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The mesoscopic effect of the dependence of the point-contact conductance on the spatial distribution

of the impurities is theoretically studied. It is shown that the resistance dependence on the diameter d

is not only determined by the electron mean free path /. , but also by the average distance between the

impurities. In the case of two types of impurities with different concentrations the mesoscopic effect is

predicted for a dirty point contact (d >> 1) due to the scattering at specific (e.g., magnetic) impurities

with a low concentration. Such contacts were numerically modeled for random distributions of the two

types of impurities.

PACS: 72.15.Qm, 72.10.Fk, 73.40.Jn

The break-junction technique [1] makes it possible
to study electron transport through microconstric-
tions few nanometers in diameter. The conducting
properties of such small contacts are affected by
quantum effects such as the 2e?/h conductance
quantization observed while changing the diameter
of the contact [2,3], conductance fluctuations due
to electron wave interference [4,5], etc. In ultra-
small contacts, besides the quantum effects [6,7],
the presence of impurities in the contact region
produces noticeable classic effects. Such «classical
mesoscopic effects» cause conductance fluctuations
due to the displacement of individual scatterers,
and also its stochastic-like dependence on the mag-
netic field [8]. It was shown in Ref. 9 that indivi-
dual point defects, which are located at a distance
from the constriction comparable to its diameter d,
cause a deviation of the size-dependence of a ballis-
tic contact’s resistance R(d) from Sharvin’s formula
[10,11]. If the average distance between the impu-
rities appears greater than or equal to d, we obtain
a classical mesoscopic effect — the dependence of
additional contact resistance due to the defects on
their spatial distribution. We will demonstrate be-
low that an analogous dependence can be also

observed in contacts with a short electron mean free
path for two types of scatterers of different concen-
trations. Such a situation can take place, for in-
stance, in experimental observations of size effects
in metallic point contacts with magnetic impurities
[12], where a rare spin-flip electron scattering is
accompanied by many scatterings at regular impuri-
ties which inevitably appear at the point contacts.

We restrict the analysis of classical mesoscopic
effects to the semiclassical approximation, assuming
that the size is considerably larger than the de
Broglie wavelength of electrons.

Assuming that the point contact is an orifice of
diameter d in the insulating partition X, and sepa-
rating the two metallic half-spaces, we obtain a
situation which is illustrated in Fig. 1. It is assumed
that the metal has two types of defects of different
effective scattering cross section. The characteristic
distance 7, between the defects of first type (their
concentration is n; = 763) is assumed to be smaller
than the contact diameter, which allows us to
average all equations over the coordinates of these
impurities. We call such defects «the background
defects». The concentration of second-type defects
n,iD , whose interaction with electrons determines the
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Fig. 1. A model of the point contact as a circular orifice in an
insulating partition XZ. The dots represent the background and
the stars symbolize the specific defects. The broken lines repre-
sent the electron trajectory through the contact.

mesoscopic effects, is such that their separation,
rE= ni[H/ 3, is comparable to d. Such defects are
referred to as <«specific impuritiess.

The current through the contact can be expressed
in terms of the Green-Keldysh function gﬁ(r, €)
integrated with respect to the energy variable
¢ = €, ~ € (SF is the Fermi energy) [13]:

r=5eno [ [ agfe00 )
S

In this formula the integration with respect to
d?p is carried out over the area S of the contact, and
v, is the component of the electron velocity
v = 0¢/0p parallel to the contact axis. The angle
brackets denote averaging over the directions of the
momentum p at the Fermi surface € =g, , where
the density of states is N(0).

In the Keldysh method [13] the retarded g and
advanced g4 Green’s functions appear along with

5 . The matrix

.y gk

Ip = DO p 0, (2)

which satisfies the normalization condition éz =1
for a nonsuperconducting metal, is the solution of
the equation [14]
ivig, +[g,21= [, 0 g"1 . (3)
In this equation g(o) is the matrix of the Green’s
function for a pure point contact with only the
background impurities, the scattering of electrons
on which is described by the coordinate-independent
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matrix of self-energy functions Z = (i,/21;) (g,0, where
T, is the characteristic time of the elastic relaxation.
The electron interaction with the specific defects is
associated with the right side of Eq. (3) which
contains the scattering matrix . This matrix can be
determined from the Lippman-Schwinger equation

i=V - i) VO, 4)

where V = V(r) is the scattering potential. Note
that the structures of matrices ¥ and # are similar to
that of (2).

