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Electromagnetic grazing anomalies. Energy flux extrema
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The diffraction of electromagnetic waves at the surface periodic structures accompanied by strong anomalous
effects in different diffraction orders is considered in detail for high-contrast interfaces. We restrict discussion by
the transverse magnetic polarization of the incident wave (the magnetic field is orthogonal to the plane of inci-
dence) and the simplest geometry when the plane of incidence is orthogonal to the grating grooves. The most at-
tention is devoted to the strong maxima and minima of the energy flux density accompanying specific grazing
propagation of some diffraction order. Relation to other anomalies, both Rayleigh and the resonance ones is dis-

cussed as well.
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Introduction

It has been well known since early 1900s that the light
diffraction by metal gratings is accompanied by a number
of strong spectral and angular anomalies which manifest
themselves by the fast dependence of the intensities on the
wavelength and/or angle of incidence. The pioneer' work
on the subject was performed by R. Wood in 1902 [1] with
metal gratings. The first physical interpretation of some of
the observed peculiarities was presented by Lord Rayleigh
in [2]. He associated them with the branch points related to
diffracted waves (i.e., with the transitions from the out-
going wave to the evanescent one and vice versa in differ-
ent diffracted orders). Such explanation is incomplete due
to the fact that some Wood anomalies are to be attributed
to the resonance excitation of surface electromagnetic
wave at the metal\air interface. Such interpretation was
first proposed by U.Fano [3]. The resonantly excited
waves are called the surface plasmon polaritons (SPPs) [4].
The resonance anomaly is still widely discussed due to its
perspective role in nanophotonics. Later, Wood caught site
of one more anomaly relating to anomalously high intensi-
ty of the grazing outgoing wave: “...the spectrum leaving
at grazing emergence, which is the one which governs the
appearance of the anomalous bands, is very bright” [5].
Below the anomalies attributed to the grazing propagating
waves are referred to as GA (Grazing Anomaly).

It is of essence that the Rayleigh anomaly exists for an
arbitrary interface and polarization. However, it is much
more pronounced for the high-dielectric contrast interface
and for TM (transverse magnetic) polarization if the media
we are dealing with are nonmagnetic. In what follows we
restrict the consideration to the nonmagnetic case only.
The results for the magnetic case can be obtained by re-
placing the dielectric permittivity, e, with the magnetic
permeability, u, and the TM polarization by the TE one
and vice versa. The resonance anomaly can exist only for
such interfaces that support surface electromagnetic waves
(SEW). GA anomaly is rather universal and is well ex-
pressed for high contrast interfaces for TM polarization. To
our knowledge it was first discussed theoretically in [6].

Consider the main properties of these anomalies. The
branch (Rayleigh) point anomaly is of general type, its
position can be easily obtained from the Bragg diffraction
conditions and it exists for arbitrary polarization and inter-
faces. However, it is more expressed for metals under TM
polarization. At the Rayleigh point the derivative of the
diffracted wave intensity with respect to the wavelength
and angle of incidence turns infinity. The resonance anom-
aly is less general because it is caused by existence of well-
defined eigenmodes of the interface.*

For isotropic and nonmagnetic dissipation-free media
such surface-localized electromagnetic waves do exist un-
der the conditions £ <0, g4 >0, g4 +£<0, where ¢ and

*  We restrict consideration to interface of two homogeneous isotropic nonmagnetic media, say, metal and dielectric. If between these
two media exists some third one (even very thin layer), then additional to SPP resonances can occur [7]. For anysotropic media the reso-
nance can be caused by other than SPP surface modes, say, Dyakonov ones, see [8] and citations therein.
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€4 denote dielectric permittivity of the metal and the adja-
cent dielectric, respectively. The SPP in-plane wave-

number Q=Q(m)=9./aad /(e+€4) >0, where o is the
c

(angular) frequency of the incident wave, exceeds the
wavenumber of the adjacent dielectric volume wave with

the same frequency, k =k(o0)=w./eq4/c, Q>k. The
square root symbol stays for the main branch, so that
NZ = [[Z]exp(i9/2) for Z =|z|exp(i9) with ¢ [0,2n).
The SPP is TM polarized, i.e., if it propagates along the
interface z =0 in Ox direction then its magnetic field, H,
is directed along Oy direction, H = (0, H,0), and the elec-
tric field, E, lies in the xOz plane, i.e., plane of incidence,
E =(E,.,0,E;). The space dependence of the SPP fields in
the dielectric halfspace, z <0, is given by the ansatz

exp[iQx —ip(Q)z], where

p(q)=+k*-q?,

For dissipation-free media p(Q) is pure imaginary,
p(Q) =i|p(Q)|, so that the field amplitude decays expo-
nentially with increasing distance from the interface z =0.

