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We have considered discrete one-dimensional Dirac equation in the framework of quantum dimer model with
Bernoulli distribution. It has been shown, that superdiffusive transport regime is realized at several combinations
of particle mass and amplitude of potential. For the case of non-zero mass it has been shown, that the only one
point exists, where Lyapunov exponent is equal to zero. In the framework of dimer model with “random masses”

it has been established, that localization is absent.
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1. Introduction

It is well known that in one-dimensional (1D) system
any random potential V (x) (X is coordinate) with continu-
ous function of distribution f(V) and absence of space
correlations (V (x)V (x")) = 8(x,x") leads to localization of
the states [1]. In the case of discrete distribution of V (x)
and (or) space correlations between the values of V (x) in
different position the question about localization of the
states is still open. In paper [2] the so called dimer model
was considered. It was considered 1D lattice with host-
lattice coordinates x, = agn, where n=1, 2, ... and a, is
host-lattice spacing. It was assumed, that f (V) is continu-
ous function, but correlations between the values of poten-
tial V(x,) and the values of tunneling integrals t, on
neighboring sites are present. It was shown numerically in
[2] and analytically in [3,4], that for some combination of
T, and V(x,,) the dispersion D as the function of time t is
described by superdiffusion dependency:

D(t) = (x®) %) —(x(t)})? ~t32, t~1. (1)

It means, that random potential does not lead to the
states localization. In papers [2,5,6] different realizations
of dimer model were considered. The simplest case is di-
mer model with Bernoulli distribution. It is assumed, that
V(X,) = £vg, where amplitude of the potential v, is con-
stant. The probability P(x) is

P(V(Xy) = 1) = p,

PV (xy) =-vp) =1-p, 0<p<l. @)
Besides, dimer correlation conditions are imposed:
V(Xan) =V (Xzn1)- (3)
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In [2,5,6] Schrédinger model was considered. At the
same time it is known, that Dirac points (or extremely
small gaps [7-9]) present in spectra of some particles (or
quasiparticles) in solids. In this connection the question
about localization of the states in the framework of Dirac
model with random potential seems to be actual.

In this work we will consider 1D discrete Dirac equation
in the framework of dimer model with Bernoulli distribution.
In [10] it was shown that for massless case (m = 0) in some
range of v, superdiffusive regime is realized. The question
about localization for m > 0 has not been investigated yet.

In the present work we have investigated the dependen-
cies of D(t) just for this case. Besides, dimer model, where
the masses are random, has been considered too.

2. Hamiltonian

In 1D case Dirac equation has the form

o _ _
|haqb(x,t) = HD(x,t) =
= (CGX p, +mcc, +V (X)I 2)cp(x,t). @)

. . ., 0 o
Here o,, o, are Pauli matrices, p, = —|ha—, I, is iden-
X

tity 2x 2 matrix, m is the mass, c is the light velocity, and
@(x,t) is spinor wave function:

D(x1) = {(P(l)(x,t)'
0@ (x,t)

In discrete case and in dimensionless units (7 =c =1) one
obtains
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D
—i |:(p(2) (n,t) —(p(Z) (n —l,t)}+(\/(n) " m)(p(l) nt) =i op at(n,t)

[ oW (41,0 -00 (1) |+ vV (M) -me@ (n,1) =i

Here  V(n)=V(xy), o2 (n,1) = 12 (x,,1),
n=0,1,... N-1, where N is the total number of lattice
nodes (system size). It should be noted, that first differences
(in square brackets) in form (5) provide self-adjointness of H.

In the framework of “random masses” model we have
considered 1D system with random distribution of positive
(m*) and negative (m~) masses [11-13] so that m* =|m™ |.
Imposing the conditions, similar to (2), (3) one can write,
that m = m(n) = vy, m(2n) = m(2n+1) and the equation
(4) can be written in this case as

()
-i[oP (0,)-9P (11,9 |+V (Mo (n,1) =i a(pT(n,t)
2
Ao (1410-¢D (D] -V (MeP () = a(pT(n,t) |
(6)

Here V (n) = tv, plays the role of random masses.

