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Dynamic susceptibility of the one-dimensional spin-1,/2 transverse Ising model is obtained by using

the numerical approach suggested earlier [Ferroelectrics 153, 55 (1996)]. The dependence of the

susceptibility frequency shapes on the value of the transverse field at various temperatures is discussed.

The way in which the frequency shape rebuilds as the transverse field increases is illustrated.

PACS: 75.10.—b

The one-dimensional spin-1,2 Ising model in a
transverse field is an important subject of theoreti-
cal studies not only because of its usefulness in solid
state physics, but also because many of its statisti-
cal mechanics properties can be examined exactly
[1-3]. However, since the early 1970s it was known
that calculation of some time-dependent spin corre-
lation functions for this model encounter great
difficulties and in spite of many papers dealing with
this problem [4-7] (see also recent papers [8,9]
dealing with such studies for the one-dimensional
spin-1,/2 XX model) the investigation of dynamic
properties calls for more efforts. In the present
paper our goal is to provide a fresh view on the
analysis of spin dynamics. Specifically, we shall
extend the earlier elaborated numerical approach
for equilibrium statistical mechanics calculations
for spin-1,2 XY chains [10,11] to the analysis of
dynamic properties of transverse Ising model and
we shall study, in particular, its dynamic suscep-
tibility.

We consider spin-1,2 chain described by the
Hamiltonian

N N-1
H=Q% s+ % s s (1)
j=1 =1

where Q is the transverse field at the site, and J is
the interaction between neighboring sites. Two dis-
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tinctive cases corresponding to different signs of
intersite interaction will be considered, i.e., J <0
(ferromagnetic coupling) and J > 0 (antiferromag-
netic coupling). We are interested in the time-de-
pendent, two-spin correlation functions B?(t)sjﬁnﬂ
where the angle brackets denote thermodynamic
average [{...)0= Tr [e PH(...)] /Tr ¢ PH. The correla-
tion function between the z-components was de-
rived in Ref. 2. We shall restrict the analysis
mainly to the correlation function between the
x-components of two spins, noting that all other
nonzero correlation functions can be found in prin-
ciple by differentiation:
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In order to evaluate the quantity of interest, one
should rewrite the Hamiltonian (1) in terms of
Fermi operators with the help of the Jordan-Wigner
transformation and then diagonalize the bilinear
fermion form. Basic results may be summarized as
follows: The relations between spin operators and
Fermi operators are
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the transformed Hamiltonian (1) has the form 7 7
N . A= Q0+ 50, 1+ 40,
H=% N, %knk QD’ J J
P (5) Bij =7 %im = %1 -
Eh , r];“g— i q , n,u BA'; , r| For further details see Refs. 1,10, and 11. In view
of (3)—(5), the calculation of E;C(t)s’f Oreduces to
N, @y, and W are determined from the equa-  exploiting of the Wick—Bloch—de Dominicis theorem
tions and the result can be expressed compactly in the
N form of the Pfaffian of 2(2j +n — 1)x2(2j + n— 1)
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(A, *+ B = ) :
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where Equations (6)—(8) form the starting point for
N . further numerical calculations. Considering a chain
A0 = T O cosh [iA,t = (BA,/2)] of N =280 spins with / =+ 1 and a certain value of
II])].( )8, Z cosh (BA_/2) ’ the transverse field in the range Q =0.1-5, we
p=1 P solved NxN standard problem (6) obtained in the
N . . result A, dJ]- , LIJp]- . Setting j = 32 and certain »
- C= - T © sinh [ZApt - (BAP/Z)] in the range from 0 to 30, we then computed
|:q)]' (6)0;,0= Z cosh (BA_/2) ’ elementary contractions (8) involved in (7) for a
p=1 P (8) given temperature in the range p = 10—0.1 and time
N sinh [iA £ - (B/\p/2)] t up to 120 and evaluated the Pfaffian numerically
E])T(t)q); 0= z Y o P , obtaining in the result the quantity of interest, i.e.,
! o Pep cosh (BA,/2) the correlation between the x-components of spins
N at the sites j and j + n taken at times ¢ and ¢ =0
o cosh [i/\pt - (B/\p/ 2)] respectively. There are few practical limitations on
El)]' )4,,0= - z Lppj LIJpm cosh (BA_/2) this approach, i.e., finite chain size N, presence of
p=1 P boundaries 1 <j,7 + n < N, and finite time ¢. These
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effects lead to deviation from a time behavior inher-
ent to an infinite chain, which is the case of interest
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Fig. 1. X,,(0, w) versus w at various temperatures. The solid lines represent data for ferromagnetic intersite coupling J = -1, the
dashed lines denote data for antiferromagnetic intersite coupling J = 1; 7 corresponds to Q = 0.2; 2 corresponds to Q = 1.

in statistical mechanics. The value of this deviation
depends on the values of the transverse field and the
temperature. Nevertheless, since such effect is easy
to recognize, one may derive in a wide range of
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parameters the results which are not subject to
these influences, i.e., which refer to N - o. The
data produced in the calculations described above
[as well as the results for X, (K, w) (9) obtained on
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Fig. 2. X,,(0, w) versus w for different values of transverse field at B = 5. The solid lines represent data for Q = 0.2 (these curves are
also plotted in Fig. 1) and Q = 0.6; the long-dashed lines denote data for Q = 0.3; the short-dashed lines correspond to data for

Q = 0.4; the dotted lines represent data for Q = 0.5.

their basis] pertain to infinite chains. The results of
our numerical calculations were found to be in
excellent agreement with the exact results obtained
at T = (Ref. 6) and T =0, Q =/ /2 (Ref. 7) and
with the notorious exact result for the zz correlation
function [2]. It should be emphasized that the
described approach allows one to study finite-size
effects which, however, are beyond the scope of the
present paper. Finally, we verified relations (2)
which connect Es‘]’?(t)sj’ﬁrnﬂwith other correlation fun-
ctions after these correlation functions are com-
puted in a similar manner.

