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We have considered discrete one-dimensional Dirac equation in the framework of quantum dimer model with 
Bernoulli distribution. It has been shown, that superdiffusive transport regime is realized at several combinations 
of particle mass and amplitude of potential. For the case of non-zero mass it has been shown, that the only one 
point exists, where Lyapunov exponent is equal to zero. In the framework of dimer model with “random masses” 
it has been established, that localization is absent. 
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1. Introduction

It is well known that in one-dimensional (1D) system 
any random potential ( )V x  (x  is coordinate) with continu-
ous function of distribution ( )f V  and absence of space 
correlations ( ) ( ) = ( , )V x V x x x′ ′〈 〉 δ  leads to localization of 
the states [1]. In the case of discrete distribution of ( )V x  
and (or) space correlations between the values of ( )V x  in 
different position the question about localization of the 
states is still open. In paper [2] the so called dimer model 
was considered. It was considered 1D lattice with host-
lattice coordinates 0=nx a n, where = 1, 2,n  and 0a  is 
host-lattice spacing. It was assumed, that ( )f V  is continu-
ous function, but correlations between the values of poten-
tial ( )nV x  and the values of tunneling integrals nτ  on 
neighboring sites are present. It was shown numerically in 
[2] and analytically in [3,4], that for some combination of 

nτ  and ( )nV x  the dispersion D  as the function of time t  is 
described by superdiffusion dependency:  

2 2 2 3/2( ) = ( ) ( ) , 1.D t x t x t t t〈 〉 − 〈 〉   (1) 

It means, that random potential does not lead to the 
states localization. In papers [2,5,6] different realizations 
of dimer model were considered. The simplest case is di-
mer model with Bernoulli distribution. It is assumed, that 

0( ) =nV x ±v , where amplitude of the potential 0v  is con-
stant. The probability ( )P x  is 

0( ( ) = ) = ,nP V x pv

0( ( ) = ) = 1 , 0 1.nP V x p p− − ≤ ≤v  (2) 

Besides, dimer correlation conditions are imposed: 

2 2 1( ) = ( ).n nV x V x +  (3) 

In [2,5,6] Schrödinger model was considered. At the 
same time it is known, that Dirac points (or extremely 
small gaps [7–9]) present in spectra of some particles (or 
quasiparticles) in solids. In this connection the question 
about localization of the states in the framework of Dirac 
model with random potential seems to be actual. 

In this work we will consider 1D discrete Dirac equation 
in the framework of dimer model with Bernoulli distribution. 
In [10] it was shown that for massless case ( = 0)m  in some 
range of 0v  superdiffusive regime is realized. The question 
about localization for > 0m  has not been investigated yet. 

In the present work we have investigated the dependen-
cies of ( )D t  just for this case. Besides, dimer model, where 
the masses are random, has been considered too. 

2. Hamiltonian

In 1D case Dirac equation has the form 

( , ) = ( , ) =i x t x t
t
∂
Φ Φ

∂
H  

( )2
2= ( ) ( , ).x x zc p mc V x x tσ + σ + ΦI  (4) 

Here ,x zσ σ  are Pauli matrices, =xp i
x
∂

−
∂
 , 2I  is iden-

tity 2 2×  matrix, m is the mass, c is the light velocity, and 
( , )x tΦ  is spinor wave function:  

(1)

(2)

( , )
( , ) =

( , )

x t
x t

x t

ϕΦ 
ϕ

. 

In discrete case and in dimensionless units ( = = 1c ) one 
obtains 
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(1)
(2) (2) (1)

(2)
(1) (1) (2)

( , )( , ) ( 1, ) ( ( ) ) ( , ) =

( , )( 1, ) ( , ) ( ( ) ) ( , ) = .

n ti n t n t V n m n t i
t
n ti n t n t V n m n t i

t

 ∂ϕ − ϕ −ϕ − + + ϕ   ∂


∂ϕ  − ϕ + −ϕ + − ϕ   ∂

 (5) 

_______________________________________________

Here ( ) = ( )nV n V x , (1,2) (1,2)( , ) = ( , )nn t x tϕ ϕ , 
= 0, 1, 1n N − , where N  is the total number of lattice 

nodes (system size). It should be noted, that first differences 
(in square brackets) in form (5) provide self-adjointness of H . 

