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A microscopic approach to the description of multisublattice magnets with strong exchange interac-

tion is proposed. Low-frequency dynamics of such magnets is characterized by the appearance of an

additional dynamical variable, i.e., the orthogonal matrix of rotation, which corresponds to the total

breaking of spin invariance [broken SO(3) symmetry]. The structure of the source that breaks the

symmetry of the equilibrium Gibbs distribution is established. The quasiaverage representation is

generalized to weakly anisotropic, locally equilibrium states. The thermodynamics of such states is

constructed. The method of reduced description is formulated and in its framework the hydrodynamic

equations for the density of total spin and the matrix of rotation are obtained. The spectra of spin waves

are found and the number of Goldstone and activation modes is determined. Two-sublattice ferrimagnet

is considered as a special case of the magnet with broken SO(3) symmetry, which corresponds to the

special dependence of thermodynamic functions from the matrix of rotation.

PACS: 75.10.—b, 75.30.Et, 05.30.Ch

Introduction

In the present work we study the low-frequency
dynamics of the multisublattice magnet with strong
exchange interaction. It is known that high-fre-
quency processes in magnets can be described on the
basis of the Landau-Lifshitz equation [1,2]. The use
of this equation in the low-frequency case (hydro-
dynamic limit) for the multisublattice magnets is
not well justified since the sublattice spins are not
approximate integrals of motion because of the
strong intersublattice exchange interaction. In
Ref. 3 it was shown that reduced description arises
in the investigation of the low-frequency dynamics
of the multisublattice magnet with exchange inter-
action. Reduced description parameters are the den-

sity of total spin s (x) and the orthogonal matrix of

rotation aaﬁ(x), which characterizes the orientation

of the rigid complex of the sublattice spins formed
as a result of the exchange interaction. The appear-
ance of the matrix of rotation as an additional
dynamic variable corresponds to the total symmetry
breaking relative to spin rotations [broken SO(3)
symmetry]. Thus, low-frequency dynamics of the
multisublattice magnet with exchange interaction is
accompanied by the appearance of the states with
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spontaneously broken spin invariance. This descrip-
tion needs the attraction of nontraditional reduced
description parameters, which are connected with
the matrix of rotation dyp - Effective method for the

study of such states is a Hamiltonian approach [4-7].
In its framework the dynamics of the magnet with
total symmetry breaking relative to spin rota-
tions [8] and the dynamics of the ferrimagnet [9]
were considered. The idea of spontaneous symmetry
breaking of the statistical equilibrium state [ 10—12]
has been also used for disordered magnetic systems
of the «spin glass» type [13—-15]. Note that in
Ref. 16 on the basis of this concept and with the use
of the analogy between the «easy-plane» magnetic
systems and the superfluid systems the equations of
motion have been formulated for uniaxial magnets
with spontaneous symmetry breaking relative to the
spin rotations around the anisotropy axis. This
symmetry breaking is a special case of the total
spontaneous symmetry breaking.

We shall consider in the microscopic approach
the thermodynamics and hydrodynamics of the mag-
netic systems with strong exchange interaction in
the presence of weak anisotropy on the basis of the
quasiaverages [10] and the reduced description [17]
methods. Standard quasiaverages, which apply for



the description of equilibrium states, are general-
ized in the case of weakly anisotropic, locally equi-
librium states. Locally equilibrium Gibbs distribu-
tion is constructed on the basis of consideration of
the local unitary transformation which corresponds
to the broken symmetry relative to the spin rota-
tions [see Eq. (2.8)]. Performing this transforma-
tion on the source in Gibbs distribution, we intro-

duce the matrix of rotation a(x) for the locally
equilibrium states. Weak anisotropy permits us to
consider the total spin as an approximate integral of
motion and in the sense of the main approximation
of anisotropy (see the text for details) the corre-
sponding term with the spin is included in the
exponent of the Gibbs distribution.

