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In this note we are concerned with the linear theory of a thermoelastic plate when a rate-type equation
is assumed for the heat flux. We consider an initial boundary-value problem for this plate and show the
existence, uniqueness, and asymptotic stability of the solution. Thermodynamic restrictions on the assumed
constitutive equations are also derived. Finally, we give the expression of a pseudo free energy.

Poseasdaembca ainilina meopisi 04 MepMOEAACMUYHOT NAAMIBKU 34 YMO8U, W0 MeNnA08ULL NOMIK 3a-
0080AbHAE PIBHAHHA WBUOKICHO20 muny. [l08e0eHo ICHY8aHHA, €OUHICMb MA ACUMIIMOMUYHY CHLlL-
KiCMb P0O38°A3KY PAHUYHOL 3a0a4i 3 NOYAMKOBUMU YMOBAMU. SHATLOEHO MePMOOUHAMIUHI OOMENCEHHS
Ha piBHAHHA 3a0a4l. Takox HasedeHo 8Upa3 04s Nce800BIAbHOL eHep2il.

1. Introduction. Many authors have recently considered the thermoelastic model of a thin plate
and have studied, in particular, the possibility that the solutions of the thermoelastic plate
equations with Dirichlet or Neumann boundary conditions decay exponentially to zero as ti-
me goes to infinity [1-8].

In [9] analogous problems have been investigated for a thermoelastic plate model characteri-
zed by the presence of memory effects on the heat flux vector. Results about existence, uni-
queness, and asymptotic stability of the solutions for an initial boundary-value problem have
been derived as a consequence of the dissipation properties of the material; moreover, the
exponential decay rate of the energy is proved with suitable multiplicative techniques.

In this work we consider the constitutive relation for the heat flux vector proposed by
Cattaneo [10-12] and examine the modified system of equations which describe the linear
theory of a thin thermoelastic plate. Thus, we prove the existence, uniqueness, and asymptotic
stability of the solution to the initial boundary-value problem corresponding to homogeneous
conditions, under suitable hypotheses on the sources we have introduced in the equations. Fi-
nally, in the last section, we derive the restrictions placed by the thermodynamic principles on
the physical constants and give the expression of a pseudo free energy.

2. Basic equations and position of the problem. We consider a homogeneous, isotropic,
thermoelastic plate with a thin uniform thickness. The middle surface between its faces, denoted
by €, is a bounded and regular domain of the Euclidean two-dimensional space R? with smooth
boundary I'. We are concerned with small deformations and small variations of the temperature
referred to a fixed reference configuration with a uniform absolute temperature ©y.

Let us denote by ¢ the mean variation of the temperature on the cross section of the plate
and by u the vertical deflection in the place x € 2 at time ¢t € R™; within the linear approxi-
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mation theory, small vibrations of the thin thermoelastic plate are described by the following
equations:

U (X, 1) — YAug (x, 1) + Au(x,t) + aAd(x,t) = f(x,1), (2.1)

pO(x,t) — aAu(x,t) + V - q(x,t) = g(x,1), (2.2)
to which we must add the relation between the heat flux q and the temperature gradient V4.

Our purpose is to consider the effects of a change of Fourier’s law; therefore, we assume the
Cattaneo —Maxwell equation

Tqu(x,t) + q(x,t) + EVI(x,t) = 1(x,1). (2.3)

In these equations we have introduced the sources f, g and 1, which must be considered as
known functions of (x,t) € Q x R*; 7, k, p, a, y are physical and constant parameters such that

>0, k>0, p>0, a#0, ~v>0. (2.4)
To investigate an initial boundary-value problem for the thermoelastic plate, we must consi-

der the initial and boundary conditions, which are assumed homogeneous and are expressed
by

u(x,0) = 0, u(x,0) =0, ¥(x,0) =0, q(x,0) =0 Vx € Q, (2.5)
u(x,t) =0, 8u((;: b _ 0, 9(x,t) =0 V(x,t) € T x RT, (2.6)

where v = (v, 112) is the external unit normal to T".