In the framework of “random masses” model we have 
considered 1D system with random distribution of positive 
(m+) and negative (m−) masses [11–13] so that =| |m m+ − . 
Imposing the conditions, similar to (2), (3) one can write, 
that 0= ( ) =m m n ±v , (2 ) = (2 1)m n m n +  and the equation 
(4) can be written in this case as 

 

(1)
(2) (2) (1)

(2)
(1) (1) (2)

( , )( , ) ( 1, ) ( ) ( , ) =

( , )( 1, ) ( , ) ( ) ( , ) = .

n ti n t n t V n n t i
t
n ti n t n t V n n t i

t

 ∂ϕ − ϕ −ϕ − + ϕ   ∂


∂ϕ  − ϕ + −ϕ − ϕ   ∂

  

  (6) 

Here 0( ) =V n ±v  plays the role of random masses. 
For the analysis of Lyapunov exponent and time de-

pendence of dispersion D  we will need also stationary 
versions of (5) and (6). Stationary 1D Dirac equation has 
the form 

 ( )2( , ) = ( ) ( , ) = ( , ).x x zx p m V x x xΦ λ σ + σ + Φ λ λΦ λH I   

  (7) 

Here λ are the eigenvalues and  

 
(1)

(2)

( , )
( , ) =

( , )

x
x

x

ϕ λΦ λ 
ϕ λ

  

are the eigenvectors of H . In discrete case for the model 
with random potential one obtains 

 
(2) (2) (1)

(1) (1) (2)

( , ) ( 1, ) ( ( ) ) ( , ) = 0

( 1, ) ( , ) ( ( ) ) ( , ) = 0,

i n n V n m n

i n n V n m n

  − ϕ λ −ϕ − λ + + −λ ϕ λ  


 − ϕ + λ −ϕ λ + − −λ ϕ λ 

  

  (8) 

and for “random masse” model:  

(2) (2) (1)

(1) (1) (2)

( , ) ( 1, ) ( ( ) ) ( , ) = 0,

( 1, ) ( , ) ( ( ) ) ( , ) = 0.

i n n V n n

i n n V n n

  − ϕ λ −ϕ − λ + −λ ϕ λ  


 − ϕ + λ −ϕ λ + − −λ ϕ λ 

 

  (9) 

3. The Lyapunov exponent 

One of important characteristics of localization is 
Lyapunov exponent ( )Eγ , where E  is the energy. Since 

localization length 0 1/ ( )r Eγ , to investigate the delocali-
zation conditions one needs to find the solution of the 
equation ( ) = 0Eγ . Analysis of ( )Eγ  for the dimer model 
was carried out in [10,14]. It was shown, that for > 0m  
Lyapunov exponent ( ) = 0Eγ  , if: 

(I) 2
0 = 2 m+v  and = 0E , 

(II) 0 = 1/ 2v  and 2= 1/ 2 2E m± ± + . 

According to Furstenberg and Kesten Theorem [15], 
( )Eγ  can be written as 

 
1

=

1( ) = log ( ) .lim k
n k n

E E
n→∞

γ ∏T  (10) 

Here ( )k ET  are the transfer matrices. It should be noted 
that in (10) each next matrix multiplied on left by previous 
ones, hence, the product in this expression is calculated 
from n to 1. 

Transfer matrices for the equation (8) have the form 

 
2 21 ( ( )) ( ( ) )( ) = .

( ( ) ) 1k
m E V k i E V k mE

i E V k m

 + − − − +
  − − 

T   

For these transfer matrices the following relation takes 
place: 

 
(1) (1)

(2) (2)

( ) ( 1)
( ) = .

( 1) ( )
k

k k
E

k k

   ϕ ϕ +
   
   ϕ − ϕ   

T   

Our numerical calculations of (10) show, that in the 
case (I) ( )Eγ   is actually zero (Fig. 1, curve 3), but in the 
case (II) ( ) > 0Eγ   (Fig. 1, curve 2). To find reason of such 
discrepancy we have performed additional analysis of γ . 

Now, we will reproduce briefly the results of [10]. Behav-
ior of ( )Eγ  is determined by module of transfer matrices 
trace. There are three important cases: 1) Tr( ( )) < 2kT E  
(elliptic matrices), 2) Tr( ( )) = 2kT E  (parabolic matrices) and 
3) Tr( ( )) > 2kT E  (hyperbolic matrices). 