For the analysis of Lyapunov exponent and time de-
pendence of dispersion D we will need also stationary
versions of (5) and (6). Stationary 1D Dirac equation has
the form

H®(x, 1) = (o4 Py + Mo, +V (X)) D(X, 1) = AD(X, A).
()
Here A are the eigenvalues and
()
D(x,1) = {‘p ) (%)
6@ (x)

are the eigenvectors of H. In discrete case for the model
with random potential one obtains

-i[0@ (1) -9P (1-1,2) [+ (v () +m-1)o® (n,2) =0
—i|:(p(1)(n +1,0)— W (n,x)]+(v(n)-m—x)(p(2) (n,2)=0,
8)

and for “random masse” model:
-i[ 0@ (1) =0 (1-1.2) |+ (v (M -1)0® (n,2) =0,
i [@(D (n+1,2)— oD (n, x)] +(V () =)o@ (n,n) = 0.
)

3. The Lyapunov exponent

One of important characteristics of localization is
Lyapunov exponent y(E), where E is the energy. Since
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5
29® (n,1) ©
R

localization length ry ~1/y(E), to investigate the delocali-
zation conditions one needs to find the solution of the
equation y(E) = 0. Analysis of y(E) for the dimer model
was carried out in [10,14]. It was shown, that for m>0
Lyapunov exponent y(E) = 0, if:

(I) vg =v2+m? and E =0,
(1) v =1~/2 and E = +1N2 42+ m?.

According to Furstenberg and Kesten Theorem [15],
v(E) can be written as

v(E) = lim 1Iog . (10)

n—o0

1
[T (E)

k=n

Here T, (E) are the transfer matrices. It should be noted
that in (10) each next matrix multiplied on left by previous
ones, hence, the product in this expression is calculated
from n to 1.
Transfer matrices for the equation (8) have the form
T(E) = [1+ m2_(E-V (k)2 i(E —V(k)+m)}
i(E-V(k)—m) 1

For these transfer matrices the following relation takes
place:

() ()

e (k) |_[o7(k+1)
(L N J

¢7(k-1)) (o (k)

Our numerical calculations of (10) show, that in the
case () y(E) is actually zero (Fig. 1, curve 3), but in the
case (I1) y(E) > 0 (Fig. 1, curve 2). To find reason of such
discrepancy we have performed additional analysis of y.

Now, we will reproduce briefly the results of [10]. Behav-
ior of y(E) is determined by module of transfer matrices
trace. There are three important cases: 1) [Tr(Ty (E))| <2
(elliptic matrices), 2) |Tr(T, (E))| = 2 (parabolic matrices) and
3) [Tr(Ty (E))| > 2 (hyperbolic matrices).

Let us consider firstly case 1 (transfer matrices are el-
liptic) and denote o = E —vg, B = E + vy,

T(E,a):[“mz“"z i(a+m)]l
i(0-m) 1

(1+m? =% i(B+m)
T(E,B) = .
(&P [i(B—m) 1
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Fig. 1. The dependence of Lyapunov exponent (10) on E for
different values of vy . The mass m=1.

From the condition |Tr(T(E,a))| < 2 (analogously for
T(E,pB)) it follows that T(E,o) and T(E,B) are both ellip-

tic, if |a|,|Ble (m,V4+ m2) and, therefore, in this range
v(E) > 0. The exception is one point only. Due to (3) V (n)
acquires the same values on the nodes 2n and 2n+1.
Hence, the expression (10) includes the squares of T(E, a)

and T(E,B). Then
‘Tr(Tz(E,a))‘ =12+0? +4m? +m* — 2022+ m?)].
Analogously,

‘Tr(TZ(E,B))‘ =1 2484 +4m? +m* 2822+ m?)].

From the conditions ‘Tr(Tz(E,a))‘ = ‘Tr(TZ(E,B))‘ =2
(the squares of both transfer matrices are parabolic ones) it
follows that o,p = +J2+m?. It means that y(E) =0, if
v = W and E = 0.

For parabolic transfer matrices (case 2) y(E) > 0. Now,
let us consider case of hyperbolic transfer matrices (case 3).

This situation realizes, if |a|<m or|o|>V4+ m?2. Let us
consider the orbit of T (E, o) eigenvector:

es:[az—m2+8\/(0(2—m2)(0(2—m2—4) —Y

2(a—m)
If T(E,B) is hyperbolic or parabolic, then y(E) > 0.
In the case of elliptic T(E, ) Lyapunov exponent y(E) >0,
if T(E,p)e®=e "
T(E,B)e® =€ °. Then,

Now, let us consider the case of
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(1+m? —B%)(a® —m? +eu) — 4(m? —Ba) + (a® —m? —gu),

u= \/(oc2 —mz)(oc2 —m? -4) #0. Hence,
B2=2+m?, o=B++2 and, thus, vy =1~2 and
E =+V2+m? —14/2. Analogous  consideration  for

T(E,p) eigenvector gives E = +y2+m? +1/4/2. It means,
that in Dirac model with random potential (2) but without
dimer correlations (3) y(E)=0, if o, =1/4/2 and

E = +1+/2 42+ m? (see Fig. 2).

