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Propagation of short nonlinear second-sound pulses
through He-ll in one- and three-dimensional geometry
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The results of an experimental study of the evolution of the shape of nonlinear second-sound pulses

in superfluid He-11 are reported. The pulses propagate in the bulk (3D geometry) and along a

cryoacoustic waveguide filled with liquid helium (quasi-1D geometry) at temperatures corresponding to

the negative, positive, or zero nonlinearity coefficient. A strong dependence of the shape of the

propagating pulse on the dimensionality of the wave was observed. The finite size of the heater

(generator of a sound) affects the profile of a short 3D pulse even at distances many times greater than

the heater size, which restricts the minimal width of the excited pulse. The experimental data are

compared with the results of numerical simulations.

PACS: 67.40.Pm

Introduction

The waves of the entropy (second sound) are
macroscopic quantum effects which may be ob-
served in a superfluid liquid and perfect crystals
[1,2]. The properties of the second sound in a
superfluid 4He (He-II) were studied extensively,
both experimentally and theoretically. More re-
cently, the attention has been focused on the study
of nonlinear acoustic properties of superfluid He-II
[3-7].

We report here on experimental and theoretical
investigations of the peculiarities of nonlinear evo-
lution of a solitary second-sound pulse in He-II
under different geometrical conditions of excitation
and propagation of the pulse.

As can be seen from further comparison of the
shape of the recorded pulse with the results of
computer simulations, one must take into account
not only the strong nonlinearity of He-II, but also
finite dimensions of the heater (generator of the
second sound) and receiver (bolometer).

Evolution with time of the propagating second-
sound pulse is defined by dispersive and nonlinear
properties of the superfluid and geometrical condi-
tions of the propagation. From the analytical point
of view, the partial differential equation that de-
scribes the evolution of the shape of a wave trave-
ling through an unrestricted medium can be re-
constructed unambiguously from two important
properties: the dispersion law of the wave w(k) and

the vertex function of nonlinear self-interaction
I'(k, ky , ky), which is the amplitude characterizing
the strength of three-wave interaction [8].

For the second sound in superfluid “He at tem-
peratures T > 0.9 K (roton second sound) but not
very close to T, (so that w<vc¢,/g, when & is
correlation length) and at frequencies lower than
the inverse time which characterizes phonon-roton
interaction, W < ¢,/ 1Ty ph - the spectrum (k) is a
linear function of the wave vector R, w(k) =cyk
(here ¢, and ¢, are velocities of the first- and
second-sound waves of infinitely small amplitude)
[2]. The vertex I' can be evaluated from the Landau
equations of two-fluid hydrodynamics using the
method similar to [9], which gives T'(k, k, , k,) =
= const O((kk1k2)1/2, where a is the nonlinearity
coefficient of the second sound,

O(=c2i1n %36—05
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Here o is the entropy per unit of mass. The sign of
the nonlinearity coefficient a depends on tempe-
rature of the helium bath [2]: a >0 at T <T_ =
=1.88 K as in ordinary matter, and a <0 at
T, <T<T,.

At temperatures of the bath close to T
the three-wave interaction is small [because
I'(k, k; , ky) —» 0] and one must account for the
next nonlinear term in the expansion of the evolu-
tion equation over the amplitudes of the sound. This
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term is proportional to the vertex of four-waves
interaction F(4)(k, k, , k, , k3) of the second sound.

In real experiments the amplitude of the excited
second-sound waves, 8T .., is restricted from above
by the conditions of film boiling of the superfluid
near the generator (heater): from our measurements
of the heat pulses with duration T, =10 ps the
critical value of the heat flux density is Q)=
= 25 W /cm?, which corresponds to OT .y < 10 mK
in the temperature range of the measurements. At
such amplitudes of the second sound the four-wave
interaction is sufficiently weak and the condition
Ir@gT2 << c,/L holds. Accordingly, at T =T,
no changes in the shape of a traveling pulse have
been observed at distances from the heater to the
bolometer up to L = 10 ¢cm. One can therefore ob-
serve a <«ballistic» travel of the pulse from the
generator to the detector without any evolution of
its shape at bath temperatures T= T, , in contrast
to the case T # T, , when the nonlinear transforma-
tion of the pulse is significant and the shock second-
sound wave is formed at small distances from the
heater.

At temperatures very close to T, the nonlinearity
coefficient tends to infinity according to the power
law o ~ €', where € = (T —T)/T, is the reduced
temperature [7]. Near the lambda point the non-
linear properties of the second sound therefore play
the crucial role even for a wave with a small
amplitude [6].

Since the second sound has linear dispersion law
and a square root-like dependence of the vertex I' on
the wave vectors, the evolution of the shape of
one-dimensional second-sound pulse o7T'(x, t) is go-
verned by the Burgers equation [7]

QB 0BT 3T

ot ox Mo M
The last term describes the dissipation of the wave
and is introduced to preserve the turnover of the
wave front. Here W is the damping coefficient.