Let us consider firstly case 1 (transfer matrices are el-
liptic) and denote 0= Eα − v , 0= Eβ + v , 

 

2 2

2 2

1 ( )( , ) = ,
( ) 1

1 ( )( , ) = .
( ) 1

m i mE
i m

m i mE
i m

 + −α α +α   α − 
 + −β β+β   β − 

T

T
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From the condition Tr( ( , )) < 2E αT  (analogously for 
( , )E βT ) it follows that ( , )E αT  and ( , )E βT  are both ellip-

tic, if 2| |,| | ( , 4 )m mα β ∈ +  and, therefore, in this range 
( ) > 0Eγ . The exception is one point only. Due to (3) ( )V n  

acquires the same values on the nodes 2n and 2 1n + . 
Hence, the expression (10) includes the squares of ( , )E αT  
and ( , )E βT . Then  

 2 4 2 4 2 2Tr( ( , )) = | 2 4 2 (2 ) | .E m m mα +α + + − α +T   

Analogously,  

 2 4 2 4 2 2Tr( ( , )) = | 2 4 2 (2 ) | .E m m mβ +β + + − β +T   

From the conditions 2 2Tr( ( , )) = Tr( ( , )) = 2E Eα βT T  

(the squares of both transfer matrices are parabolic ones) it 

follows that 2, = 2 mα β ± + . It means that ( ) = 0Eγ  , if 
2

0 = 2 m+v  and = 0E . 
For parabolic transfer matrices (case 2) ( ) > 0Eγ . Now, 

let us consider case of hyperbolic transfer matrices (case 3). 

This situation realizes, if | |< mα  or 2| |> 4 mα + . Let us 
consider the orbit of ( , )T E α  eigenvector:  

 
2 2 2 2 2 2( )( 4)e = , = 1.

2( )
m m m

m
ε  α − + ε α − α − −  ε ±

 α − 
  

If ( , )E βT  is hyperbolic or parabolic, then ( ) > 0Eγ . 
In the case of elliptic ( , )E βT  Lyapunov exponent ( ) > 0,Eγ  

if ( , )e eE ε −εβ ≠T . Now, let us consider the case of 

( , )e = eE ε −εβT . Then,  

 2 2 2 2 2 2 2(1 )( ) 4( ) ( ),m m u m m u+ −β α − + ε − −βα + α − − ε  

where 2 2 2 2= ( )( 4) 0u m mα − α − − ≠ . Hence, 
2 2= 2 mβ + , = 2α β±  and, thus, 0 = 1/ 2v  and 

2= 2 1/ 2E m± + − . Analogous consideration for 

( , )E βT  eigenvector gives 2= 2 1/ 2E m± + + . It means, 
that in Dirac model with random potential (2) but without 
dimer correlations (3) ( ) = 0Eγ  , if 0 = 1/ 2v  and 

2= 1/ 2 2E m± ± +  (see Fig. 2). 
Let us take into account conditions (3). It is easy to see, 

that for 2 2= 2 mβ + , ( )Tr ( , ) = 0E βT  (elliptic case), but 
2Tr( ( , )) = 2E βT , so 2 ( , )E βT  is parabolic. According to 

[10], it means, that ( ) > 0Eγ  . Hence, if correlation condi-
tions (3) are imposed, then the zeros of ( )Eγ   disappear 
(Fig. 1, curve 2). This situation is similar to discrete 1D 
Schrödinger model with random Kronig–Penney potential. 
The zeros of Lyapunov exponent disappear if one adds into 
the model any periodic potential [16]. 

Finalizing the consideration of the model with > 0m  it 
should be noted the following: 

— Our numerical calculations indicate, that without 
dimer correlations the states are always localized, despite 
the fact that in case (II) ( ) = 0Eγ   (if 0 = 1/ 2v  and 

2= 2 1/ 2E m± + ± ).  
— In the framework of dimer model with > 0m  only 

one point exists, where Lyapunov exponent ( ) = 0Eγ   and 

states can be delocalized: 2
0 = 2 m+v  and = 0E .  

The dependencies of ( )Eγ  for the model with = 0m  are 
presented on Fig. 3. In agreement with [10,14] 

0(| |= ) = 0Eγ v , if 0 1≤v  (curves 1 and 2). Besides, 
( = 0) = 0Eγ , if 0 = 2v  (curve 3). 