Let us take into account conditions (3). It is easy to see,
that for B2 = 2+m?, [Tr(T(E.p)) =0 (elliptic case), but
Pr(TZ(E,B))‘ =2,5s0 TZ(E,B) is parabolic. According to
10], it means, that y(E) > 0. Hence, if correlation condi-
tions (3) are imposed, then the zeros of y(E) disappear
(Fig. 1, curve 2). This situation is similar to discrete 1D
Schrédinger model with random Kronig—Penney potential.
The zeros of Lyapunov exponent disappear if one adds into
the model any periodic potential [16].

Finalizing the consideration of the model with m >0 it
should be noted the following:

— Our numerical calculations indicate, that without
dimer correlations the states are always localized, despite

the fact that in case (1) y(E)=0 (if vy =12 and

E = +V2+m? +1/4/2).

— In the framework of dimer model with m >0 only
one point exists, where Lyapunov exponent y(E) =0 and

where

states can be delocalized: vy =2+ m? and E = 0.

The dependencies of y(E) for the model with m =0 are
presented on Fig. 3. In agreement with [10,14]
Y(El=v9) =0, if vy<1 (curves 1 and 2). Besides,
y(E=0)=0,ifyg = V2 (curve 3).

1.0r

or

Fig. 2. The dependence of Lyapunov exponent (10) on E for
m=1 and vy =1/1/2 without dimer correlation 3).
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Fig. 3. The dependence of Lyapunov exponent (10) on E for
different values of vy . The mass m=0.

Analyzing y(E) we have obtained the dependencies of
Lyapunov exponent minimal value as the function of vj:

Ymin = mEin'Y(E)-

These dependencies are also obtained numerically. In
upper parts of Fig. 4, and Fig. 5 the behavior of y;, are

presented. Figure 4 correponds to the case of m =1. There
are two regions, where y,;, <<1: in the vicinity of vy =0

(it is evident) and in the vicinity of vy = 2+m?. There
are no other regions, where y(E) — 0. Figure 5 corre-
sponds to m = 0 case. As seen vy, <<1 for vy <1.75.

Let us consider now “random masses” model. The
analysis of y(E) is similar to one carried out above. By
analogy we will introduce transfer matrices:

1.0 i

151
\‘15
0.5 L’ . " ".

L ' . :

(0} = I W Y I R %

0 0.4 0.8 1.2 1.6 2.0
Y

A

Fig. 4. Upper part: the dependence of Lyapunov exponent mini-
mal value ymin on vg. Lower part: the dependence of parameter
o (14) on vg. The mass m =1.
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Fig. 5. Upper part: the dependence of Lyapunov exponent mini-
mal value ymin On vg . Lower part: the dependence of parameter
o (14)on vg.Themass m=0.

T(E,a):[_uvg—Ez i(E+vO)J,

|(E—Z)0) 1
_[1+05-E* i(E-vp)

TER) [i(E+vO) 1 J

Again, the most important is the case, when both matrices
are elliptic: |Tr(T(E,a)O| <2, |Tr(T(E,B))| < 2. These ine-
qualities are fulfilled, if | E |e (vo,\/4+v§). Imposing cor-
relation conditions (3) one obtains, that y(E)=0, if
‘Tr(TZ(E,a))‘ = ‘Tr(TZ(E,B))‘ =2. Corresponding equa-

tion has the form

‘2+ E4+4v€,+v§—2|§2(2+v§)‘ =2,

Solution of the equation gives: E =+v,, E =J_r\/4+v§

and E = i«/2+v§ . First two roots are out of (vo,\/4+v§)

region. Hence, y(E) =0, if E=+ 2+v§ . It means, that for
“random masses” model localization is absent, because for
any g value there exists E = J_r\/2+v§ , 50, that y(E) = 0.
The dependence of y(E) for “random masses” model is pre-

sented on Fig. 6. As seen from upper part of Fig. 7 y,i, =0
with the accuracy of numerical calculations.

4. Calculations of D(t)

According to (1), one needs to calculate the 1st and 2nd
moments of x. The expression for kth moment has the
form:
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Fig. 6. “Random masses” model. The dependence of Lyapunov
exponent (10) on E for different values of vg.