3. Existence, uniqueness, and asymptotic stability. In order to give a compact definition of
solution of the initial boundary-value problem (2.1)—(2.3) with (2.5), (2.6), we introduce the
following functional spaces:

ou

HE(Q) = {u € H*(Q) :u =0, Ew

=0 VXEF},

UQ,RY) = 'R HY(Q) N L*(RT;HZ(Q)),
T(Q,RY) = LARTH(Q),  QORY) = L*(RT; L*(),
F(Q,RT) = HY(RT;L*(Q)NT(Q,RY),

V(Q,RT) = HYR L*(Q) N L*(RT; H(Q)).
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Definition 3.1. A triplet (u,9,q) € U(Q,RT) x T(Q,RT) x Q(Q,R™) is said to be a weak
solution to the problem (2.1) - (2.3) with (2.5) - (2.6) and sources (f,g,1) € [Q(Q,R™1)]3 if the
following identity

+oo
/ / (%, )0n(x, £) — AVug (%, 1) - Vog(x, £) + Au(x, ) Av(x, £) —
0 Q

—aVi(x,t) - Vu(x,t) — pd(x,t)de(x,t) + aVue(x,t) - Vo(x,t) — q(x,t) -

’ V¢(X7 t) - Tq(X, t) ’ pt(X, t) + q(X, t) ’ p(X, t) - kﬂ(xv t)v : p(X, t)]dth =

“+o0o
= / /[f(x, Hv(x,t) + g(x,t)p(x,t) + 1(x,t) - p(x,t)]dxdt (3.1)
0 Q

is satisfied for every triplet (v, ¢,p) € U(Q,RT) x F(Q,RT) x V(Q,RT).

To study the existence and uniqueness of the solution we identify any function w : Rt —
— R"™ with its causal extension on R and introduce the time-Fourier transform @w. We remember
that if w and @ belong to L?(R) then also the Fourier transforms % and 0’ are L?-functions.
Thus, we have

+0o0 +o0
W(w) = / w(s)e—#ds, i (w) = iwi(w) — w(0), w(0) = % / bwdo.  (32)

Because of the isomorphisms which exist between each functional space, we have introduced,
and the corresponding space of the Fourier transforms of its functions, denoted with a
circumflex * , our problem can be transformed as follows.

Plancherel’s theorem applied to (3.1), taking account of (3.2); where the initial data are
zero both for the solutions and for the text functions, yields

+o0
% / /{—iwﬂ(x,w)[iwﬁ(x,w)]* —wyVi(x,w) - [iwVo(x,w)]* +

—oo Q

+ Ad(x,w)[AD(x,w)]" — aVi(x,w) - [Vi(x,w)]" — pd(x, w)[iwd(x,w)]" +

~ ~

+iwaVi(x,w) - [Vo(x, w)]" — q(x,w) - [Vo(x,w)]* = 7q(x, w) - [iwp(x, w)]" +

+q(x,w) - p*(x,w) — kI (x,w)[V - p(x, w)]*} dxdw =
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+oo
o | [l ew) + )" ) + 1) B (xwllixde, (33
—oo

where * denotes the complex conjugate.

We can now choose #(x,w) = v1(x)va(w), d(x,w) = ¢1(x)¢2(w), P(x,w) = p1(x)p2(w).
The arbitrariness of (v, ¢2, p2) allows us to derive from (3.3) the following identity:

/{—wzﬁ(x,w)z}f(x) — WP Vi(x,w) - Vui(x) + Ad(x, w)Avi(x) — aVI(x,w) -
Q

Vi (%) + iwpd (x, )1 (%) + iwaVi(x,w) - Vi (x) — d(x,w) - Vei(x) +

+iwTd(x,w) - PT(x) +a(x,w) - Pi(x) — kd(x,w)V - p’{(X)} dx =

=[xt ) + 0,165 () + (. 0) - i ). (3.4)

Q

We observe that the problem (2.1) —(2.3) with (2.5), (2.6), in terms of Fourier’s transforms,
is expressed by the system

—wi(x,w) + Y Adl(x, w) + A%i(x,w) + aAd(x,w) = f(x,w), (3.5)
iwpd(x,w) — iwaAi(x,w) + V- §(x,w) = j(x,w), (3.6)
iwTd(x,w) + q(x,w) + kVI(x,w) = I(x,w)  Vx €, (3.7)
a(x,w) = 0, aa(;;w) =0, Jxw =0 Vxel. (3.8)

The dependence on x is sometimes understood and not written.
Thus, we can give the following definition.