To construct the hydrodynamic equations on the
basis of reduced descriptiOIAl method we introduce

the matrix of rotation b(x, p) as a functional of the

nonequilibrium statistical operator p, using the con-
cept of the system order parameter operator. The

connection between the matrix of rotation a(x) in
locally equilibrium Gibbs distribution and the ma-

trix of rotation b(x, p), which is the functional of

the nonequilibrium statistical operator p is estab-
lished. The equations of motion for the density of

total spin s (x) and the matrix of rotation

aqp(x) [Egs. (3.17) and (3.18)] are found. These

equations describe the low-frequency dynamics of
the multisublattice magnet with strong exchange
interaction and weak anisotropy. The structure of
the spectrum of spin waves is determined.

It is shown that weakly anisotropic ferrimagnet
represents a special case of the magnet with total
symmetry breaking, which corresponds to a special
dependence of the matrix of rotation.

1. The order parameter

In the microscopic approach to the magnetic sys-
tems the basic operators, from which all other
operators are constructed, are the operators of site

spins s, (I) of atoms ([ is the number of the site, and
n is the number of the crystal sublattice). The
Hamiltonian H and the statistical operator E) are
constructed from these operators only, H = H(),

p p(s) An arbitrary physical quantity ¢ of the
magnet is also the operator functional of the site

spins ¢ = ¢(s). We switch from the site repre-
sentation to the continuum representation:

051§m(l) D%D* - gm(x). Here v, is the volume of
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the unit cell, and x =R; is the position vector
which defines the position of Ith site. The spin-den-
sity operators §m(x) satisfy the commutation rela-

tions

[§m(x),§ml3(x')] €apy Oum my(x)5(x—x) (1.1)

We introduce in the continuum limit the operation
of the spatial shifts [P, , ...]

aD(S(X +y)) O
dy, U
Dyk:()

6c(x s(x +Y)) D
oYy

[Py, p(s(x)] =

(1.2)
[Py, e(x, sx))] =

)

9

where p(s(x)) and ¢(x, $(x")) are the functionals of $(x).

In accordance with this definition

c(x, §(x’ +y)) = e_iPyc(x, §(x')) elPy (1.3)

Realization of the operator P, in the classical case

in terms of the spin densities in the framework of
the Hamiltonian approach is given in Refs. 8 and 9.
For our purposes satisfaction of the relationships
(1.2) and (1.3) is sufficient in the quantum case
and therefore we shall not solve the problem of
concrete realization of the spatial shift operator P,

in terms of the spin density operators. Defining the
c(x, 5(x)
= o(x, S(x)),

translationally invariant operator o(x) =
by the relationship o(x - Y, S(x' + y))
we have by virtue of Eq. (1.3)

i [P, , c(x)] =-0, c(x) . (1.4)
In the case of weakly anisotropic magnetic systems
the main type of interactions are the exchange
interactions. Anisotropic interactions are assumed
to be small and can be taken into account by means
of the perturbation theory. Disregarding the aniso-

tropy, we can characterize the magnetic system by a

set of additive motion integrals Y, = Id3x (,(x)
(a=0, a), Where Vo =H= Ide a(x) is the Hamil-

tonian, and ya Ide S, sm(x) is the opera-

tor of the total spin. Taking into account the weak
anisotropy, we see that the total spin .S is only the
approximate integral of motion. Equations of mo-

tion for the densities Z ,(x) have the form

ju

(x) =ilH, ], (1.5)
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and with allowance for the operator identity

i [A, b®)]=-i[B, a®)] - 0, byx)  (1.6)

for arbitrary quasilocal operators a(x), I;(x), where

A =J-d3x a(x) , B =J-d3x (;(x) ,
1

by(x) = z'J' B 2 [dN [a(x - (1 = Nx), b(x + Ax)]

can be represented in the form

ju

e(x) = - 0, 7,x) , (1.7)

u A s .
SqX) =1 [Sy, ex)] = 0, jp(®) -

Here {E]k(x),}'ak(x)} = Zak(x) are the flux density
operators of energy and momentum, for which, in
accordance with (1.6), we have

1

3,(%) = ;J}ﬁx’ x'k‘[d)\ [e(x — (1 = MX), &(x + AX)],
(1.8)
1

Jox®) = ifd3x ) [dA [e(x — (1 = A)X), S4(X + AX)].