If T#T, (a#0), the nonlinear evolution leads
to the creation of a shock at the profile of the
traveling pulse. The width of the shock front d, is
defined by the nonlinear term and the dissipative
term, df= I/OAT. The velocity of shock propaga-
tion is vr=c, + aAT,/2 (Refs. 1 and 2). At large
distances L from the heater the profile of a 1D
shock wave acquires the final form presented by a
triangle. The dependence of the length of the trian-
gle (duration of the pulse 1) and its height (the
temperature jump at the shock front AT) on the
distance can be described by a universal power law,
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T = const (O(L)V2 , AT = const ((J(L)_1/2 , (2)

where the constants depend on the former shape of
the second-sound wave. It is important to note that
the evolution of the developed shock wave (i.e., the
dependence of the parameters of the triangle on
distance) is governed only by the value of the
nonlinearity coefficient and does not depend on the
value of the dissipation p. The entropy production
rate dS/dt at the shock front due to dissipation
processes remains finite as dissipation coefficient W
tends to zero, because the small value of M is
compensated for by a big gradient, 81" ~ AT/ df-
Because of this circumstance, the coefficient p does
not enter in the expressions (2).

2. Results of the investigations

The changes in shape of a solitary second-sound
pulse have been studied as a function of duration of
the electric pulse T, applied to a heater, as a
function of emitted heat power Q and the distance
L between the source and the superconducting bo-
lometer at three temperatures which correspond to
positive (at T = 1.5 K), negative (T = 2.02 K) and
zero (T = 1.88 K) values of the nonlinearity coeffi-
cient a. The experiments were performed under
three different geometrical conditions: a) one di-
mensional (1D) geometry, when the second-sound
pulse travels along the cryoacoustic waveguide — a
long capillary with inner diameter d = 3 mm filled
with superfluid helium; b) «an open» (3D) geome-
try, when a spherical pulse propagates through a
bulk of the liquid, and ¢) combined geometry, when
a formerly excited 3D spherical pulse enters into a
capillary placed at some distance from the source
and after that propagates along the waveguide as a
quasi-1D wave.

a) Experiments on the propagation of 1D second-
sound pulse have been divided by two parts. At the
beginning, we studied the evolution of the pulse
shape with increasing distance I at a constant
power Q and duration of a rectangular electrical
pulse T, = 10 ps. The distance L was increased by a
step from 0.7 cm to 8.5 cm.

The typical dependence of the shape on the
distance L measured at the bath temperature T =
=2.02 K (a <0) is shown in Fig. 1. It can be seen
that for the pulse with initial amplitude 87 ~ 3 mK
the shock is formed at the back side of the pulse at
a distance L < 0.7 cm. The dependence of the am-
plitude of the wave on the distance L is described
well by expressions (2). At o > 0 the shock appears
at the front of the pulse (which is a general situ-
ation in classic nonlinear acoustics).
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Fig. 1. Evolution with the distance L of the one-dimensional
second-sound pulse propagating in a long capillary. The bath
temperature is 7 = 2.02 K (a < 0). The emitted heat power is
0 =20 W /cm?, T,= 10 ps. The distance L if measured in cm.

Figure 2 shows the evolution of the second-sound
pulse profile at T = 1.5 K with increasing heat
power from Q =2.4 W /cm? to Q =20.2 W,/ cm?
at a constant distance L = 2.5 cm and heat pulse
duration T, =10 pus. We see that the slope of the
profiles @ = AT /1 does not depend on Q: in accor-
dance with the general relations (2), the value
a=c,/al.

We see from Figs. 1 and 2 that the pulses
traveling in a capillary are followed by oscillating
tails with the amplitudes of the order less than the
amplitude of the pulse. The appearance of these
tails could be attributed to the nonideality of the
experimental cell: the heater consists of a rectangu-
lar thin metal film 1.2x2 mm; its dimensions are
therefore less than the inner diameter of a capillary.
The tails appear because of the multiple reflection
of the heater-irradiated nonplanar wave from the
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Fig. 2. Change in the shape of the one-dimensional pulse with
increasing emitted heat power O from 2.4 W /cm? to
20.2 W /cm? at a fixed distance from the heater L =2.5 cm
and 1, = 10 ps. The bath temperature is 7 = 1.50 K (a > 0).
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walls of the capillary. The subsequent computer
simulation revealed the influence of the geometrical
nonideality of the cell in the region near the heater
on the shape of the recorded pulse.

b) Open (3D) geometry.

An evolution of shape of the spherical pulse
propagating in the bulk of liquid helium with in-
creasing power and electric pulse duration has been
studied at three different temperatures 7 =1.50 K
(L==47cm), 1.88 K and 2.02 K (in two latter
cases L = 5.8 cm). The pulse was generated by the
same heater immersed in superfluid helium.