Definition 3.2. A rriplet (i(w),d(w), q(w)) € € HF(Q) x Hy(Q) x L*(Q) withw € R is called
a weak solution to the problem (3.5) - (3.8) with (f(w), §(w),1(w)) € [L2(Q)]? if it satisfies (3.4)
for every triplet (vi, ¢1,p1) € HE(Q) x H}(Q) x HY(Q).

Let us put

~12 ~12
T(w) :/[ﬁ(a|2+|vay2)+ma|2+\q9‘ +]v19] +|q|2] dx; (3.9)

Q

we have the following result.

ISSN 1562-3076. Heainitini koausarnns, 2003, m. 6, N2 2
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Theorem 3.1. If (a(w),ﬁ(w),Q(w)l € H3(Q) x HY(Q) x L*(Q) is a weak solution to the
problem (3.5) - (3.8) with (f(w),§(w),l(w)) € [L%(Q)]?, then there exists a positive coefficient
d(w), depending on the material constants and $), such that

T(w) < 52(w)/ (‘f\2+ 92+ (if) dx, (3.10)

Q

where w € R.

Proof. Let us consider the system (3.5) —(3.7), where we first suppose w # 0.
Multiplying (3.5) by @* we get a relation where we can integrate by parts taking account of
the boundary conditions (3.8); thus, it assumes the following form

—w? (/d2dx+7/Vﬂ2dx) +/|A&2dxa/VQ§~Vd*dx = /fa*dx. (3.11)
Q Q Q Q Q

Analogously, from (3.6) multiplied by 4* and 9* we get

iw (p/éa*dx+a/va2dx) —/q.va*dx = /ga*dx, (3.12)
Q

Q Q Q
~12 ~ ~ ~
iw (p/ﬂ dx+a/va-w*dx) —/q.w*dx - /gﬂ*dx. (3.13)
Q Q Q Q
Then, in a similar manner the scalar products of (3.7) by §*, V&* and Vi* yield
(1+z‘w)/|q|2dx+k/vq§.q*dx = /i.q*dx, (3.14)
Q Q Q
~ ~12 ~ ~
(1+iw7)/q-V19*dx+k:/‘Vz9‘ dx = /l-Vﬁ*dx, (3.15)
Q Q Q
(1+im)/q-va*dx+k/vé-va*dx = /i-va*dx. (3.16)
Q Q Q

First, we consider the imaginary part of (3.11)

. 1 .
Im / Vi - Vardx = ——Im / furdx, (3.17)
«
Q Q
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152 G. AMENDOLA

which allows us to write the real part of (3.13) as follows:

Re / q-Vd*dx = —Re / §0*dx — Im / fwii*dx; (3.18)
Q Q Q

thus, from the real part of (3.14), we have
/ lq|? dx = Re/i Sqrdx + k Re/gé*dx + Im/fwa*dx . (3.19)
Q Q Q Q
Then, we take the imaginary part of (3.15), which, on account of (3.18), becomes
Im/q LV dx = Im/i VI dx 4 wr (Re/gé*dx + Im/fw@*dx) (3.20)
Q Q Q Q
and use it, together with (3.18), to derive from the real part of (3.15) the following relation:

~12 N N N N
/‘w‘ dx :% Re/l-Vﬁ*dx—i—wTIm/ 1. vi*dx +
Q
Q Q

+(1 4 w?r?) (Re §v*dx + Im fw@*dx) ] . (3.21)
o]

Q

To estimate the other terms of (3.9), some other relations must be determined.
We begin with the imaginary part of (3.13), which, by virtue of (3.20), yields

waRe/va-vé*dx = Im/gﬁ*dx—klm/TVﬁ*dx-i-
Q Q Q

~ N ~12
Fwr (Re / §0*dx + Tm / fwﬂ*dx) —wp / M dx.  (3.22)
Q Q

Q

Then, subtracting the real part of (3.16), multiplied by w7, from the imaginary part of (3.16), on
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account of (3.17) and (3.22), we get

1 N "
Im/q-Vﬁ*dxzi Im/l-Vﬁ*dX—wTRe/l-V’ll*dx—i—
14 w272
Q Q Q

k s k . R
+—-(1 +w27'2)1m/ fﬁ*dx—i—T— Im/gﬂ*dx—i—lm/l-Vz?*dx +
« QO «
L o Q

A ~12
+wTRe/§19*dx—wp/‘19‘ x| . (3.23)
Q
Q

Adding the imaginary part of (3.16), multiplied again by wr, to its real part and using (3.17)
and (3.22), we obtain

