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We present some theoretical considerations that are relevant to the forthcoming measurements in

microgravity of the specific heat of confined liquid helium (the flight experiment «CHEX»). Primary

attention is devoted to the suppression near the boundaries, the «negative surface specific heat>. Above

the lambda point, we compute this to lowest order in the e-expansion: below the lambda point our

discussion is more restricted.
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The forthcoming measurements in microgravity
of the specific heat of liquid *He confined between
parallel plates (the flight experiment «CHEX»)
present an important challenge to the general the-
ory of the critical properties of a fluid near the
critical point of a second order transition. In the
case of liquid He, which is described by a complex
order parameter, we have noted [1] that the cross-
over at the lambda point from three-dimensional to
two-dimensional behavior is beyond the scope of
current theory. It is feasible, however, to develope
a theoretical prediction of the temperature depend-
ence in the crossover region by means of an interpo-
lation [1] based on the <«negative surface specific
heat» outside the crossover region. In this paper we
present a computation of this effect above the
lambda point to lowest order in the €-expansion.
Because of space limitation, we provide only a quite
incomplete discussion of the much more compli-
cated theory below the lambda point.

It is generally accepted that the thermodynamics
of liquid *He are determined by the Ginzburg-Lan-
dau free energy functional
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provided that the effects of the fluctuations of the
complex order parameter, W, are properly included.
In this short note our attention will be directed
mainly to the critical specific heat in the normal
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state, that is, at temperatures T greater than the
lambda temperature T, . After a short review of the
contributions of the order parameter fluctuations to
the bulk specific heat, we will study how these
contributions are reduced by the suppression of the
fluctuations that results from the boundary condi-
tion at the walls of the confining vessel. This
fractional reduction, relative to the bulk value, can
be regarded as a <«negative surface specific heats,
and can be expected to be of the form AES/V,
proportional to the product of the order parameter
correlation length times the surface to volume ratio.
The primary goal of the first part of this paper is to
compute the numerical value of the proportionality
coefficient A. Our method and approach differ
somewhat from those of Schmolke et al. [2] and
Huhn and Dohm [3].

In the normal state, each component of the order
parameter fluctuates about its mean value zero. To
simplify the notation, we let W be a real field that
denotes one of these components, and decompose it
into the sum of plane waves:
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where Q is the volume of the hypercube in D-
dimensional space. Restricting the free energy func-
tional to this component alone, and neglecting the
quartic term, we have for the volume integration
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Applying the equipartition theorem and using
units in which the temperature times Boltzmann’s
constant is one, we obtain for the equilibrium
thermal average
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The bulk thermodynamic free energy is the nega-
tive of the logarithm of the partition function
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summed over all configurations of the fluctuating

field W. The entropy density is therefore
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where the prime denotes the temperature derivative.
In the following discussion, we will ignore the
coefficient «'/2 and regard — W2[0as representing
the entropy. Substitution from Eq. (2) and replace-
ment of the summation by an integration yield
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Here we have introduced the inverese correlation

length
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In anticipation of our later treatment of the
surface effect, it is useful to separate one of the
Cartesian components of p, say g, from the remain-
ing D - 1 components, k. Substituting

into Eq. (7) and carrying out the integration over
q yields
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Thus,
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Because differentiation with respect to k2 is, except
for the factor «', the same as differentiation with
respect to T, the bulk specific heat is proportional
to

(11)
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The Wilson-Fisher e-expansion theory calculates
the specific heat as a Taylor’s series in powers of
€=4-D. With enough terms in the truncated
power series, a good account can be rendered of the
thermodynamics in the actual three-dimensional
system, i.e., €=1. It is found, however, that
smaller values of € can simulate the lambda-point
properties of 4He, provided that n, the number of
components of the order parameter, is taken as a
continuous variable and permitted to increase above
its natural value of 2 as € decreases below 1.
Following this procedure and introducing the De-
bye cutoff g, , we obtain a satisfactory repre-
sentation of the bulk specific heat from the € - 0
(D - 4) limit of Eq. (12). (The neglect of the
quartic term in Eq. (1) is justified in this limit
because the coefficient, b, is proportional to €.)
Thus,

pP=q*+ kK €))
qD qD
2
W2 1 d3k 1 E2dE 1 ap O L0 ¢ O
- = = 4T = _ + tr= |j] e to.
o’ mﬁ!W+&W 4(2m)? !W+&w wéanmg1WDKzamD
(13)

This compares well with the experimentally mea-
sured specific heat. Because of the very small em-
pirical value of the critical exponent, the logarithm
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provides a good representation of the temperature
dependence.