According to Eq. (3) and the normalization condi-
tion, the functions ¢g®4 in a normal metal are equal
to their equilibrium values g{f = —g‘l‘} =1. Taking
into account relation (4), the equation for g can
be written in the form

vOgK - 1(g%) = THgP%) (5)
where
~ 1 ~
— _ . — A _
Il.(gp)—rl %@pm 9, E’ Il.D(gp) 2Im ¢ %@pm 9, E'

]

The boundary condition
1
95(1", €) = G, % 9 eU sign 2% for |2 -» o ()
U O

ensures the restoration of equilibrium in the elec-
tron system at the contact banks. In Eq. (6)
G,(¢) = 2tanh (¢/2T) is the equilibrium Green’s
function (T is the temperature), U is the voltage
applied to the point contact.

Following the authors of Ref. 15, the function
gg))K(r, €) can be conveniently expressed as

gOK(r, ) = a (r)Go% S D+
U
+H - 0,006, @ - 3@ M

where the voltage-independent function O(p(r) is the
probability that an electron arrives at the point r
from —oo with the momentum p after being scattered
only by the background impurities. The function
a (r) satisfies a homogeneous equation similar to the
one for g(O)K

VDO(p(r) -1, %(p(r)%= 0 (8)
and also the condition for [rf| - o
=009 , (9

o (r - o)

which is derived from (6).
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We write the particular solution 6glp<(r, €) of a
nonhomogeneous equation (5) using the correspon-
ding Green’s function gpp,(r, r') = Ip _p(r', r):

205) = [ dpdrgy, (.0 IPGOKD. (i0)

The function Iop' should be determined from the
relations

Vg (67) = 1g,) 23D~ P) Bl ~ 1), (1)

Ipp (1 > ©)=0. (12)

Substituting the value of 6glp< in Eq.(1), we obtain

the expression for the change in the electric current
Al due to specific defects

d
ar=-"% N(O)J'ozsj'fT b,89K (p)C=

Tle de
== 5 N(0) J-E[ I dp I erp(r)IiD %g))K(r)E,
(13)
where

G, =J'd2pJ' dp'v, g, (. 1) (14)
S

Multiplying Eq.(11) by v, and integrating it by
p over the contact area and momentum p, we obtain
the following equation for the function Gp(r):

VGO 1GE) =) . (15)

The probability o, (r) satisfies Eq.(8), which com-
bined with Eq.(15) yields the relation [15]

G,(r) = a_y(r) - 6(2) . (16)

Substituting (7) and (16) into the expression for
the point-contact current correction (13), we find

de elU eU-nO
Al = - 0| — — -G, --—0
meN( )Izn %30%+ 20 o~ 2 52"

xIdrIdpa_p(f) I 8- A7)

Relation (17) has a wide range of applications. It
is valid for any mean free path as to the electron
scattering on background impurities /, in case their
separation distance 7, is much smaller than the
contact diameter d, and also for arbitrary relation

Fizika Nizkikh Temperatur, 1997, v. 23, No 12

between the value d and the distance between the
specific defects TE , which provide the mean free
path for electron scattering on these defects,
[7>>d, 1.

The following calculations depend on the proper-
ties of both types of scatterers and their concentra-
tions. The integrodifferential equation for the pro-
bability a_ (8) can be solved analytically for
extreme cases in which the mean free path /; is much
greater or much smaller than the diameter d. For
the ballistic regime of electron motion through the
contact we obtain

-v 0 Q(r)

-v O Q(r),

_ [B(=2) +sign z,
op(r) = [, >>d

(=2)
Eb : (18)

Q(r) is a solid angle at which the aperture is seen
from the point r; 8(2) is the (Heaviside) unit step
function.

For the diffusive regime of the electron motion
through the contact a_ can be expanded in a series
in a small relaxation time T; (Ref. 15)

o, () = (R0~ VOGO .. [ <<d, (19)

where

. 1 L
mxp(r)D— 6(2) - sign z p arctan o (20)

2 1/2
0? 20 1 mr 1D+422D/ 1)
S 2T My "0 T a0 -
¢ 2 gd® g &g

The solution of Eq. (4) for the scattering matrix
is complicated and can be found only in some
special cases. For example, if the interaction with a
single impurity located at r; is described by the
spin-independent operator V(r) = VI3(r - r;) (I is a
singular matrix, V = const), then for an arbitrary
interaction potential V the # matrix will have the
form