1 : . k
Re/d-w*dxzi Re/l-Vﬁ*dx+wTIm/l-Vﬁ*dx——><
1—|—w272 wao
Q Q Q

N “ “ N ~12
X Im/gﬁ*dx+Im/l-Vﬁ*dx—i—cuTRe/gz?*dx—wp/’19’ dx
Q Q Q Q

We now observe that
-2 212 5|2 3|2
/yu dx < )\u(Q)/]Vu\ i, /M dx < )\ﬁ(Q)/’Vﬁ’ dx (3.24)
0 0 Q Q

by virtue of Poincaré’s inequality, where )\, and )y are positive constants depending on the
domain 2.
Hence we can increase the following term

1/2 1/2

p ] P’
— L2 Re/ﬁ’&*dx < w? /\ﬁﬁdx —2/
a a
Q

Q Q

w?

2 p? 3|2
4 éwu dx+$)\u(§2)/ﬂ‘19‘ ix| |

IN

which appears in the imaginary part of (3.12) multiplied by w/«, whence, using (3.23), (3.24),
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and (3.21), we have the following inequality:

/\wV&]Q dx < oy {28+ Ao @) [oAu(©) (1 +wP7?) — 27k]} x

( / il Im/l Vﬂ*dx) —Im/gwu*dx—i—
+ w?

Q

2 1 N R
+ —— Im/l~wVﬂ*dx—wT Re/l~wVﬁ*dx—
al+w?r?
Q

Q

ka? 14 w272

- ’;Im/gé*dxﬂ L) W [PA(2)(1 4 w?7?) —
Q

PN w?r? 2k2 P ()
— 27k] Re/l'Vé’ dx + ol {1 S +0 [pAL(2) X
Q
x (14 w?r?) — QTk]} Re/gﬁ*dx. (3.25)
Q

Finally, the real part of (3.11), taking into account (3.22) divided by w, (3.24), (3.25) and
(3.21), gives

~ % oot 71
/|Au| dx < — Re/ dx+ 7+)\ (Q)]{Im/gwu dx+1+w272 X

Q o)
} + {T + % (pAﬁ(Q)(l + w?r?) +

{2k + pAg(w?[pAu(Q) (1 + w??) — 2Tk]}> } Im / fwi*dx +
Q

X [Im/i-wVﬁ*dx—wTRe/i‘wVﬂ*dx
Q Q

v+ Au(9)

+ o2

1 5 9 w272 2k2 pA9(£2)
_’_{7-_’_%({))\19(9)(1—}-&} T )+[’Y+>\U(Q)] Oé2 1+w272 7'2 x
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EXISTENCE, UNIQUENESS, AND ASYMPTOTIC STABILITY FOR A THERMOELASTIC PLATE 155

X [pAu(Q)(1 + w?r?%) — 27’k3]}> } Re/gé*dx + 5{1 + [y + /\U(Q)]Z_]; X

Q

w?r? 5 pAs(Q2) Y4+ A(Q) WP
—— 1 gu*d 1 = Au (2
X1+w27'2} m/g T * a? 1—|—w27'2[p (@)

Q

A 1 2
x (14 w?r?) — 27]4:]} Re/l -V dx + ;{1 + % (pAg(Q) +
Q

v+ Au(Q) 1
o? 1+ w27

- 2Tk]}> } Im / 1. Vi*dx. (3.26)
Q

+

5 {262 + pAo(Qw?[pAa(Q) (1 + w?7?) —

We can now increase (3.9), using (3.19), (3.21), (3.25), (3.26), together with (3.24), to obtain

T(w) < [1+AU(Q)]/|wva\2dx+/|Aa|2dx+[1+A,9(Q)]/(v1§\2dx+
Q Q Q

1 .
+/ 4l dx < — Re/fWﬁ*dX+ (c1 {2k + caw?[es3(1 + 7°w?) — 27k]} +
w

Q Q

+ T—i—k—l—Cg(l+7‘2w2))1m/fw11*dx—|—2clozlm/gwﬂ*dx+ <6172w2 X
Q Q
1+72w2 71

2k
x {— + Sples(1+7%w2) — 27'k]} +7+k+ el +T2w2)> X

w 14 7202
Q Q Q

N 1 2c1 kTw? . .
xRe/gﬂ*dx—i— <1+ﬂ>lm/§]ﬁ*dx+fie/l-q*dx+

2

c1e4w 5 o N

+ (1+7_2w2[03(1+7- w )_27'74?]4‘02) Re/l-Vz? dx +
Q
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1 1
— (1 +7w? (e {2k lea(l 4+ 7°w%) = 27k]} ————
+w< + Tw <c1{ + caw”[e3(1 4 77°w7) T]}1+72w2+02 x