We shall discuss the dynamics of the transverse
Ising model looking at the dynamic susceptibility
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The frequency shapes of ReXx,(0,w) and

Im x,,(0, @) at various transverse fields and tem-
peratures are shown in Figs. 1 and 2. Small wiggles
in the curves corresponding to B =5 were intro-
duced by the finite time cutoff in (9) because of
rather slow decay of correlations versus time (espe-
cially for Q=0.2, 1 and ferromagnetic intersite
coupling). The wiggles can be removed either by
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increasing the time cutoff in (9), which requires
computer resources, or by increasing the value of €,
which slightly smooths the frequency shapes and
decreases, in particular, the heights of their peculi-
arities. Usually, we set € = 0.001-0.05.

Let us now turn to the discussion of the results.
Figure 1 shows the dependence of Re (0, ®) — w
and Im X0, W) - w curves on Q various tem-
peratures. From these plots we easily see that
Im X,(0, W) exhibits two peaks for Q =0.2 (the
Ising-like case) and one peak for Q = 1 (the case of
almost noninteracting spins in an external field). At
low temperature B =15 for Q=0.2 Im X,,(0, w) re-
veals a high sharp peak in the vicinity of zero
frequency w=0.03 and a low broad peak at w=
= ().76 for ferromagnetic intersite coupling and two
pronounced peaks at frequencies w=0.36 and
w = 1.02 for antiferromagnetic intersite coupling. In
the case Q=1 Im X, (0, ) reveals one high and
broad peak at w=0.51 and w= 1.50 for ferro- and
antiferromagnetic coupling, respectively . As the
temperature is raised to 8 = 1, the situation qualita-
tively remains the same. For Q=0.2 Im X,.,(0, w)
exhibits two lower and broader peaks compared
with the preceding case, which are shifted to higher
frequencies w=0.09, w= 0.94 for ferromagnetic in-
tersite interaction and to lower frequencies w=
=0.21, w=1.00 for antiferromagnetic intersite in-
teraction; in the latter case the low-frequency peak
becomes higher than the high-frequency peak. For
Q=1 Imx,[(0, @ exhibits only one lower and
broader peak compared with the case =5, which
is shifted to higher frequency w = 0.67 for ferromag-
netic coupling and to lower frequency w=1.42 for
antiferromagnetic coupling. At high temperature
B=0.1 the frequency profiles of Im X, (0, w) al-
most coincide for ferromagnetic and antiferromag-
netic couplings, although it is still possible to
recognize two peaks for Q =0.2 at w=0.13, w=
= 0.88 and w= 0.15, w= 1.03 for ferro- and antifer-
romagnetic coupling, respectively, and one peak for
Q=1 at w=1.00 and w=1.10 for ferro- and anti-
ferromagnetic coupling, respectively.

In order to uderstand how two-peak shapes
transform into one-peak shapes as the transverse
field increases, we performed additional calcula-
tions of X,.,(0, w) at =5 for Q=0.3, 0.4, 0.5, 0.6
(shown in Fig. 2). As can be seen from Fig. 2, the
high-frequency peak on the curve Im x, (0, @) - w
for B==5, Q=0.2 at w=0.76 for ferromagnetic
coupling and the low-frequency peak at w = 0.36 for
antiferromagnetic coupling with increasing trans-
verse field move toward the low-frequency peak at
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w= =0.03 for ferromagnetic coupling and toward
high-frequency peak at w=1.02 for antiferromag-
netic coupling, which in turn become broader. The

positions of the peaks are as follows: w= 0.03, w= 0.57

for Q =0.3, w=0.05, w=0.28-0.36 for Q = 0.4 for
ferromagnetic intersite interaction; w=0.56, w=
=1.03 for Q=0.3, w=0.75, w=1.05 for Q=0.4
for antiferromagnetic intersite interaction. For
Q=05 two peaks have already coalesced:
Im x,.(0, W) reveals one peak at w=0.10 and W=
= 1.00 for ferro- and antiferromagnetic coupling,
respectively. Further increase of the transverse field
leads to the shift of one peak to higher frequencies,
ie.,, w=0.15if Q=06 and w=10.51 if Q=1 for
ferromagnetic coupling and w= 1.10 if Q = 0.6 and
w= 1.50 if Q =1 for antiferromagnetic coupling.

In summary, we were able to numerically exam-
ine the dynamic properties of one-dimensional spin-
1,72 Ising model in a transverse field and to evalu-
ate the frequency-dependent susceptibility. These
results seem to be important since, to the best of our
knowledge, they constitute the only exact numeri-
cal results available. In addition, we hope that the
main features of the susceptibility in the given
limiting cases of small and large transverse fields
would be observable in the measurements of dy-
namic dielectric constant of quasi-one-dimensional,
hydrogen-bonded ferroelectrics materials like
CsH,PO, , PbHPO, (Ref. 12 and 13) (Q <J/2)
and in the absorption spectrum measurements for
J-aggregates [14,15] (Q > J/2). However, these
problems and the reconsideration of some appro-
ximate approaches used earlier for analysis of ex-
perimental data require a separate study.
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