Recall, if the plane monochromatic electromagnetic
wave with space dependence of the form

E,Hocexp[i(q-r)+ip(a)z],

k =,/eqol/c. Q)

a=(aea) @

(where and everywhere else the time dependence is sup-
posed to be of the form exp (—iwt)and is omitted) is inci-
dent on the interface from the dielectric medium located at
negative z values, —0 <z < Q(x), where the surface relief,
z=_(x), presents periodic function with period d,
C(x+d) =C(x), then the electromagnetic field within the
dielectric medium is the sum of spatial harmonics of the
form

En. Hy o exp[[i(dy 1) —ip(ay)z],

@)
0,=9+ng, g=e,2n/d, n=0,%1 +2,...,

ey is the unit vector directed along the Ox axis. In other
words, the diffracted field is given by the Floquet-Fourier
expansion [7,9]. In (3) the sign minus before p(q,) stays
to satisfy the radiation conditions at z = —o. Restriction of
the outgoing (and evanescent) waves within the whole
halfspace z < (x) corresponds to the use of the Rayleigh
hypothesis [2] and is not restrictive even for rather deep
gratings, see the recent discussion in [10].

Consequently, if for some specific integer n the condi-
tion |qn| =Q holds true, then for the appropriate polariza-
tion of this diffracted wave the resonance excitation of SPP
takes place. It is significant that SPP is an evanescent wave
and thus the magnitude of the corresponding diffracted

order can exceed essentially that of the incident wave. Spe-
cifically, in the simplest geometry, when q is orthogonal to
the grating grooves, g =(q,0,0), g > 0, only TM component
of the incident wave can excite the SPP.* Also, it deserves
attention that for the modulated interface the SPP resonance
centre experiences shift as compared with the “naked” con-
dition, |q,| = Q. However, the SPP resonance in majority of
experimental situations in visible and near infrared spectral
regions seems to be rather evident to attribute.

We would like to underline that the Rayleigh and the
resonance anomalies are related to a specific and rather
sharp dependence of the field amplitudes on the wave-
length and angle of incidence. They can be considered on
the basis of simple qualitative treatment. The treatment of
the third mentioned Wood anomaly cannot be accom-
plished without thorough theoretical approach. The method
for considering this and other diffraction anomalies analyt-
ically was presented in [9], see also a more detailed con-
sideration in [11-13].

Grazing incidence anomaly

In this section we present the brief summary of the re-
sults for the case of the simplest geometry which are essen-
tial for further consideration. For the TM polarization of
interest the magnetic field is orthogonal to the plane of
incidence and thus possesses the y component only, so
that for the incident wave, H', and for the Fourier—Floquet
expansion of the diffracted field, H D we have

H =e,Hexp[igx+ip(q)z],
® 4
HP =e, > Hyexp[igyx—ip(a,)z]. z<¢(x), @

N=—0c0

where g, =q+ng. Note, the diffracted field in (4) and
below in (5) includes only outgoing (and evanescent)
waves, i.e., here we use the Raylegh hypothesis [2], restrict-
ing the expansion to the terms with z-dependence of the
form exp[-ip(q,)z] only, and omitting those with z-depen-
dence of the alternative form, exp[ip(q,,)z]. This guaran-
tees fulfillment of the boundary (radiation) conditions at
z = —0. The Raylegh hypothesis is appropriate for shallow
enough gratings (however, the recent investigations [7,9]
have demonstrated that it works well even for rather deep
gratings).