N-1
<EO>=x (k)= > ko, (nt)P=
n=0

=Y (o P +1e@ 0 P).
n=0

Index “+” denotes the solution of Cauchy problem for (5)
or (6) with initial values ™ (n,0) = 5(n,ng), ¢ (n,0) =0,
i.e. the particle with spin “up” at initial moment t =0 is lo-
calized on node n,, and “=" corresponds to the case, when
oW (n,0)=0, (p(g (n,0) = 8(n,ng), i.e. the particle with
spin “down” is localized on node ng att = 0. Then

D(t) =< >’ [XU(Z,'{) — (X (Lt))z] >{e

Fig. 7. “Random masses” model. Upper part: the dependence of
Lyapunov exponent minimal value ymin on vg. Lower part: the
dependence of parameter o (14) on vy.
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Here <...>
potential V .

The dependencies of D(t) can be also obtained using
stationary versions of Dirac equations (that is, using (8)
and (9)). In this case the expression of x,(k,t) has the
form

means averaging over the realizations of

%, (k1) = (@3, e HixkelHt ), (11)

Here d)(_l are the wavefunctions with spin “up” and
“down”, localized on node ny:

0

3(n,ng)

o’ = ,
0 {0

o° = d(n,ng).

Then expression (11) can be written as

2

> @ (ng, 1)B D, (n, 1)e™
A

1

N-1
X (k)= > nkl >

n=0 pn=0

(12)
Here p° = Iy, pl = Gy, and

0
. (g, 1) = {g’m 0.2 o (ng, 1) =1 0@ (g, ).

It should be noted, that expression cD*(no,k)B“q)i(n,X)
(u=0,1) is nothing else that two first components of
charge-current density matrix j* (A, x,y). Hence, one can
write x, (k,t) as

N-1 K 1 2
x. (k)= >n Z‘j“(no,n,t)‘ ,

n=0 p=0

where

j*(ng.n )= > j* (ng,n,1)e'™.
A

The systems of differential equations (5) and (6) have
been solved using Runge-Kutta method of the 8th order.
To improve accuracy the norm of ®(n,t) has been restored
on each step of calculations. To avoid boundary effects the
probability of a particle discovering on the last node has
been checked:

| (N -1,t)[< e =102, (13)

Besides, the calculations have been carried out for ny =0
and ny = N/2, i.e., in the first case it has been assumed,
that at t = 0 the particle is localized on the system edge,
and in the second case it has been assumed, that at t =0
the particle is localized in the middle of the system. Both
results are in good agreement.

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 12
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Additionally, to check the obtained results the de-
pendencies, D(t) has been calculated also, using (12). For
this it is convenient to introduce scalar wavefunction
®(n) so, that:

a2n) = o), $2n+1) =@ M), (n=0.1,...,N-1).

Note, that in (8) and (9) the matrices H are complex
tridiagonal. For numerical calculations of x.(a,t) it is
convenient to turn to the presentation, where H is real
symmetric and, therefore, ¢ is real too:

H=U"HU,

where U, ,, =i8(n, m)(-1)". Then even rows of H for (8)
have the form {-1, m+V([n/2]), -1}, and odd rows are
{1,-m+V([n/2]), 1}, wheren=0,1, ..., 2N -1.

For (9) matrix H has the form: {-1, V([n/2]),-1} and
{1,-V([n/2]),1}. Symbol [...] denotes integer part of a
number.

All the numerical calculations have been carried out for
system sizes N = 5000 and N =10000. If ny =0, then the
condition (13) is fulfilled at least for t < N/2, and if
ny = N/2, then this condition is true at least for t < N/4.
The probability p in (2) is equal to 1/2.

5. Results and discussion

The examples of D(t) dependencies, obtained numeri-
cally are presented on Fig. 8. Curve 1 corresponds to the
case, where localization of the states is absent, and curve 2
corresponds to the case of localized states. For clarity both
these curves are presented on the same figure, but at differ-
ent scales.

In the region of t >>1 these dependencies have been
approximated by the function:

D(t) = cot®. (14)

There are several different regimes of D(t) behavior: If
o =0, then the states are localized. If 0 <a <1, then it is
subdiffisive regime. o =1 corresponds to diffusive regime.
If 1<a <2, then it is superdiffisive regime and if o = 2,
then it is ballistic regime, corresponding to free motion.

The dependence of parameter o on amplitude v, for
m =1 is presented in lower part of Fig. 4. As seen, there
are two regions of delocalization: vy <0.4, where
17<a<2andl4 <ovy <2, where a~1.7.

Similar dependence for m=0 is presented on Fig. 5.
Parameter o > 3/2 in the range 0 < vy <1.7. For vy >1.7
localization of the states takes place.