2ci«

Q

—Tw Re/i-wva*dx +
Q

+1Im / 1-wVirdx |, (3.27)
Q

where we have introduced the following positive constants:

_ 1ty +20(Q) 1+ (1+p)ro(2)

o - pAs($2)
’ 2 A 5 .

k

“ c3 = pAu(Q), ¢4 =

a2

Putting

1
mnw) =—+c1[2k + caw? | es(1+ 72w2) — 21k ||+ 7+ k+c2(1+ 7‘2w2),

| w |

Yo(w) =2¢1 | a

2k c
’73((«0):017'2(412 [m—FT—é‘CZ&(l—FTQWQ)_QTk ’:|+T+k’+
1 2c1kTw?
1 2 2 Y e Ll
+ o +Tw)+’w|( +1+72w2>,
’74("‘)):1’
75(w):m’Cg(l+TW>—2T’€|+CQ+m 1+ 7ws 12k +

1
+ C4(,()2 | 03(1 + 72w2) — 27k Hm + 62}),

B 2¢1 |
1+ 7202

6(w) (I+7]wl),
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the inequality (3.27) can be written as follows:

T(w) S’y(w)(\ /fwﬁ*dx | + | /gwa*dx \ +/§1§*dx+ \ /i-q*dx | +
Q Q Q

Q

4 /i-v&*dx|+|/i-wva*dx ) (3.28)
Q Q

where the positive function ~(w) is given by

Y(w) = max {y;(w), i=1,2,...,6}.

From (3.28) we have

I(w)<v(w)[(/f2 dx)2 (/wmx)2+ (/gzdx)2 (/wa2dx)2+
Q Q Q

Q

1
2

<

3 , 3 3
/m? dx) (/vé dx | + (/ 112 dx> (/ wVﬂde>
Q Q Q
1
5|2 ~12 5|2 ’ ~12 ~12 ~12
< 6(w) / ‘f‘ + g —1—‘1’ dx /(]wu\ + [wVa|” + |AGl® +
Q -Q

and hence

whence (3.10) follows.
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We now consider the case w = 0, where the problem (3.5) - (3.8) becomes

A%i(x,0) + aAD(x,0) = f(x,0),
V- Q(Xa 0) = Q(X, 0)?
q(x,0) 4+ kVI(x,0) = 1(x,0) vx € 0,

0u(x,0)

5 =0 J(x,0) =0 Vvxel.

u(x,0) = 0,

G. AMENDOLA

(3.29)

(3.30)

(3.31)

(3.32)

It is enough to multiply (3.29) by @* (x, 0) and (3.30) by J*(x, 0), to take the inner products

of (3.31) with §*(x, 0) and V*(x, 0) and consider their real parts to obtain

/\A@;de = Re/fﬁ*dx+aRe/V1§-Vﬁ*dx,
Q Q Q

Re/q-vé*dx = —Re/gﬁ*dx,
Q Q

/yq|2dx = Re/i-q*dx—kRe/v@-q*dx,
Q Q Q

Q Q Q

~12 ~ ~ o
/‘w‘ dx = % (Re/l.w*dee/q-w*dx> .

(3.33)

(3.34)

(3.35)

(3.36)

We now recall that if & € HZ(Q) then || @ || + || Va ||< C || Ad || [9], where C is a

constant, whence we can consider

/\d]de < 02/\Aa12dx, /\Vﬁ]de < C2/|Aﬁ]2dx
Q Q Q Q

together with (3.24).
Thus, it follows that

_ 12 12 12 3|2 5|2 ~12
Ty = [a]” + |[Va|” + |Aa)]” + |9 + |[VI] +]q]* | dx <
Q

~l2
<(1+20%) [1aaPix+ 1+ 2] [ 93] ax+ [ jaP i
Q Q Q

(3.37)
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where all the functions must be considered in (x, 0).
We observe that the last term in (3.33), which appears in (3.37) multiplied by (1 +2C?), can
be increased as follows:

(1+202)aRe/vé.va*dx < (1420?) | aRe/vé.va*dx <
Q Q

1 12
<3 |:a2(1—|—202)2/V19 dx+/|va|2dx , (3.38)
Q

Q

where the last integral is present in the expression of Z too.