The electric field possesses the x and z components
only, E=(Ey,0,E,), and can be easily obtained from (3)
and corresponding Maxwell equation. Specifically, the
diffracted field is

EP= Y E, exp[igyx—ip(an)z], z<¢(x).  (5)

N=—o0

*  Noteworthy, in the simplest geometry the diffraction of TE and TM components of the incident wave become independent processes

and thus can be considered separately.
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At the interface the total fields, H=H'+HP,
E=E+EP are to obey the impedance boundary condi-
tions [14],

E, =¢[nxH] for z=¢(x), (6)

where the subindex t denotes tangential to the interface
component of the corresponding vector, and n stays for the
unit vector normal to the interface and directed into the

dielectric, i.e., n:—[ez—exaqlax]/\/1+(6§/6x)2 * For

nonmagnetic media the surface impedance & in Gauss

units is dimensionless and & = /g /.
The relief Fourier series expansion is

(x)= n;wgn exp(ingx), .

g=2n/d>0, ¢ ,=Cn Co=0.

The condition £, =0 corresponds to the specific choice of
Oz axis origin. The Fourier series coefficients of the inter-
face normal, n =n(x), can be expressed in terms of £,,.

Substituting into Eq. (6) the fields representations given
in Egs. (4), (5), expressing the electric field Fourier ampli-
tudes, E,,, in terms of the magnetic ones, H,,, and equating
terms with equal space dependence, we arrive at the infi-
nite system of linear algebraic equations for the transfor-
mation coefficients (TCs), h, =H,/H,

D Dimhy =Vq, n=0,+1, %2, (8)

m=—

where the matrix of the system, '55 ” D, m” and the right-
hand side column vector, V =col{V,} represent
functionals depending on the problem parameters, specifi-
cally, the relief (;(x). The coefficients of the system allow
infinite series expansions with respect to C,. It is of es-
sence that strong diffraction anomalies take place for rather
shallow gratings such that k|¢|, |[d¢/dx| <1, see [11-13]
and below, so the expansions are very useful. For shallow
gratings we can restrict series expansions of the coeffi-
cients to the main (linear) terms only, so that

Dnm Z(Bn +‘i)8nm _i(l_anam)un—m’
nm=0,£1+2, ...,

)

Vn Z(Bn —§)8n0+i(l—(ln(lo)},ln, n:O,il,iZ,.... (10)

Here 3, , stays for the Kronecker delta-symbol, and

uy, =k&,, o, =a+nk, «=gl/k,

(11)
By =y1-a2, ReImp, =0, n=0,+1+2, ...,

a=sin0, 6 denotes the incidence angle. Noteworthy, the
nondiagonal elements of the matrix D =Dy, | possess the
following simple symmetry

Dhm =-Dpn for nzm.

Below we are dealing with the grazing anomalies. They
correspond to specific dependences (maxima, minima) of
the energetic characteristics (say, intensities) of the dif-
fracted waves in the vicinity of the point where the inci-
dent wave or one of the diffracted waves is propagating at
a small angle with respect to the interface (grazing propa-
gation). The simplest (but of high interest) case here pre-
sents the grazing incidence, 0 <pB <1 (0<1-a «1). That
is the specular reflected wave with necessity is the grazing
one. The simplest geometry of such problem is presented
in Fig. 1.

It should be emphasized, that among diffracted waves
only the specular reflected one is close to the correspond-
ing Rayleigh point, B <1, and all the other waves are far
enough from their branch points. That is, the only one di-
agonal element of the matrix D =HDnm”, namely,
Dgg =B +¢&, is small as compared with unity. Consequent-
ly, it is convenient to decompose the governing system,
Eg. (8), as

Dh =V, (12)
Dooho + D Dom b =V, (13)
M =0

where and below capital indexes denote all integers except
zero,

1
1
| 1
i ! X>

& 5
- kgl
19 q\
\ \
? 7 $
1

! VA |

Fig. 1. Grazing incidence diffraction. The grating spacing, d, is
supposed to be such that except the specular wave only the minus
first diffraction order presents propagating wave, other diffraction
orders correspond to evanescent ones, i.e.,at =k, gy =q+9g >k,
q1=9-9>-k and |gy|>k forall n=-10.