Fig. 1. The dependence of Lyapunov exponent (10) on E  for 
different values of 0v . The mass = 1m .  

Fig. 2. The dependence of Lyapunov exponent (10) on E  for 
= 1m  and 0 = 1/ 2v  without dimer correlation (3).  
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Analyzing ( )Eγ  we have obtained the dependencies of 
Lyapunov exponent minimal value as the function of 0v :  

 min = ( ).min
E

Eγ γ   

These dependencies are also obtained numerically. In 
upper parts of Fig. 4, and Fig. 5 the behavior of minγ  are 
presented. Figure 4 correponds to the case of = 1m . There 
are two regions, where min 1γ << : in the vicinity of 0 = 0v  

(it is evident) and in the vicinity of 2
0 = 2 m+v . There 

are no other regions, where ( ) 0Eγ → . Figure 5 corre-
sponds to = 0m  case. As seen min 1γ <<  for 0 1.75v . 

Let us consider now “random masses” model. The 
analysis of ( )Eγ  is similar to one carried out above. By 
analogy we will introduce transfer matrices: 

 

2 2
0 0

0
2 2
0 0

0

1 ( )( , ) = ,
( ) 1

1 ( )( , ) = .
( ) 1

E i EE
i E

E i EE
i E

 + − +α   − 
 + − −β   + 

T

T

v v
v

v v
v

  

Again, the most important is the case, when both matrices 
are elliptic: Tr( ( , )0 < 2E αT  , Tr( ( , )) < 2E βT  . These ine-

qualities are fulfilled, if 2
0 0| | ( , 4 )E ∈ +v v . Imposing cor-

relation conditions (3) one obtains, that ( ) = 0Eγ  , if 
2 2Tr( ( , )) = Tr( ( , )) = 2E Eα βT T  . Corresponding equa-

tion has the form  

 4 2 4 2 2
0 0 02 4 2 (2 ) = 2.E E+ + + − + v v v   

Solution of the equation gives: 0=E ± v , 2
0= 4E ± + v  

and 2
0= 2E ± + v . First two roots are out of 2

0 0( , 4 )+v v  

region. Hence, ( ) = 0Eγ  , if 2
0= 2E ± + v . It means, that for 

“random masses” model localization is absent, because for 

any 0v  value there exists 2
0= 2E ± + v , so, that ( ) = 0Eγ  . 

The dependence of ( )Eγ  for “random masses” model is pre-
sented on Fig. 6. As seen from upper part of Fig. 7 min = 0γ  
with the accuracy of numerical calculations. 

4. Calculations of ( )D t  

According to (1), one needs to calculate the 1st and 2nd 
moments of x . The expression for k th moment has the 
form: 

Fig. 3. The dependence of Lyapunov exponent (10) on E  for 
different values of 0v . The mass = 0m .  

Fig. 4. Upper part: the dependence of Lyapunov exponent mini-
mal value minγ  on 0v . Lower part: the dependence of parameter 
α  (14) on 0v . The mass = 1m .  

Fig. 5. Upper part: the dependence of Lyapunov exponent mini-
mal value minγ  on 0v . Lower part: the dependence of parameter 
α  (14) on 0v . The mass = 0m .  

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 12 1657 



V. Slavin and Y. Savin 

 
1

2

=0
< ( ) > ( , ) = | ( , ) | =

N
k k

n
x t x k t n n t

−

± ± ±≡ Φ∑   

 ( )
1

(1) (2)2 2

=0
= | ( , ) | | ( , ) | .

N
k

n
n n t n t

−

± ±ϕ + ϕ∑   

Index “+” denotes the solution of Cauchy problem for (5) 
or (6) with initial values (1)

0( ,0) = ( , )n n nϕ δ , (2) ( ,0) = 0nϕ , 
i.e. the particle with spin “up” at initial moment = 0t  is lo-
calized on node 0n , and “–” corresponds to the case, when 

(1) ( ,0) = 0nϕ , (2)
0( ,0) = ( , )n n nϕ δ , i.e. the particle with 

spin “down” is localized on node 0n  at = 0t . Then 

 2
{ }

=
( ) = < (2, ) ( (1, )) > .D t x t x tσ σ ξ

σ ±

 − ∑   

Here { }< > ξ  means averaging over the realizations of 
potential V . 