It is known [5] that the second-sound wave ge-
nerated in He-II by a point source heated by a
rectangular electric pulse consists of a heating pulse
(compression wave in the roton gas) followed by a
cooling wave (rarefaction wave in the gas). In the
linear approximation the amplitude of the traveling
spherical pulse decreases as 8T .. ~1/R with in-
creasing distance R. Allowance for nonlinearity
leads to slow (logarithmic) corrections to this de-
pendence [1]. In the case of a shock wave we have
AT ~ (1 + const (In R))"/R, where the exponent m
depends on the asymptotic shape of the wave (and,
hence, on the sign of the nonlinearity coefficient),
and the constant in the latter relation is defined by
initial conditions.

The shape of the bipolar pulse that was gener-
ated in He-1I at T = 1.88 K by the heat pulse of the
same duration T, =10 ps and the evolution of the
shape with changing nonlinearity coefficient are
illustrated in Fig. 3. The distance L is fixed L =
= 5.8 cm, and the heat density changes slightly
from Q =23 W /cm? at T = 2.02 K (upper graph),
to O =21 W/cm? at T = 1.88 K (middle graph),
and to Q =16 W /cm? at T = 1.50 K (bottom graph).
We see that the final shape of the bipolar nonlinear
pulse depends significantly on the sign of the non-
linearity coefficient. If a > 0, two shocks appear at
the profile of the pulse (at the front of the compres-
sion wave and at the back side of the rarefaction
wave). If a < 0, the shock appears at the middle of
the pulse. The asymptotic dependence of the jump
AT at the shock front at large distances is defined
by the final shape of the bipolar pulse: the exponent
of the logarithmic factor m =-1,2 in the case of
the profile with two shocks at the edges of the pulse
and m = -1 in the case of the profile with a discon-
tinuity in the middle.

In the experiments with spherical 3D pulses we
have observed an unexpected dependence of the
shape of the recorded pulse on the duration T, of an
electric pulse (in contrast to the one-dimensional
case). If T, is less than a characteristic time T, = 20 s,
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Fig. 3. Detected profile of the 3D second-sound pulse at va-
rious temperatures. The distance L =5.8 cm, 1,=10ps. @)
T=202K (@<0) 0=23W/cm? b) T=1.88 K (a=0),
0=21W/cm? ¢) T=1.50 K (ad >0), 0 =16 W /cm?.

the detected bipolar pulse is presented by coupled
heating and cooling pulses. But if T, exceeds T, one
could observe a shell between the heating and
cooling waves (a region with a zero deviation of the
temperature from the temperature of the bath). The
duration of electric pulse T, at which the shell
appears depends only slightly on the temperature of
the bath.

In order to explain the appearance of the shell
we considered a simple theoretical model which
describes the generation of linear second-sound
pulse (o = 0) by a spherical heater with a radius b.
We assumed that a rectangular electric pulse is
applied to the heater. The problem involved can be
mapped to a well-known problem of the wave
equation for a scalar field ¢ by introducing the
hydrodynamic  potential using the relation
O¢ =p/S. Here p is a momentum per unit of mass
of relative motion of the normal and superfluid
components of He-1II, and .S is the entropy of a unit

Fizika Nizkikh Temperatur, 1998, v. 24, No 2

volume. The boundary conditions for the potential
¢ express the continuity of the heat flux at the
surface of the heater.

The analyses of the solution show that, in con-
trast with the one-dimensional case, the shape of
generated 3D second-sound pulse is defined by an
integral relation and, in general, is proportional to
a time derivative dQ/dt with the exponentially
decaying post-action with characteristic time T, ~
~b/c, . For a rectangular heat pulse the observed
profile of the second-sound wave that propagates
through a liquid is given by two uncoupled ther-
mal peaks if T, > 1, . If T, <71, , the peaks overlap
and the nonlinearity results in an additional broad-
ening of the propagating pulse.

In order to evaluate the broadening 1, we made
a computer simulation of the generation of linear
second-sound pulse, taking into account the real
geometry of the heater (flat rectangular film). This
gave the value of 1, =20 ps, concistent with the
measurements results.

The results of such treatment can be used imme-
diately only at T =T, because the action of non-
linearity is ignored. As follows from previous con-
siderations, the change in the duration of the pulse
at o # 0 is logarithmically small at finite distances,
so the measured time T, must depend slowly on the
temperature. This conclusion has been confirmed by
our observations.

¢) The combined geometry.

In these experiments the heater was placed at a
distance of 1 cm outside the capillary. The heater
generated a nearly spherical bipolar wave that can
enter through the open edge of the capillary and
propagate along it as a 1D wave. The profile of the
pulse was measured at the far end of the capillary.
This technique makes it possible to create quasi-
one-dimensional bipolar second-sound pulse. As in
pure spherical case, such a pulse propagates «ballis-
tically» at T'=T, and two shocks appear at the
edges of the pulse at T < T or the shock is formed
in the middle of the pulse at T > T .