*  The following considerations can be applied to the case of plane surface of metamaterials with periodically modulated electromag-
netic properties so that the surface impedance is space-periodic, &=§(x), &(x+d)=§(x), cf. [11-13].
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D=[owm| NM=21z2 ., (14)

h and V stay for column vectors

h=col{hy}, V=colf{Vyy}, M=%12 .. (15)
Vm =Vm —Dmoho, M =1 +2, ... (16)

Let us present Eq. (13) in a more explicit form as well

(B+&)hg—i Y (1—agay Ju_mhy =B-&.  (17)
M =0

The submatrix D is diagonal dominated due to the fact that
all nondiagonal elements are small as compared with unity
and all diagonal ones are of order unity or greater. Thus, it
can be easily inversed by means of the regular series expan-
sion, see below. Formally, we can express all nonspecular
amplitudes, hy, , in terms of the given parameters of the sys-
tem and unknown at this stage amplitude hy as follows:

h=DW, (18)

or, more explicitly,

by = Z[Sfl]

L0 ML

Vi, M=+1+2,.... (19
Taking into account that in accordance with Eq. (17) and
Eqg. (10),
Vi =V -Diohy =i(1-apag)up +i(l-apag)u hy =
:i(l+h0)(1—oc|_oc0)p,|_, L=41+2,..., (20)
rearrange Eqg. (19) as

hM =i(1+h0)

M =141 +2,... (1)

Substituting this expression into Eq. (17) we arrive at the
closed linear equation for the specular TC,

(B+&)hg +(1+hg)x

(22)

Let, for brevity,

I'= Z [S_l}ML(l_aoaM)(1_0‘LOLO)HL“—M’ (23)

M ,L#0
Eeff =E+T (24)
Then solution of Eq. (22) for hy can be presented as
hg = D= Set (25)
B+ Cefr

Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5

It is of interest that the specular TC form, Eq. (25), co-
incides with the corresponding Fresnel coefficient related
to the unmodulated (plane) interface,

R :E. (26)
p+&
For the nonspecular TCs it follows identically
2ip S-1
hM = |:D :| l—OLL(X,O K
B+ Eefr |§) ML( )
M=11 %2, ... 27)

It is convenient to introduce subsidiary functions Uy,
so that

Um = Z[ﬁfl}ML(l—aLao)uL, M =11 %2, ...

L=0
M=+1+2,... (28)
Then
==y M=ot1 42, (29)
B+ Eetf

It is of essence that the coefficients Uy, experience only slow
dependence on the parameters of interest in the vicinity of the
point B =0, as well as the functions T" and & . Noteworthy,
the quantity I" can be expressed in terms of U\, as

r=Y (1-agam )UmHom -
M
In what follows we are dealing with smooth and shal-
low gratings so here we present the main terms of the nec-
essary functions expansions. Let

@

D-

(r-m, (30)
where
T=lowml T=[Tum]. B=[Bru ]
NM =+1, +2, ..., (31)

_ i _
Tnm :b_(l_aNO‘M Jun-m+ Bnm =bnOnm
N

bN :BN +E_jl N,M=il,i2,.... (32)
Then
51:@_%)@1{&#}@1. )
s=0

This series expansion converges under the condition
L_ <1, where | | stays for the matrix norm. It is of essence
hat this condition is not restrictive: it allows consideration
of strong anomalies, see [9,11-13] and below. Moreover,
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strong anomalies hold forfj <« 1. So, we can make use of
the first terms of the expansion. With accuracy up to the
second-order terms with respect to u,

|:|5_1:| = |:8ML +TML + Z TMKTKL:|b[1 +O(H3), (34)
ML K0

or, more explicitly,

£ i
[D 1}ML = {&vn_ +m(1—0‘|v| o )um-L —

1 1 _
—— > —(l-ayox )(1_0‘K0LL)HM—KHK—L:|bL1-

(35)

After simple rearrangement we obtain alternative expres-
sion,

£ _ i
[D 1] = byt | Sy +—(L1—oty o Jim . —
ML b.

(I-apmag )(I-agker Jum —KHK—L‘|- (36)

Consequently, up to the second-order terms it follows from
Eg. (28):

U = by [ (L-cmog )iy +

+iY bt (1-apog)(1-o oy )HLHM—L:|I
L=0

M=+1+2 ... (37)

Noteworthy, here the second-order terms are of essence if
the corresponding Fourier amplitude of the grating, py,
vanishes or is anomalously small. Under this condition the
anomalous effects in Mth diffraction order are small and
thus of low interest. Therefore, below we can restrict our-
selves with the linear term of U, expansion.

