+n2— 1) > which accounts for surface-

tension effects. As the fluid motion was assumed to be irrotational in the absolute frame of
reference, it is possible to obtain analytical expressions of the pressure fields p;, p2 of the two
liquid layers depending on the respective velocity fields [9]. Substituting such pressure fields
in (1) and performing the integration respect to z, the functional F' depends on the unknown
functions ¢1, 2,7, i. e., ' = F (¢1,p2,n). The functions ¢1, @2, 7 which make the first vari-
ation of F', calculated with respect to ¢1, v, 7, equal to zero are also solutions of the motion
equations [9].

The equivalence between the variational formulation and the differential formulation for
the water wave dynamics is shown in [12]. The extension to the two-liquid sloshing is shown in
[9] when the surface tension effects are considered negligible: they can be however accounted

in the following way. Let us consider the first variation of <7- (\ /1+n2— 1) > with respect to 7,
0 1207 M0
/ 2 _ (= —
Vi) <T<‘% ((1+77%)1/2>> <T(1+77%)3/2 9
The term <T% (%) > in (3) gives
- Nz01 1 . 1207 5
+m)'?) s N

which can be assumed to be equal to zero if én|,_5 = 6n|,_, = 0,1i. e., if the arbitrary variation
of the function 7 is zero at x = 0,z = B. This condition is fulfilled by a suitable choice of the

(¢)

=0

spatial structure of the function 7 (z,t). Then, adding the term — <7%> to the first
L+ng

U] Hy
variation respect to 7 of < / pldz> + < / p2d2> , the following result is obtained:

—Hy n

((pl —p2)|,—y +TL)3/2> on =0 4)

(1+n2
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Nzx
T ———
z=n 3/2
S (1+ )" "
for z = n(x,t). Such a condition coincides with the so-called dynamical boundary condition on
the separation surface.
The following modal expansions for the functions 1, @2 are now introduced:

which is zero for every arbitrary d7, if the quantity (p; — p2)| is equal to zero

1 (z, 2,t) = 0 (t (t) pp1 (z, 2) Z Aqp (t Cosilo:}?[gj}{z ?)] cos (kpt) ,
) ©
02 (z,2,t) = 0 () op2 (z,2) + Z Aoy (1) cosh o (2 = H)] cos (Knx) .

— cosh [k, Hs]
Where k,, = % The definitions of o1 (z, 2) , ¢p2 (2, 2) are given in [9].

Substituting the expansions (5) into (1) and integrating with respect to z, the Lagrangian
function L is obtained as a function of the vectors A; (t) = {A1, (1)}, Ag (t) = {42, ()}, 1. €.,
it has the following structure:

L =p1 {Zn <M1n (777 xvyvt» djst <N1 (Alana z,Y, ))}

2 {32, 0t (1 .00 22+ (N (a0 |+ ( (VIFRE-1)). 6)

where M,,, Ms,, N1, Ny are nonlinear functions of the variables A1, As, 7, x,y,t. The functions
M., May,, N1, Ny are defined in [9].

3. Gravity-capillary waves. When the rigid motion is imposed to the container, waves are
generated on the separation surface. The characteristics of such waves depend of course on
the amplitude and the frequency of the imposed motion. In particular, experimental simulati-
ons showed that when the frequency of the exciting motion is close to the value of the first
resonance a wave is generated on the separation surface which appears to be the superposition
of a longer wave (whose wavelength can be assumed A\, o« 2B = 1m) and a shorter one (whose
wavelength can be assumed \. o 2B x 1072 = 0,01m). When the exciting frequency is made
closer and closer to the value of the first resonance, the amplitude of the longer wave grows
and, as a consequence, breaking of the shorter wave is observed, causing the mixing of the two
liquid layers.

Assuming that the capillary wave is a perturbation of the longer gravity wave, it is interesting
to determine the conditions that make such a perturbation growing or exstinguishing. In order
to do this in the framework of the variational formulation, the Taylor expansion of L with
respect to 7,7, up to the second order [13], has to be performed: such an expansion makes
L depending explicitly on 7, n,. Then let us assume that the separation surface 7 (x,t) can be
represented as the sum of a gravity wave and a capillary wave;

n(x,t) = Q1 (t) cos (k1z) + Qn, (t) cos (kp,T), (7)