The above brief review of the bulk specific heat
will now serve as a basis for our investigation of the
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effect of imposing the Dirichlet boundary condition
at parallel planes separated by L and normal to the
direction of the momentum coordinate g. Thus, the
fluctuation modes are no longer «running wavess»
but rather «standings» sine waves with quantized
momenta
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and spacing Ag, = /L. Instead of the integration
over ¢ we now have the sum
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To evaluate the first term in Eq. (15) it is conve-
nient to introduce

L .
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In terms of this variable the required sum is the
following meromorphic function, which has a se-

cond order pole at Q = 0 and first order poles at i
times the non-zero integers:
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We need this expression for large values of Q, for

which

coth (MQ) =1 - 2 exp (-210) . (18)

The last term expresses the perturbing effect of the
overlap of the two penetration regions that extend
from the opposite sides into the interior of the fluid.
With

anLk=§>>1, (19)

we see that Eq. (17) is nothing other than Eq. (10),
except for a very small error of the order of, or less
than, exp (-2L /€). This error is evidently such as
might be expected from the general <rule of thumb»
[4] that any disturbance to the squared order pa-
rameter should heal at distances [ >> &/2 and die
out as exp(-21/€). According to Eq. (18): keeping
& below the upper bound

L (20)
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should hold the error to less that 4%.
With the neglect of the exponentially small error
in Eq. (18), the final term in Eq. (15) represents
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the only remaining effect of the Dirichlet boundary
conditions. The surface contribution to the entropy
is, therefore,
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Setting D — 1 again equal 3, we find for the surface
specific heat
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Gathering together Egs. (13) and (21), we have for
the effect of the Dirichlet boundary condition at the
walls
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The final form of this equation is a generalization to
an arbitrary shape of the fluid sample, and is valid
provided that & is small in comparison with the
characteristic dimensions of the vessel. The coeffi-
cient of S€ /V that is predicted by the above simple
theory is evidently

=1.57 . (24)

This theoretical result can he compared with
some recent measurements by Mehta and Casparini
[5] for confinement between plane walls of separa-
tion equal to L = 2110 Aand L = 5040 A. We limit
our attention to the thinner of these fluid layers, for
which the surface effect is bigger and thus easier to
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read off from the display of the data in their Fig. 2.
To limit the overlap error to less than 4%, Eq. (20)
requires § <§&, , =1055 A. With the correlation
length given by

E(t) =&t . (25)

where &, =1.4 A and v = 0.672, this implies
t > 0,50074. In fact, from the lower curve of Mehta
and Casparini Fig. 2 we find that the size of the
drop below the bulk specific heat fits very well the
temperature dependence ¢V, with a deviation of 4%
first showing up at ¢ = 0,5007% and increasing ra-
pidly at lower temperatures.

It remains only to deduce the coefficient A from
their data, for which one choice of temperature in
the surface scaling range will suffice. At ¢ = 1074
the negative surface specific heat is evidently
AC =-3.85 J/molelK. The bulk specific heat is
fitted by

0 ¢ O
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with B =4.01 J/molelK. Including the surface ef-
fect gives the total as

0 a3 acO
Ciot = Cpuix FAC =B gn ) + const + ?E,
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of the same form as Eq. (23), which permits the

identification

£ __AC_
Aexp L2 B 0.960 . (28)

According to Eq. (25), & = 682 Aatt= 1074, so
Agyy = 149, (29)

5% below the theoretically predicted value in
Eq. (24). This agreement is remarkably close, in
view of the approximate nature of the calculation.
A more complete theoretical treatment would pro-
duce Ay, as a Taylor’s series in powers of €, of which
Eq. (24) would be the truncated version, stopping
at the first term.

An alternative experimental study of the nega-
tive surface specific heat, for *He confined in 8-mi-
cron diameter cylindric pores, has been reported by
Coleman and Lipa [6]. The lower half of Fig. 1 in
[6] exhibits a log-log plot of their 7> T, data,
which is fitted well by the t™V temperature depend-
ence. But lacking a comparison with the bulk spe-
cific heat, as well as relevant information on the
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dimensional units, we are not able to deduce from
their data an independent value for Aexp )

For the sake of brevity we now limit our review
of the computation of the negative surface specific
heat for T < T, to its most salient features, leaving
the details and remaining features to be presented
elsewhere. For ¢ < 0 the symmetry with respect to
the order parameter is broken and it takes on the
mean field value W, fixed by

y _ a
W= - b (30)
With W =W, -+ ¢, the terms in F quadratic in the

fluctuation ¢ are
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where the inverse correlation length is given by
E2=k2=24d. (32)

Imposing the Dirichlet boundary condition at the
plane z = 0 gives the mean field order parameter the
Ginzburg-Pitaevsky space dependence

W,(2) = W, - tanh (2/28) . (33)

The resulting surface loss in entropy is

z
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the temperature differentiation of which yields a
surface correction to the temperature independent
mean field bulk specific heat coming from the
differentiation of LIJ%,IF itself. For a more subtle
effect of the z-dependence of Wy(z) we return to
Eq. (31) to find that the coefficient of the quad-
ratic term,

2 K2 3 >
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dips down to negative values close to the boundary.
This results in a localized fluctuating mode and
discrete energy eigenvalue below the continuum,
the consequences of which will be examined else-
where.
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