The main term of the quantity I" expansion is the square
one,

I'= Z b|\_/|1 (1—(1,0(X,M )2 |H.M |2 (38)
M =0

Energy flux extremes

The solution obtained allows one to analyze in detail its
dependence on the angle of incidence and all other parame-
ters of the problem. Expressions (25), (29) describe the fast
dependence of the TCs on the angle of incidence through
the quantity B = cos0 <« 1. Other functions entering the solu-
tion, Uy, &, tC., are slow ones, and thus for preliminary
analytical considerations can be replaced with constants
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relating to their values at g = 0. This fact allows to perform
thorough analytical investigation of the problem. Starting
with the specular reflectivity

(B-tur )+t
p(B) =|ho[* = =ML Toeft (39)
N (e ) el

one can see that it possesses specific minimal value at
some point, B = Bay» Such that

Bextr = |‘:eff | (40)

With high accuracy one can approximate E.¢ here by it value
atB=0.

At the extreme point, B = By, We obtain

Ep(BeX[r) _ |<taeff|_§eff (41)

P=Pmin: Pmin —|&ﬁ|+§,ﬁ-
e e

Here and below the prime (double prime) denotes the real
(imaginary) part of the corresponding quantity. The specu-
lar TC field at the point B = By, is as follows

|§eﬁ|_§eff
Ng (Bextr ) = —1—— 42
O(B ! ) |E.~eff|+§eff 42

Noteworthy, the analogous minimum for TM polarized
wave incidence exists for unmodulated interface, T =0,
Eef = & (When hy coincides with the corresponding Fres-
nel reflection coefficient R) and is discussed in [14]. This
minimum is analogous to the reflectivity minimum from
dielectric medium existing under Brewster angle incidence
(when the reflected and transmitted waves are propagating
at a right angle) [14]. In view of the fact that for |g|>1
(which is typical for good metals up to the frequencies of
the visible range), the normal to the interface component of
the wavevector in metal prevails essentially the tangential
one, so the wave in metal can be formally considered as
orthogonal to the interface. Consequently, for grazing inci-
dence the reflected from the metal wave is approximately
orthogonal to the “transmitted” one. Recall, the Brewster
angle of incidence, g, is defined as

sinOg, =& /\e+1,

50 that for |¢| — o one obtains 0g, = n/2.

The specular reflectivity minimum, Eq. (41), becomes
deep for relatively high effective losses, i.e., for &g com-
parable with |Eg | It worth to point out here that &y in-
cludes both the dissipative and radiative losses relating to
the quantities &' and T, respectively. The quantity T is
mainly caused by outgoing (propagating) waves. On the
contrary, pmin approaches unity at vanishing lossess,
Eerf — 0. Therefore, the effect of the specular reflection

suppression under consideration is mainly attributed to the
cumulative (both active and radiative) losses maximum, cf.

Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5
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[15]. However, as it is shown below the point = gy, COI-

responds not only to the specular reflection minimum, but
results in well expressed maximal nonspecular efficiencies.
Evidently, if the only propagating diffracted wave is the
specular one, then the grazing minimum is with necessity
accompanied by maximal absorption. Noteworthy, the re-
flectance minimum under grazing incidence can corre-
spond to essential redirection of the energy into
nonspecular diffraction channels corresponding to propa-
gating waves even for shallow gratings. Below this thesis
is illustrated for the simplest case when in addition to the
specular wave only one diffracted order corresponds to
propagating (outgoing) wave. It can be realized if
1+a >k >1, the minus first order presents propagating
wave, B_; >0, and B, with n = —1,0 are pure imaginary. In
what follows we consider that _; is of order unity, so that the

minus first diffraction order is far from its Rayleigh point.*

It is of interest that normalized intensities of the propa-
gating diffraction orders,

2 Re(By 2
o =|hy| %:4W Un[PRe(By),  (43)

present strongly nonmonotonic 8 functions in accordance
with the fast dependence of the subsidiary function intro-
duced, W =W (B),

B (44)
(B+&err )™ +(&err )
It is easy to see that W (B) achieves its maximal value,
Wipax . Strictly at the point = By, and
1

Winax =W (Bextr ) = m >1 (45)