The dependencies of ( )D t  can be also obtained using 
stationary versions of Dirac equations (that is, using (8) 
and (9)). In this case the expression of ( , )x k t±  has the 
form 

 0 0( , ) = ( ,e e ).i t k i tx k t x−
± ± ±Φ ΦH H  (11) 

Here 0
±Φ  are the wavefunctions with spin “up” and 

“down”, localized on node 0n :  

 00 0
0

0
( , )

= , = ( , )
0

n n
n n+ −


δ Φ Φ δ 
 



.  

Then expression (11) can be written as 

 
21 1

*
0

=0 =0
( , ) = ( , ) ( , )e .

N
k i t

n
x k t n n n

−
µ λ

± ±
µ λ

 
 Φ λ β Φ λ  
 

∑ ∑ ∑   

  (12) 

Here 0
2= Iβ , 1 = xβ σ , and  

 
(1)

(2)0
0 0 0

0
( , )( , ) = , ( , ) = ( , )

0
nn n n+ −


 ϕ λΦ λ Φ λ ϕ λ 
 



. 

It should be noted, that expression *
0( , ) ( , )n nµ

±Φ λ β Φ λ  
( = 0,1µ ) is nothing else that two first components of 
charge-current density matrix ( , , )j x yµ λ . Hence, one can 
write ( , )x k t±  as 

 

1 1 2
0

=0 =0
( , ) = ( , , ) ,

N
k

n
x k t n n n t

−
µ

±
µ

∑ ∑ j
  

where  

 0 0( , , ) = ( , , )e .i tj n n t n nµ µ λ

λ
λ∑ j   

The systems of differential equations (5) and (6) have 
been solved using Runge–Kutta method of the 8th order. 
To improve accuracy the norm of ( , )n tΦ  has been restored 
on each step of calculations. To avoid boundary effects the 
probability of a particle discovering on the last node has 
been checked:  

 10| ( 1, ) | = 10 .N t −Φ − ε  (13) 

Besides, the calculations have been carried out for 0 = 0n  
and 0 = /2n N , i.e., in the first case it has been assumed, 
that at = 0t  the particle is localized on the system edge, 
and in the second case it has been assumed, that at = 0t  
the particle is localized in the middle of the system. Both 
results are in good agreement. 

Fig. 6. “Random masses” model. The dependence of Lyapunov 
exponent (10) on E  for different values of 0v .  

Fig. 7. “Random masses” model. Upper part: the dependence of 
Lyapunov exponent minimal value minγ  on 0v . Lower part: the 
dependence of parameter α  (14) on 0v .  
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Additionally, to check the obtained results the de-
pendencies, ( )D t  has been calculated also, using (12). For 
this it is convenient to introduce scalar wavefunction 

( )nϕ  so, that:  

 (1) (2)(2 ) = ( ), (2 1) = ( ), ( = 0,1, , 1).n n n n n Nϕ ϕ ϕ + ϕ − 
  

Note, that in (8) and (9) the matrices H  are complex 
tridiagonal. For numerical calculations of ( , )x t± α  it is 
convenient to turn to the presentation, where H  is real 
symmetric and, therefore, ϕ  is real too:  

 1= ,−H U HU   

where , = ( , )( 1)n
n m i n mδ −U . Then even rows of H  for (8) 

have the form { 1, ([ /2]), 1}m V n− + − , and odd rows are 
{1, ([ /2]), 1}m V n− + , where = 0, 1, , 2 1n N − . 

For (9) matrix H  has the form: { 1, ([ /2]), 1}V n− −  and 
{1, ([ /2]), 1}V n− . Symbol [ ]  denotes integer part of a 
number. 

All the numerical calculations have been carried out for 
system sizes = 5000N  and = 10000N . If 0 = 0n , then the 
condition (13) is fulfilled at least for /2t N , and if 

0 = /2n N , then this condition is true at least for /4t N . 
The probability p in (2) is equal to 1/2 . 

5. Results and discussion 

The examples of ( )D t  dependencies, obtained numeri-
cally are presented on Fig. 8. Curve 1 corresponds to the 
case, where localization of the states is absent, and curve 2 
corresponds to the case of localized states. For clarity both 
these curves are presented on the same figure, but at differ-
ent scales. 