VI - im0 ()

=
1+ [TNO)VT?

d(r-r,). (22)

In the case of a scattering center with nonzero spin
s the electron interaction energy with such a scat-
terer contains the component V= 6§6(r -r) (Ois
an electron spin operator, and J is an exchange
interaction constant). At temperatures T above the
Kondo temperature Ty ~ € exp (-1,/N(0)J) we can
construct the Born series for the scattering matrix.
Standard calculations [16] in the second Born ap-
proximation give
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@ I(r, €

i
tK =2 r(r, &0k, ﬁﬂzf =
2 [ &)y 2me - € +i0

where r(r, € = TN(0)J%s(s + 1) X
O GO
x0 - JA;(O)J'da' P 08(r-r). (23)
0 €-¢€

If we have N >> 1 specific defects which yield an
electron mean free path liD >> max (d, ), the cal-
culation of the current through the contact can be
performed by ignoring the correlation between the
individual scattering events and writing the opera-
tor ¢ of the system in the form of the sum of
i-operators of scattering by isolated defects. In this
approximation, in the case of isotropic scattering by
zero-spin impurities the resistance R of a point
contact has the form

O O—D O
R =R -—& 5 M(r)5; (24)
0 r. O
0O ¢ |
R = e2N(O)Id2p Ba @ (25
S

R, is the contact resistance without the specific
impurities [13],
o Im#A  mV2N(0)
O o[l + (N(0)V)?]

is the effective cross section of scattering by the
specific impurities.

RC
M) =4 g LAl )0 ay@)I 26)

R61 = 1/zevaN(O)S, and R, is the resistance of a
ballistic contact (Sharvin formula) [10,11].

The sum of the M(r,) functions depends on the
specific configuration of the impurities and de-
scribes the classical mesoscopic effects in the con-
ductivity of point contacts. For the ballistic case in
which the function a, is determined by Eq.(18), we
have [9]

EQ(ri)D2
M@)=0_0. 27

021 Qg
Figure 2 shows the results of a numerical calcula-
tion for Egs. (24) and (27). In the mesoscopic
region (d ~ r%b the behavior of the resistance is
essentially determined by the presence of impurities
at distances 7, ~ d from the aperture. If there are
some impurities, then we will have N-shaped de-
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Fig. 2. The dependence of the relative correction AR/R, for
the ballistic resistance of the point contact R, versus the ratio
between its diameter and the characteristic distance rg between
the defects for three random distributions in the contact region.
Curves 1 and 2 represent the cases in which one of the impuri-
ties is located in the contact region, and curve 3 is the case in
which there is no such impurity present.

pendences (AR/R)(d) (curves 1 and 2 in Fig. 2);
otherwise, we have a monotonic (AR/R)(d) de-
pendence (curve 3 in Fig. 2). It should be noted
that while d/ TE is increased from some point, the
value of AR /R, stays below its asymptotic value:

%=§n%ud. (28)
o 3m‘?

Figure 3 illustrates a situation that might be
observed in experiments [12] when the defects are
concentrated in a thin layer near the contact. In
such a case the contaminated region plays the role
of a barrier with effective transparency D. It is
known [17] that the relative change AR/R,, in the
resistance of a ballistic contact due to the translu-
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Fig. 3. Relative correction AR /R, for the resistance of a ballis-
tic contact for the various spatial distributions of impurities
when the defects are located in a thin layer in the insulating
plane (curves 2—5). Curve f represents a rare case in which one
of the impurities initially appears in the near contact region.
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cent barrier is 1 — D and does not depend on the
diameter d. The assumption made is supported by
the results of a numerical calculation (Fig. 3),
which shows a fairly weak (AR/R)(d) dependence
for contact sizes, of the order of the thickness of a
layer in which the scatterers are concentrated.

For contacts with a small mean free path, using
Egs. (19) and (26), we obtain

2
R' =R} =5 ®opN(O)l, d ; (29)
R, is the resistance of the diffusion contact (Max-
well’s equation);

li 1
" (Q% + 1)(Q? + 422 /(Qd%)

where Qz(ri) is defined by Eq. (21). If the charac-
teristic distance between the specific scatterers TOD is
much larger than the contact size rE >>d, the
impurities located at distances r, >>d from the
orifice yield M(r,) = (li/d)(52/rl4). Separating the
contribution of distant defects, we obtain for a
relative correction to the resistance

M(r)

AR ot li S
T S (31)

- M(r,) + — )
u™ S 2 M ey
where li[H = gtht l; = vgt; , and rH= TE . The first
term in Eq. (31) is the contribution of specific
defects in the contact region to the contact resis-
tance. The partial contribution of every scatterer to
the AR value is of the order of ODd/Sli and in-
creases as the diameter is reduced. In a real situ-
ation for rE >> d there might be no defects at
distances r; < d from the contact, and the relation
AR /R, is proportional to d.