That is, all intensities simultaneously achieve their maxi-
mal values at the point B = Bgyy

_ 2up
|Eefr | + Ectr

N==+1 +2, .... (46)

PN, max = PN (Bextr) Re(BN )’

It seems necessary to check that, first, the total energy
flux outgoing with the propagating waves does not prevail
that of the incident wave, i.e.,

ZPN Sl,
N

where pg stays for p. The difference between the sum and
unity is nothing else than the active losses (per unit area).
This inequality is to be true under rather general condi-
tions, specifically for such B and « values that we are far

from anomalies relating to all diffraction orders escept the
specular one. If the active losses are absent, then the ine-
quality transforms into the equality. In the specific case of
short-period gratings, such that « > 2 all diffracted orders
except the zeroth one with necessity correspond to evanes-
cent waves. Therefore, the strong specular reflectivity sup-
pression is accompanied by maximal absorption. Under-
line, this conclusion is true under rather specific consitions
and does not describe general case contrary to the state-
ment of [15].

For the specific case shown in Fig. 1 only two diffrac-
tion orders correspond to propagating waves; the specular
and the minus first ones. Consider this specific subcase in
more detail. Suppose additionally that the grating is har-
monic, i.e.,

p=pg=a>0, p,=0 for [n[>2. (47)
Then
2 2
= a2 (1—0(0(11) + (1—(10(1_1) -
by b_y
2 2
2| (1-ogay) +(1—0c00c_1) | 48)
IB4] ]

where it is taken into account that |B.|>>|¢|. In the ge-
ometry under discussion

1—oc00cﬂ=1—0c(0cir1<)=[32$0u<:¢1<. (49)

Consequently, I" can be simplified as

I =x%a® i—'i}. 50
e |:Bl I|[31| 50

As far as
3 =1- OLiK2= 2$2aK—K2:—K2$2K, 51
+1

we can express I in terms of the dimensionless parameter
of the problem, «, only, neglecting slow dependence on
the angle of incidence,

=%a’ ! —i ! .
= \/K(Z—K) \/K(2+K)

In view of the fact that the specular reflectivity possess-
es rather expressed minimal value then for low active loss-
es the incoming energy is to be redirected in other propa-
gating waves. The most interesting case allowing to obtain
rather strong grazing anomalies presents such one that

IT|>> ¢, (53)

(52)

* Alternative case is of interest also, resulting in strong GA as well. The specific case when GA is accompanied by SPP anomaly
relating to some other diffraction order is also of interest. These cases correspond to the double and combined anomalies and will be

considered in forthcoming papers.
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i.e., the case when the effective impedance is mostly caused
by the diffraction rather than the medium properties.* It is of
essence that the supposition presented in Eq. (53) does not

contradict the shallow character of the grating, |F| ~a% <1,
in view of the surface impedance smallness, |§| <1. The
characteristic value of the dimensionless grating height, a,,

is small, ag, = /|¢| < 1. Under Eq. (53) condition p_ max
and ppin can be rewritten as

2r’ =
Pmin = |F|+F"

T+ 64)

P-1,max =

or, in view of Eq. (50),

bt = 2|By| oo~ \/|l31|2 +p2y B4
—L,max — ! min — '
\/|l31|2 +B21 + By \I|l31|2 + B2y + By
(55)
Bearing in mind Eq. (51) we proceed
242+« _2-~2+x (56)

Pame =5 e P S o

That is, for rather deep gratings, a > a; (but a <1) the
energy redistribution does not depend on their height,
P_1max and pmi, depend on the geometrical parameters
and the wavelength through the dimensionless combination
k=2A/d only.

It is easy to see that within the accuracy indicated
P_1max + Pmin =1. That is, all incident energy is redistrib-
uted only between two propagating waves, while the active
losses are negligibly low.

As far as we know the grazing diffraction anomaly un-
der discussion was not considered earlier. However, in
[6,16] one can find the related anomalous effect arising for
such parameters of the diffraction problem that some dif-
fracted order corresponds to the grazing wave propagating
at the specific grazing angle. The anomaly consists in high-
ly enhanced efficiency of this wave accompanied by deep
suppression of the specular reflection. It is worth noting
that this grazing wave enhancement is related to the prob-
lem under consideration by the reciprocity theorem
[17,18]. Namely, reversing the propagation direction of the
minus first order diffracted wave in Fig. 1 we arrive at the
reciprocal diffraction problem. In the latter the correspond-
ing minus first order is related to the grazing wave propa-
gating in the opposite direction to the incident wave in the
primordial problem. In more detail the reciprocity ap-
proach will be discussed in forthcoming papers.