Then, substituting into (3.37) the inequality derived from (3.33) by using (3.38) and the two
relations (3.35) and (3.36), after eliminating their last integrals by using (3.34), the inequality
(3.37) can be put in the following form:

A 1
Ty <2(1 +2C?) Re/fa*dx + E{2[1 + Mg ()] + o?(1 4+ 2C?)? +
Q

R 1 R .
—|—2k2}Re/§19*dx+ - {21 + ()] +a2(1+202)2}Re/1-w*dx+
Q Q

+2Re / 1-q*dx. (3.39)
Q

Therefore, denoting by m the maximum of the coefficients of the four integrals at the right-
hand side of (3.39) and proceeding as we have already done to derive (3.10), we see that if
w = 0, (3.10) must be replaced by

T < M/ (‘f(x, 0)‘2 +19(x,0)2 + ‘i()g 0)‘2> dx, (3.40)
Q

where M = 16m?. This proves the theorem.
We observe that §(w) tends to infinity as w? if w approaches infinity. Therefore, we introduce
the following space:

anJrl

(f,9,1) € [Q(Q, R,

wo.RY) = {(f0) € [QORIP

{%(ﬂg,l)] =0 (n= 0’1’2’3>}'

t=0
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160 G. AMENDOLA

Theorem 3.2. If the sources (f,g,1) € W(Q,R"), then the inverse Fourier transforms of
(41,99, q) exist and are L*-functions.

Proof. As we have already observed, in the inequality (3.10) of Theorem 3.1, § depends on
w in such a way as to assure that the integral of the right-hand side over R exists if (f,g,1) €
€ W(Q,R). That is, we have

70/ <\5(w)f(x,w)\2 +[6(w)g(x,w)|* + ‘5(w)i(x,w)‘2> dxdw < +o0:

—oo

therefore, it follows that Z(w) is also integrable over R and hence Plancherel’s theorem assures
the existence of the inverse transforms of (@, ¢, q). This completes the proof of the theorem.

Corollary 3.1. Under the hypotheses of Theorem 3.2, if we consider two solutions of our
problem, (0 90 q"), each of which corresponds to two given source fields (f®, " 1),
i = 1,2, we have

~ ~ 2
’ @V — 4@ HO _g@ gm q(2>)H <

“+o00

& ] [re(m-sor-

—o0o Q

2
g g@)‘ I

~ ~ 2
i —1<2>‘ )dxdw. (3.41)

This result follows at once from the linearity of (3.5)—(3.7) and from Theorem 3.1.

Theorem 3.3. For any fixed w € R and every (f,9,1) € [L2(Q)]?, the system (3.5)—(3.8)
admits at most only one solution (,9,q) € H3(Q) x H}(Q) x L3(Q).

Proof. This uniqueness theorem is a consequence of Theorem 3.1, since it is equivalent
to establishing that the homogeneous system given by (3.5)-(3.7), with the homogeneous
boundary conditions (3.8), has only the zero solution in H3(2) x H}(Q2) x L?*(Q). Inequalities
(3.10) and (3.40) assure the uniqueness for every w € R, which proves the theorem.

Theorem 3.4. For any triplet (f,g,1) € W(Q, R™") there exists a solution
(u,9,q) € U(Q,RT) x T(Q,RT) x Q(O,RT)

of the problem (2.1) — (2.3) with (2.5), (2.6) in the sense of Definition 3.1.