Now if d >> rE , the location of defects has no
effect on the resistance of a point contact. Such
inequality allows us to switch in (24) from a sum
over the impurity coordinates 7, to an integral over
the whole space. This yields for the circular contact

R'=R}! Ei - li/liEE. (32)

Note that Eq. (32) can be directly obtained from
expression (29) for the resistance of a short mean
free path contact in which, according to Matthies-
sen’s rule, li_1 should be replaced by li_1 + liEH ,
bearing in mind that [, << liD.

The (AR/R,,)(d) dependence, which is determined
by analytical equations (31) and (32), is illustrated
in Fig. 4, showing the results of the numerical
calculation using Eqs. (24) and (30) for various
random distributions of the specific scatterers. The
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Fig. 4. Dependence of the relative correction AR/R,, for the
resistance of a contact with small mean free path on the ratio
between its diameter d and the characteristic distance between
the specific defects rE . Curves 7 and 2 correspond to two dif-
ferent distributions of these defects.

mesoscopic regime in the conductance of point con-
tacts is observed up to the values of d/rg of about
5-10.

For the electron scattering by specific impurities
with nonzero spin, substituting expression (23) for
t4 into (17) at temperatures above the Kondo tem-
perature, we can formally write the differential
resistance of a point contact in the form (24),
denoting by aUthe following function of the voltage
and temperature:

o= TNV(O)s(s + 1)
20

TN(0) dF(el)O
TTd deU B (33)

Oro

where

00 [o0)

Flel) :Ida £G,(®) J-z,:2d—£e2 y
0 0

x [G,(€ —el) - G,(e' + eU)D.
DO( ) = Gy( )D

The second term in square brackets of expression
(33), which is a function of voltage and tempera-
ture, describes the Kondo anomaly on the current-
voltage characteristic of the point contact. Note
that the value oY evaluated in the second Born
approximation, does not depend on the scattering
by background defects, and Eq. (33) is valid for
any relation between the contact diameter d and the
mean free path [; .

Therefore, the increase in concentration of the
specific impurities ”»iD’ which leads to the alteration
of the ratio between the characteristic separation of
the impurities rgl= (niE)_V 3 and the contact diame-
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ter, changes the size-dependence of the resistance of
a point contact, R(d) = Ry; + AR :

Ei/lim’ rg<<d P<<d<<l,
PR ~Tar, N
R i 0 )
M O+ , rg>>d,
OO0 dio
0

where N is the number of defects in contact region.
The influence of specific defects on the resistance
for low concentrations (7§ >> d) is determined by
their spatial distribution, which leads to diverse
(random) dependences AR(d).They can be split into
two groups: 1) (AR/R,,)(d) increases with decrea-
sing d if at least one of the specific impurities is
located at a distance r << d from the contact aper-
ture; 2) the ratio (AR/R,,) decreases with decreas-
ing d if all impurities are located far enough from
the contact. As mentioned above, the total contri-
bution from all defects at different distances from
the contact can lead to the appearance of a mini-
mum on the curve (AR /R,,)(d). For high concentra-
tions (rj << d) the relative change in resistance is
independent of the contact size, AR /R, = const(d).
Thus the functional dependence of the point contact
resistance versus its diameter can serve as a criterion
for determining the concentration of the specific
impurities, and also their distribution in the contact
region. Note that due to the «screenings» effect of
background impurities the classical mesoscopic ef-
fect in the diffusive contact is weakened d,/1, > 1
times compared to the ballistic case described in
Ref. 7. If the specific impurities are magnetic impu-
rities, they lead to a nonlinear dependence of the
correction for the contact resistance versus the ap-
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plied voltage. Such dependence can be extracted in
standard experiments in point-contact spectroscopy.
In this case the distribution of impurities in the
contact region affects the intensity and displace-
ment (on the voltage scale) of the Kondo anomaly
in the point contact spectrum.
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