We also present an illustration of other anomalous ef-
fects relating to the interface of metal and isotropic dielec-
tric (vacuum, for simplicity). It is convenient to consider

A
complex 3 plane
SPP pole
e SPP
resonanse

&, — renormahzed

surface impedance, §, =& +T°

Fig. 2. Beta-plane for some diffraction order. Only vicinity of the
corresponding Rayleigh point (that is of main interest in view of
the diffraction anomalies) is shown. With the change of the pa-
rameters of the problem, the B value can be either pure real posi-
tive (propagating wave), or pure imaginary (evanescent wave).
These cases are separated by the Rayleigh (branch) point, R,
B=0. Other characteristic points, Bgpp =-ilm(&e) and
Bea = \ée\ relating to SPP resonance and to the grazing anomaly
(GA) are shown by circles. Here &g is shortened form of &g . If
B corresponds to the incident wave, then it is pure real and only
GA point is actually of interest.

the effects in terms of the dimensionless normal compo-
nent B of the corresponding diffraction order. This quantity
can be pure real or pure imaginary belonging to positive
half-axis for both cases. The point B = —&.¢ in the B plane,
Fig. 2, corresponds to the relating diffraction order pole
caused by the surface plasmon polariton mode.

Conclusion

It is shown that the diffraction of TM polarized wave at
a high reflecting gratings under grazing incidence can re-
sult in deep suppression of the specular reflection accom-
panied by considerable redirection of the incoming energy
to other propagating diffracted waves. This phenomenon
becomes more pronounced at low temperatures due to
small dissipation. The detailed theoretical analysis of the
problem is presented on the basis of appropriate analytical
approach. The diffraction anomaly considered in the paper
is of general character and can take place for other wave
types under appropriate conditions (high contrast of the
adjacent media properties). In particular, it can hold at the
interface of ordinary dielectric media and for left-handed
media as well. Analogous anomaly does exist and is well
expressed for magnetic high-contrast media interface for
TE polarization.

* Specifically, such condition holds within approximation of ideal metal that is valid in the long wavelength region (low frequency).

618

Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5



Electromagnetic grazing anomalies. Energy flux extrema

Acknowledgment

The author wishes to acknowledge the constructive
comments by 1.S. Spevak.

1. R.W. Wood, Philos. Mag. 4, 396 (1902).

2. Lord Rayleigh, Philos. Mag. 14, 60 (1907); Proc. Roy. Soc.

A 79, 399 (1907).

U. Fano, J. Opt. Soc. Amer. 31, 213 (1941).

A. Hessel and A.A. Oliner, Appl. Opt. 4, 1275 (1965).

R.W. Wood, Phys. Rev. 48, 928 (1935).

G.M. Gandelman and P.S. Kondratenko, JETP Lett. 38, 246

(1983).

7. R. Petit and M. Neviere, Light Propagation in Periodic
media. Differential Theory and Design, Marcel Dekker
Publisher, New York (2003).

8. O. Takayama, L.-C. Crasovan, S.K. Johansen, D. Mihalache,
D. Artigas, and L. Torner, Electromagnetics 28, 126 (2008).

9. AV.Katsand V.V. Maslov, JETP 62, 496 (1972).

10. A.V. Tishchenko, Opt. Express 17, 17102 (2009).

11. AV. Kats, P.D. Pavitskii, and 1.S. Spevak, Radiophys. and
Quantum Electronics 35, 163 (1992).

12. AV. Kats, P.D. Pavitskii, and I.S. Spevak, JETP 78, 79
(1994).

13. A.V.Kats and I.S. Spevak, Phys. Rev. B 65, 195406 (2002).

14. L.D. Landau and E.M. Lifshits, Electrodynamics of
Continuous Media, Pergamon, Oxford (1977).

15. E.K. Popov, L.B. Mashev, and E.G. Loewen, Appl. Opt. 28,
970 (1989).

16. M. Tymchenko, V.K. Gavrikov, |S. Spevak, A.A.
Kuzmenko, and A.V. Kats, Appl. Phys. Lett. 106, 261602
(2015).

17. R.J. Potton, Rep. Prog. Phys. 67, 717 (2004).

18. A.A. Kuzmenko and A.V. Kats, Intern, Young Scientists
Forum on Applied Physics (YSF-2015), 29 Sept.—2 Oct.,
2015, Dnipropetrovsk, Ukraine.