where &, is a suitable capillary wavenumber. Analogous truncated sums are adopted for the
velocity potentials (5). After having substituted (7) in the Taylor expansion of L, the operator
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() can finally be applied in order to express L as a function of the unknown time depending
functions Q1 (t), Qn, (), A11(t), A1n, (t), A21 (1), Aayp, (t). The first variation of the functional
F (¢1,¢2,n) is equal to zero if the functions Q1 (t), Qn, (t), A11 (t), Ain, (1), A21 (1), A2p, (t),
considered as generalized coordinates of the motion, satisfy the Lagrange equations [10, 11, 14]:

d )
—c?tl — wp tanh (k1 H1) Ajp = 2B0QS1167% + Uqq + ce,
A1 L Aoy — 00 QS e
W + k1 tan (K/lHQ) 21 = 2B 0dlS921€ + \Ij21 + CC,
dA dA ) ;
, dtll P2 dt21 + [(p1 = p2) g+ 7h7] Q1 = —j2B60I1 (p1 — pa) g’ + Tt + cc,
) (8)
fiztnc — Fin, tanh (ki H1) A1 = 2B00QS 1,67 + 1, + cc,
o + kp, tanh (5, Ha) Aoy, = 2B0QS2p,7" + Vo, + ce,
dA dA . '
e = pr= 2 [(o1 = p2) g + 7] Que == —j2Bb0In (p1 — p2) 9™ + T, + ce,

cos (nm) —1 cosh (kpHy) —1 cosh (kpHy) — 1
2 ¥In =in y2n = In

(nm) cosh (K, Hy) cosh (K, Hs)

Ui, W1, I, ¥y, Yo, [y, are nonlinear functions of Q1 (t),Qn, (t),A11 (t), Ain, (1),
Aoy (t), Aap, (t). Moreover, it has been assumed that 6 (t) = —j6pe’** + cc, being 6y the ampli-
tude and () the frequency of the imposed motion. Now let us assume that the forcing terms of
the second three equations (8) are negligible because of the frequency {2 being very far from
the capillary resonance frequency w,,.. w, is the resonance frequency of the n*” mode given by

tanh (k, Hi) tanh (k,H2) [(p1 — p2) g + TK2] ki
p1 tanh (K, Ha) + po tanh (k, Hy) '
Let us consider the following scaling assumptions, respectively for the longer and the shorter
wave:

where I, =

the expression w,, =

t* dQ dQi
Q ) Ql OQly dt 0 At )
dQ dQ*
_ 2 Nyx Ne 2 Ne
an - BQOana dt - BQOQ dt* 9
dA dA* &
A = B00QA}, — 1+ = B2 — 1L
1 0 ils dt 0 At P
dA; dA*
i — 22 * ine 2122 ine
Ay, = BPROA;,, =0 = BPR0>— e,
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where i = 1, 2. It can be observed that the nonlinear terms are the sum of many quadratic and
cubic terms, whose coefficients are different from zero if the wavenumbers of the considered
modes satisfy the following conditions: k,, + k., + Kk = 0, Ky, + ki, = K7 = K; = 0, Tespectively
for the quadratic and cubic terms. In these conditions n is the index of the equation, i. e., is
the index of the evolving mode, while m, [, are the indices of the modes interacting with the

th mode. In the present case only two modes interact, then only the ”cubic” condition can be
satisfied withn = m = n.,l =i = lorn = m = 1,I = i = n.. Cubic interactions with
n = m = | = i (i. e. cubic auto-interactions) are also present but negligible. It follows that in
the first three equations (8) there are terms like

Clinen A1 Qs = 00B* QC11nn A11Q52,  ClintAnQi = 63B*QC11 A7, Q7
( Crmii are given coefficients), while in the second three there are terms like

CncncllAlan% - 903490*

NeNel

2 _ pbnp4d * *2
lAlnc 1 ’ CncncncncAlan’nc - QOB ancncncnc Ine ¥ ne

(having assumed C;; ,, 11 = 02Cy.n.11)- Such terms give raise to leading order terms which are
O (#3) in the first three equations (8),

dQy o
d?*l — Bk tanh (IﬂHl) Aﬁ = 2%116]': + 98 Tl + cc,
dQT *  _ ocx.. Jt* 2.5 *
e + Bk tanh (k1 Ha) A5 = 28917 + 0595, + cc, (10)
dAT;  p2dAG P2 .21 P2 i* 2
i 1- - 1 P2) gelt 4 021% 1 ce.
atr oy dtr 57| @ = ~i 5 o )9 Thtitec
Assuming Q7 = Q1% + 02Q72, A1, = AN + 3A13 A5 = AN + 02 A%2 in (10), three linear

equations are obtained for the amphtude coefﬁ01ents Qlo Aﬁ’, A i of the longer wave, which
give the following periodic solutions:

. . .
0= Q%" +cc, Al = AT +ce, AR = AT+, (11)

where 930, A7, A39 are known complex coefficients depending on the characteristic of the
imposed motion. The second three equations (8) become, accounting for nonlinear cubic terms
and scaling assumptions previously described,

dQ;‘;C Hl * * * * *
rrake Ky, tanh ( B > ne = n Alp, + Bn.Qn, s
dQ* H, « * *
e ¢ + Ky, tanh ( B ) e = TnoAsn, + 05 Q. (12)

dAy,,  pa dAs, P2\ 9 THne * x A% *
dt: o dt*n t <1 ) B2 " PlBgQ2 ne = EneAln, T Co Azp, + 100,
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The stability of the shorter wave can now be analysed substituting in (12) a solution like

*  _ x _jwrt* * %k Jw*t* *
Q € ) ne — %1n.© . Ay

N *t*
Ne an = a;ncejw (13)

Ne
obtaining then a dispersion relation between w* (i. e., the pulsation of the shorter wave) and the
nondimensional wave number k), = an The real coefficients oy, , By, s Vn.> Ones Enes Cnes e

depend on the coefficients Q3°, Ai“l’, A%{ and their conjugate and influence the stability of the
shorter wave.

4. Results and conclusions. The dispersion relation obtained substituting the solutions (13)
in (12) can be expressed formally by

O (W, K3 Qs B Vs Ones €ns G ) = 0- (14)

In this paper we focus on the influence of the term 7, , i. e., we suppose that the parameters
s By e Ones € G, are negligible with respect to 7, . The following dispersion relation is
then obtained:

(15)

where w; . is the nondimensional resonance frequency for the n* mode (the mode of the capi-
llary wave). The expression for 7, is

77’!7,6 = nc 2

H H
k) tanh </€;"L —1> tanh (KZ—Q)
. . * \2 * ‘ °B B
It is clear that if (w}.)” — 7}
P2 tanh | x* H + tanh H2
pl "B "B

ted by the longer wave is unstable. Then it is possible to obtaln, for given amplitude and
frequency of the longer wave, a set of the integers n. related to unstable capillary wavemodes.
Fig. 1 shows such set for the case 6y = 5°, Q@ = 2,16 rad/s. It is interesting to see that the
minimum of the curve is given near the value n. ~ 24, corresponding to the wavelength

2 - B -
Ae = “T _ 4em. This value coincides with the one given by the formula n, ~ — M
Kn, us T

(with p; = 1000 kg/m3, po = 840 kg/m3,7 = 0,07 N/m, B = 0,5 m) obtained assuming that

(A 0742 tanh (%H ) + 2 A;?Azl tanh (%I—b)) 02. (16)

< 0, the n!* mode exci-

wy ~
the quantity ( ”C> (the phase celerity of the capillary wave) attains a minimum. Then 7,
an

indicates the most unstable mode [15].

From (15) it is possible to obtain, for a given mode and frequency of the exciting wave, the
minimum value of the amplitude of the exciting wave in correspondence of which the capi-
llary wave becomes unstable. This value is plotted in Fig. 2 for different values of the forcing
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N /

21 22 23 24 25 6 27 . 26
n,—Capillary wavenumber

Fig. 1. Stability map for 6y = 5°,Q = 2,16 rad/s.

Oy (degrees)
[

0.15 0.2 025 0.3 0.385 0.4
Exciting frequency $22n(Hz) (— analytical, - experimental)

Fig. 2. Experimental and analytical stability map for
n = 24 (maximum instability mode).

frequency and compared with experimental observations. The agreement between the experi-
mental and the predicted values is very good. It can be observed that the closer is the frequency
value to the resonance value, the lower is the minimum value of 6y which causes instability.

In conclusion it can be stated that the application of the variational formulation for studying
the evolution of gravity-capillary waves permitted to obtain the dynamical system (8) which
determines the evolution of the fluid motion. This dynamical system is interesting because it
shows the different interactions which act during the fluid motion. In particular, it was shown
that there are two interactions: the first is the energy transfer from the imposed rigid motion to
the longer wave, the second is the energy transfer from the longer wave to the capillary one, due
to the nonlinear cubic interactions. This energy transfer, for a given capillary mode and a given
frequency of the rigid motion, occurs only when the amplitude of the rigid motion exceeds a
certain threshold. This fact confirms a result which is well known for the gravity-capillary free-
surface waves [1].

Future work has, however, to be made in order to account for dissipative effects and more
complex wavemodes interactions.
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