As seen from upper curves on Fig. 4, Fig. 5 the depend-
encies o on v correlate well with the behavior of vyi,-
Indeed, the delocalization regions correspond to the inter-
vals, where v, — 0.

Of particular interest is the “random masses” model. As
it was mentioned above, in this case localization is absent

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 12
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Fig. 8. The examples of D(t) dependencies. Curve 1 corresponds
to the case, when localization of the states is absent, and curve 2
corresponds to case of localized states. For clarity both these
curves are presented on the same figure, but at different scales.

for arbitrary v, value and power index for this model cor-
responds to superdiffusive regime in whole vy range (see
lower part of Fig. 7). It is important to note, that parameter
Co (14) for the model with random potential depends of v
slightly. At the same time, for “random masses” model ¢,
decays exponentially with vy (see. Fig. 9). Physically ¢,
means the square of inverse mass. Hence, one can say, that
for “random masses” model with increase of v effective
mass increases exponentially, slowing the particles motion.

The maximal values of power index o for random po-
tential model (o =1.7) and for “random masses” model
(0.~ 1.8) are close to ballistic regime (o =2). It means,
that the random potential (or random masses) affects
weakly on transport characteristics of the system under
consideration. There are strong reasons to suggest that

-1.51

|
o8}
(93}
T

0 0.5 1.0 1.5 2.0 2.5 3.0
%9

Fig. 9. The dependence of parameter cy (see (14)) on vy in
“random masses” model, presented in logarithmic scale. Solid
line corresponds to monoexponential decay.
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such unusual transport behavior can manifests itself in
other dynamic properties of the model (for example, in the
conductive properties). We plan to investigate this problem
in near future.

Numerical calculations were carried out on computa-
tional cluster of the laboratory of numerical methods of
theoretical physics of B. Verkin Institute for Low Temper-
ature Physics and Engineering of the National Academy of
Sciences.
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CynepandysinHuin TpaHCcnopT B OAHOBMMIPHIl
HeBnopsagkoBaHin mogeni [lipaka

B. Cnasin, 0. CaBiH

PosrstnyTo opHOBUMIpHE piBHsAHHS [lipaka B paMKax KBAaHTOBOL
JMMepHoi Mozeni 3 posnoaiioM Beprysuti. TTokasaHo, 110 TPy MeB-
HHX CHIBBIJHOLICHHSIX MAacd YaCTHHKMA 1 aMIUTyJu TOTCHLiary
peani3yeTbcs Cynepaudy3iidHuii pexumM pyxy. Y pasi HEHyIbOBHHA
MacHl YacTKH II0Ka3aHo, 10 iCHye €MHA TOYKA, B SIKi MOKa3HHUK
JIaryHOBa 00EPTAEThCS B HyJb. Y paMKax AMMEPHOI MOJENi «BHU-
MaJIKOBHUX Macy IMOKa3aHo, 1[0 JIOKaJIi3allisi CTaHIB BiICYTHSI.

KirodoBi cnoBa: HH3BKOBUMIpPHI CHCTEMU, HEBIOPSIKOBAHI CHC-
Temu, cynepaudy3iiHuil TpaHcnopT, piBHsIHHS [lipaka.

Cynepandy3moHHbIN TpaHCMOPT B OAHOMEPHOWM
HeynopsgoyeHHon mogenu Oupaka.

B. CnaBuH, 0. CaBuH

Paccmotpeno onHomepHoe ypaBHeHue Jlupaka B pamkax
KBAaHTOBOM JAMMEpHOH Mozenu ¢ pacnpeneineHueM bepHymu.
IToka3aHo, YTO MPH OMPENEIECHHBIX COOTHOIIEHUSIX MACChl dac-
THIBl U aMIUIUTYIB HOTEHOHana peanusyercs cynepaudysu-
OHHBII PEKUM JBUXKEHHUs. B ciyuae HEHyJIeBOW Macchl YacTHULIb
MIOKAa3aHO, 4YTO CYILECTBYET CJUHCTBCHHAs TOYKa, B KOTOPOH
nokasarens JlamyHoBa oOpamaercs B Hylb. B paMkax aumepHOi
MOJIEJIU «CIIy4ailHbIX Macc» M0Ka3aHO, YTO JOKAIU3aLHs COCTOS-
HUH OTCYTCTBYET.

KiroueBble ciioBa: HM3KOpa3MEpHBIE CHCTEMBI, HEYHNOPSIOUYCH-
Hble cHCTeMbl, cynepauQy3HOHHBII TPAHCIOPT, YpaBHEHHE
Jupaka.
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