In the region of 1t >>  these dependencies have been 
approximated by the function:  

 0( ) = .D t c tα  (14) 

There are several different regimes of ( )D t  behavior: If 
= 0α , then the states are localized. If 0 < < 1α , then it is 

subdiffisive regime. = 1α  corresponds to diffusive regime. 
If 1 < < 2α , then it is superdiffisive regime and if = 2α , 
then it is ballistic regime, corresponding to free motion. 

The dependence of parameter α on amplitude 0v  for 
= 1m  is presented in lower part of Fig. 4. As seen, there 

are two regions of delocalization: 0 0.4v  , where 
1.7 < 2α  and 01.4 2v  , where 1.7α ≈ . 

Similar dependence for = 0m  is presented on Fig. 5. 
Parameter 3/2α  in the range 00 1.7≤ v  . For 0 > 1.7v  
localization of the states takes place. 

As seen from upper curves on Fig. 4, Fig. 5 the depend-
encies α on 0v  correlate well with the behavior of minγ . 
Indeed, the delocalization regions correspond to the inter-
vals, where min 0γ → . 

Of particular interest is the “random masses” model. As 
it was mentioned above, in this case localization is absent 

for arbitrary 0v  value and power index for this model cor-
responds to superdiffusive regime in whole 0v  range (see 
lower part of Fig. 7). It is important to note, that parameter 

0c  (14) for the model with random potential depends of 0v  
slightly. At the same time, for “random masses” model 0c  
decays exponentially with 0v  (see. Fig. 9). Physically 0c  
means the square of inverse mass. Hence, one can say, that 
for “random masses” model with increase of 0v  effective 
mass increases exponentially, slowing the particles motion. 

The maximal values of power index α for random po-
tential model ( 1.7α ≈ ) and for “random masses” model 
( 1.8)α ≈  are close to ballistic regime ( = 2α ). It means, 
that the random potential (or random masses) affects 
weakly on transport characteristics of the system under 
consideration. There are strong reasons to suggest that 

Fig. 8. The examples of ( )D t  dependencies. Curve 1 corresponds 
to the case, when localization of the states is absent, and curve 2 
corresponds to case of localized states. For clarity both these 
curves are presented on the same figure, but at different scales.  

Fig. 9. The dependence of parameter 0c  (see (14)) on 0v  in 
“random masses” model, presented in logarithmic scale. Solid 
line corresponds to monoexponential decay.  
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such unusual transport behavior can manifests itself in 
other dynamic properties of the model (for example, in the 
conductive properties). We plan to investigate this problem 
in near future. 

Numerical calculations were carried out on computa-
tional cluster of the laboratory of numerical methods of 
theoretical physics of B. Verkin Institute for Low Temper-
ature Physics and Engineering of the National Academy of 
Sciences. 
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Супердифузійний транспорт в одновимірній 
невпорядкованій моделі Дірака 

В. Славін, Ю. Савін 

Розглянуто одновимірне рівняння Дірака в рамках квантової 
димерної моделі з розподілом Бернуллі. Показано, що при пев-
них співвідношеннях маси частинки і амплітуди потенціалу 
реалізується супердифузійний режим руху. У разі ненульовий 
маси частки показано, що існує єдина точка, в якій показник 
Ляпунова обертається в нуль. У рамках димерної моделі «ви-
падкових мас» показано, що локалізація станів відсутня. 

Ключові слова: низьковимірні системи, невпорядковані сис-
теми, супердифузійний транспорт, рівняння Дірака. 

Супердиффузионный транспорт в одномерной 
неупорядоченной модели Дирака. 

В. Славин, Ю. Савин 

Рассмотрено одномерное уравнение Дирака в рамках 
квантовой димерной модели с распределением Бернулли. 
Показано, что при определенных соотношениях массы час-
тицы и амплитуды потенциала реализуется супердиффузи-
онный режим движения. В случае ненулевой массы частицы 
показано, что существует единственная точка, в которой 
показатель Ляпунова обращается в нуль. В рамках димерной 
модели «случайных масс» показано, что локализация состоя-
ний отсутствует. 

Ключевые слова: низкоразмерные системы, неупорядочен-
ные системы, супердиффузионный транспорт, уравнение 
Дирака.
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