o g~ w

Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5

EnekTpomarHiTHi aHomanii npy KOB3HOMY
PO3MNOBCIOAXEHHI. EKCTpeMymun NnoTokiB eHepril

0O.B. Kau

PerenbHO nmpoaHati3oBaHo IU(PAKIIIIO eIEKTPOMATHITHUX XBUIIb
Ha [OBEPXHSIX 3 MEPIOMYHIMHU CTPYKTYPAMH, II0 CYIIPOBOKYETHCS
BEJIMKMMH aHOMAIbHUMHU e(ekramu. Po3risiHyTo Mexi momimy
Cepe/IOBHILI 3 BUCOKUM KOHTPACTOM BJIACTHBOCTEH. JIOCIiKEeHHS
obmexxeHo BunaakoM TM nosmsipu3auii XBUIT, IO MaJa€ HA MEXKY
(MarHiTHEe TONE NEPHEHAWKYISIPHE IO IUIOIVHHU MaJiHHA), Ta
HaWMPOCTILIOI [EOMETPi€l0, KOJH IUIOLIMHA MaiHHSI OPTOroHa-
JbHA JI0 WITPUXiB TpaTku. HaiiOinery yBary mpuIiieHO Makcu-
MaM Ta MiHiMyMaM T'YCTHHH [TOTOKa €HEpril, 110 CYNPOBOIKYIOTh
KOB3HE PO3IOBCIO/DKCHHS B JIEIKOMY AU(PaKUifHOMY MOPSIKY.
OOroBOPIOETHCS 3B’ 30K 3 IHIIMMH aHOMAIIISIMU, SIK PeNeIBChKH-
MH, TaK i pe30HAHCHHUMH.

KutouoBi cioBa: aubpakxitis, XBUIIsI, aHOMaisi, pe30HaHC, IpaTka,
TIOTIK.

OneKTpoMarHMTHble aHoMarmmn Npu cKosb3sALeM
pacrnpocTpaHeHnn. SKCTPEeMyMbl MOTOKOB 3HEpPrm

A.B. Kau

JleTabHO TIpOAHAIM3UPOBAHA TU(PAKIHS DICKTPOMArHHUT-
HBIX BOJIH HA TOBEPXHOCTSAX C MEPUOAMYECKHUMHU CTPYKTYpaMH,
COIPOBOX/IacMasi CHJIBHBIMH aHOMalbHBIMH 3¢ dekramu. Pac-
CMAaTpUBAIOTCS I'PAHHUIIBI pa3fiesnia cpell, OTIMYAIOIIUXCS BBICOKUM
KOHTpacToM cBoicTB. MccnenoBanue orpaHudyeHo ciydaem TM
NOJSIPU3ALMY MTafaloulell Ha TPaHUIly BOJHBI (MarHUTHOE IOJie
OpPTOTOHAJIBHO TUIOCKOCTH TAJCHUS) M MPOCTEHINeH TeOMeTpUeH,
KOTJa IUIOCKOCTh MAJCHUS OPTOrOHaJbHA IITPUXAaM PELIETKH.
Haubonpmee BHHMaHHME YAEICHO MaKCHMyMaM W MHHHMyMam
IUIOTHOCTH TOTOKa 3HEPIHH, CONPOBOXKIAIOLIMMHU CKOJb3sILEe
pacrpocTpaHeHre B HEKOTOpPOM Au(pakIuOHHOM mopsiake. O0-
CYXJIaeTCs CBSI3b C APYTMMHU aHOMAIHAMH, KaK P3JIEEBCKUMH, TaK
U PE30HAHCHBIMH.

KnroueBsle cnoBa: nudpakiys, BOJHA, aHOMAajWsA, PE30HAHC,
pelIeTKa, moToK.
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