Evolution of the shape of the pulse that pro-
pagates through a capillary with increasing heat
power (Q =2.4, 9.2 and 20.2 W /cm?) is shown in
Fig. 4. The duration of the electric pulse is T, =
=10 ps (short pulse) and the length of the capillary
is ~ 5 cm. The temperature of the liquid helium
bath is T = 2.02 K (a <0).

Computer simulations of the nonlinear evolution
of a 1D pulse with distance wave performed in the
framework of the Burgers equation. Two cases have
been studied: a) a rectangular pulse was excited by
a plane infinite heater and b) the initial condition
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Fig. 4. The shape of the second-sound pulses detected at the far
end of the capillary in the experiment with combined geome-
tries. The bath temperature T = 2.02 K, the heat pulse duration
1,=10ps. O=24 W/cm? (@), 0=92W/cm? (b),
0 =20 W /cm? (¢).

for the wave is given by a sine-like function (a
simulation of the combined geometry).

The results of calculations for this case are
shown in Fig. 5. In case a) the bath temperature is
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Fig. 5. Results of computer simulation of the evolution with
distance of the 1D second-sound pulse. The distance L is meas-
ured in cm. The rectangular pulse, the bath temperature is
T =1.6 K (a > 0) (a). The sine-like initial pulse, the bath tem-
perature is T = 2.1 K (a < 0) (b).
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assumed to be T'= 1.6 K and the initial amplitude
of the pulse is 5 mK. We see a formation of the
shock at the front of the pulse at a distance from the
open edge of the capillary L ~ 3 cm.

In case b) the bath temperature is T = 2.1 K. The
shock appears at the center of the wave (in accord-
ance with our previous considerations). The jump of
the temperature AT decreases in inverse proportion
to the distance AT ~ 1/L. (Note that the direction
of the x axes on the two last plots is inverse with
respect to previous plots; Figs. 1—-4 correspond to
the signal recorded from the bolometer.) We see
that the evolution of the second-sound pulses ob-
tained in numerical simulations coincide qualita-
tively with the results of observations.

3. Concluding remarks

Thus, the results of experimental and theoretical
studies have shown that the shape of excited sec-
ond-sound waves and their evolution due to non-
linear properties of superfluid helium depend
strongly on the dimensionality of the wave and
geometrical conditions of the generation and propa-
gation of the wave, as well as on the temperature of
the liquid-helium bath. For 3D pulses the influence
of the finite dimensions of the source of the wave
can not be ignored even at large distances.

Despite the relative simplicity of the equation
that governs the evolution of the second-sound
pulse (the Burgers equation), it exhibits a very
interesting behavior. The character of the evolution
and the final shape of the pulse can vary signifi-
cantly under various conditions of the experiment.

It is interesting to note that the dependence of
the ['(k, k, , k,) function on the wave vectors of the
second-sound waves I ~ (M,_; 4 ki)1/2 is typical of
a wide class of problems of the nonlinear wave
propagation, and the Burgers equation appears in
many problems in nonlinear physics. In principle,
this makes it possible to use the second sound in
superfluid helium as an object for model study of
many of nonlinear processes in optics and acoustics,
in plasma physics, etc.

Interesting applications of the Burgers equation
are also found in the theory of turbulence [10]. The
experiments with nonlinear second sound could be
useful for developing this theory.

Short nonlinear second-sound pulses could be
very useful in investigations of dynamic phenomena
very close to the lambda point: when a monochro-
matic second sound is emitted by a heater to which
a sinusoidal voltage is applied, a steady heat flux is
created in its interior, and the value of this flux is
comparable to the oscillating part of the flux within
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the wave. The existence of such stationary counter-
flow results in the creation of quantum vortices in
the superfluid liquid. This process is most important
at temperatures close to T, because the threshold of
the vortex creation is small. This means that in the
case of sinusoidal excitation of the heater, the
generated monochromatic second-sound waves pro-
pagate through a strongly disturbed liquid, in con-
trast to studies with short heat pulses. This makes
it possible to correctly investigate the dynamic and
relaxation processes in the superfluid near the phase
transition temperature. In this sense, it would be
more correct to use the 1D bipolar second-sound
pulses, because their nonlinear evolution is rela-
tively simple: the length of the pulse is fixed by the
conditions of generation and at the final stage there
exists only one parameter AT, which changes with
distance. This could improve the accuracy of inter-
pretation of the experimental data.

Thus, the experiments with short second-sound
pulse performed under microgravity conditions
could give, in principle, a more accurate informa-
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tion about the behavior of the superfluid near and
far from the phase transition.
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