Proof. In order to prove the existence of a solution to our problem, we show that the set
A= {(f,g,i) € W(Q,R) : there exists (’&,@,61) € LAI(Q,R) X ’]A'(Q,R) X
x O(€, R) which satisfies (3.3) ¥(9,6,p) € U(Q,R) x F(Q,R) x
><17(Q, R)}
is dense and closed in )7\/\(9, R).
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Denoting by &[(@, 9, q), (9, ¢, p)] the expression in the left-hand side of (3.3), we can write
this identity as follows:

10,0, ), (5,6, )] = —((F.9.1), (5, 6,)). (3.42)

To prove that A is dense, we denote by A its closure in W\(Q, R) and suppose that there
exists (£, ¢ 10)) e W(Q,R)\A and (f@,gw),i((ﬁ) # 0. Thus, the Hahn - Banach theorem
states that there exists (99, ¢, p(0) € U(Q,R) x F(,R) x V(Q, R) such that

((FO,5910), (00,6, pD)) # 0, ((£,5., @, 69, p) =0 V(f,9,1) € A (3.43)
Conditions (3.43)- and (3.42) yield
€M@, 9,), (00,6, p@)] = 0 ¥(a,0,4) € UQR) x T(2R) x Q(UR)

from which, therefore, with the same technique used to prove the uniqueness theorem, we find
that

(@(0)7 (2)(0)7 I3(0)) =0,

against (3.43);. Hence, the set A is dense.
To prove that A is closed, let us consider, for every (f,§,1) € W(£2, R), a sequence

(9401 e 4 n=12.)

convergent to ( f.9, i) nd the sequence of the corresponding solutions (a("),ﬁ("),q(”) ) €

~

€ UL R) x T(2,R) x O(€, R). Using (3.41) of Corollary 3.1, we have

~ ~ 2
(@™ — gm) | G _§om) g _ glm) H <

<5 [ [7w (\f<">—f<m>\2+

and hence it follows that the sequence {(ﬂ("),ﬁ("), q<n>), n=1,2, } is a Cauchy sequence
and

G _ g ‘2 n

~ ~ 2
i) _ 1<m>‘ ) dxdiw,

~

lim (a™,9™, ™) = (4,9,4,) € UQ,R) x T(2,R) x Q(2,R)

n—-+o00

for the completeness of the space.
Then, we consider the sequence of identities, obtained by substituting into (3.3) each soluti-
on with the corresponding triplet of sources of the two sequences now introduced; the limit of
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these identities as n — +oo yields an analogous identity for the limits (4, J, q) and (f, §,1) and
hence (f,§,1) € A.

The application of the Plancherel theorem allows us to complete the proof of the existence
of the solution to our problem. This ends the proof of the theorem.

4. Thermodynamic restrictions and free energy. In this last section we examine the restricti-
ons placed by the thermodynamic principles on the material constants which characterize the
behaviour of the thin homogeneous, isotropic, thermoelastic plate, we have considered in the
previous sections; moreover we give an explicit representation of a pseudo free energy.

With the notation already introduced in Section 2, under the hypotheses of small deformati-
ons and small variations of the temperature with respect to the given reference configuration
and to the absolute temperature ©g, we assume the following constitutive equations for the
mean stress tensor T and the rate at which heat is absorbed for a unit volum h:

T(x,t) = —aV[Au(x,t)] + bVuu(x,t) — eg(x, t), (4.1)

poh(x,t) = OgBAuL(X,t) + pocdi(x,1), (4.2)

where g=V1, pg is the mass density, c is the heat capacity and a, b, , 3 are constitutive constants.
The fundamental system of the linear theory of thermoelasticity, when Cattaneo — Maxwell’s
equation is assumed as the relation between the heat flux and the temperature gradient, is

p[)Utt(X, t) =V T(X7 t) + pOf(Xa t)? (43)
poh(X, t) =-V- q(X, t) + Pog(Xa t)a (44)
Tqi(x,t) + q(x,t) = —kVI(x,t), (4.5)

where we have introduced the body force f and the heat source g, k¥ and 7(> 0) being two
constants.

We observe that the constitutive equations (4.1), (4.2) characterize a thermodynamic system
when the state is o(x) = (Vug(x), Au(x),9(x),q(x)) at x €  and the thermokinetic process of
duration dp € R is a piecewise continuous map defined on [0, dp) by P(x,t) = (V[Au(x,t)],
Vug(x,t), Aug(x, 1), 0¢(x,1), g(x,t)). If we introduce a state-transition function p : ¥* x IT* —
— ¥X which assigns to the initial state o, of the space ¥* at the point x, and the process P, of
the thermokinetic process space IT%, the final state o/, that is o/ = j(o?, P), we can consider
¥y, = {o € ¥*:3 P ell*, o= p(oo, P)}, the subset of the states which can be obtained
from a fixed state og with a process P. The assumed constitutive equations are functions of
(0, P), that is, we have T = T(o, P), h = h(P),q = q(o, P).

Thus, we recall the definition of a cycle constant on T" [9], which is a pair (o(x), P(x)) such
that (0% (x), P(x)) = 0%(x) Vx € Qand o(x,t) = ﬁ(ao(x),P[Ovt) (x)) is constant Vx € T" and
t € [0,dp), Py being the restriction of P to [0,t) C [0,dp).

Now, we give the expressions of the two law of thermodynamics [10], the first of which yields
the existence of the internal energy € : X% — R such that

poér(o(x,t)) = poh(P(x,t)) + T(o(x,t), P(x,t)) - Vus(x,t) (4.6)
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for continuous processes, while the second one states that the inequality

jé/ {poh + q(o(x,1), P(x,1)) - g(x, 1) } dxdt <0 (4.7)

O + 19 X t [@0 + 19(x,t)]2

holds for an isolated material 2 for every pair (0°(x), P(x)) which defines cycle constant on T,
the equality sign referring to reversible processes.

Since we are concerned with a linear theory, we must derive an approximation of the second
law; therefore, neglecting the terms of order greater than two, (4.7) assumes the form

g § [ {mi(Pecn)ien o]+ (o). Plx.r) - 1) it <
Q

1 -
< @—%fZF(O’(X,t),P(X, t)) - v(x)dl'dt, (4.8)

where we have added to the right-hand side the surface integral in order to consider the global
formulation of the second law in agreement with the existence of the flux F.

From the inequality (4.8), under the hypotheses that the material, we are considering, is
self-consistent, that is, when the constitutive equations, relative to x € Q andt € R, do not
depend upon fields outside € at time ¢, it follows that

&7  {roh (P 0)IO0 — 0o, )] + (oo, 1), P ) -, 1) ~

v F(a(x,t),P(x,t))} dt < 0,

for any x € (, since (4.8) must hold for any subbody of (2.
Furthermore, as a consequence of the second law, it is possible to show [11] the existence of
the entropy 7 : X% — R for any x € () such that

f]t(O'(X, t)) > 1@2 {pOB(P(Xv t))[GO - ’19(X, t)] +

0%0

+q(o(x,t), P(x,1)) - g(x,t) — V - F(o(x, 1), P(x, t))} (4.9)

for any smooth process.

In order to obtain consequences of the laws of thermodynamics on the material constants,
we observe that (4.8), elimintaing po©oh by means of (4.6) and integrating on a cycle, reduces
to
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f[ﬂoﬁ(P(t)W(t) +00T(o(t), P(t) - Vuy(t) — a(o(t), P(t)) - g(t) +

+V -F(o(t), P(t))]dt > 0, (4.10)

where the dependence on x is understood.
Substituting the expression (4.2) of h, assuming for the heat flux F the following form:

F(x,t) = OglaAu(x,t)Vu(x,t) — fU(x,t) Vur(x,1)],

and using (4.5), from (4.10) we get

f{pocﬁt(t)ﬁ(t) + O[bVuy(x,t) — eg(x,t)] - Vue(t) + %[th(t) +

+q(t)] - a(t) + OoalAu(t)Au(t) — SO0g(t) - Vut(t)]}dt > 0.
Since the integral is taken on a cycle, this inequality reduces to

]é qu(t) — (e + B)g(t) - Vut(t)]] dt = 0,

which holds for every g; therefore, we have the restrictions
e+ 08 =0, k> 0. (4.11)
Finally, we introduce the following approximate pseudo-free energy:
P(x,t) = e(x,t) — Oon(x, 1),

which, using (4.6) to eliminate py©Ooh, allows us to transform (4.9) as follows:

pothi(t) < g—%h(t)ﬁ(t) +T(t) - Vuu(t) - @qu(t) -g(t) + @%V -F(). (4.12)

Substituting (4.1), (4.2) and eliminating g by using of (4.5), (4.12) yields

pute(®) < G5 {alAUOR TP + 50 4 5@t f + o G

whence we can assume

ot (T, Au 9. ) < & {a[Au@)P T + BEo2(0) + ki@()q?(t)} ,

which satisfies (4.13) on account of (4.11),.
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