0

In the case of the isotropic magnetic systems
(IS, , &x)] = 0) equations of motion (1.7) have the
form of differential conservation laws.

In macroscopic description of magnets the notion
of the order parameter of the investigated system
has an important role. We shall consider in what
follows the magnet with total symmetry breaking
relative to spin rotations. It is characterized by the
three rotation angles ¢, , which realize a parametri-
zation of the three-dimensional rotation group in
spin space, or by the real rotation matrix associated
with them, aaB(d)) (aa =1). Moreover, we shall

study the two sublattice ferrimagnet with noncom-
pensated sublattices characterized by the unit vec-
tor of antiferromagnetism I, (or by the two rotation

angles). In the case of total symmetry violation the
order parameter is the complex spin vector A (x) =

= Tr pA(x) = A (X) + iDy(x), where A (x) =

698

~

= A (%) +iDy,(x) is the order parameter operator

(A;r =4, A; = Az)- For the two sublattice ferri-
magnet the order parameter is the real vector
A, (x) = Tr pA,(x), where A,(x) is the ord?r para-

meter operator of the ferrimagnetic system (A" = A).
The order parameter operator in each cases satisfies
the symmetry properties

i [5(%), Bg(x)] =

= = g, 0,0 8(x — X), i [Py, By(0)] = -0, B (x).
(1.9

Note that the order parameter operator is ex-
pressed in terms of the spin operators of the sublat-
tices and it is usually chosen in such a way that the
order parameter for the normal state is equal to
zero. By virtue of relations (1.1) and (1.9) the

operators $(x) and A(x) are transformed under the
local spin rotations as vectors

Utsy®) U, = aq6(x) §B(x) ,

UtBG09 U, = a4p(%) AB(X) , (1.10)

U, =exp (-i J' d3x 9,(%)5, (%))

[¢,(x) are the local rotation angles]. In accordance

with (1.10), the orthogonal rotation matrix a(¢) has
the form

agp(®) = (€XP (~&0))g =

= 60(3 cos ¢ +n, ng (1 —cos ¢) g ™ sin ¢ ,
(1.11)

where

Og=ng 0, ng=1, (0)gp =Exp, by -
The infinitesimal characteristics of the unitary

transformation U, is the operator U} dU, , where

a’

dU , is variation of the unitary transformation U,

due to variation &z of the orthogonal rotation ma-
trix (&ald = —alda). In accordance with (1.10),

. . 1 _
U*sU = J' dOx 8R(x)s (%) , OR, = €0 (a8a)yg.

(1.12)

Fizika Nizkikh Temperatur, 1997, v. 23, No 7



[The quantity OR, in (1.12) is not variation of some
vector Ry]. Note that in what follows it will be

convenient for us to use the formalism of left and
right Cartan forms [13,18]

1
Wy = 5 Eqpy (aOd, a)yﬁ ,

1
Dok = 3 Eapy (1 Dy =

(1.13)
or[3 (‘)Bk'

We define the translationally invariant states of the
magnet by the relation p(s(x' +y)) = p(s(x')) or by
virtue of (1.2)

[Pk,f)] =0 (1.14)

The statistical operators describing the equilibrium
state of collinear magnet satisfy this relation. For
spiral magnetic ordering the transformation of
translations by the vector x and spin rotation

around some axis n, (n% = 1) by the angle px do
not change the state of the system:

exp [ix(P-p(ny S,)1 p exp [-ix(P-p(ny S )] = p
or

[f), P, = pulng §a)] =0 (1.15)

The vector p, is called the vector of the magnetic

spiral.

2. Weakly anisotropic locally equilibrium
states

In the framework of thermodynamics and hydro-
dynamics of condensed media in the microscopic
approach the concept of quasiaverages [10] plays an
important role. In accordance with this concept, the
equilibrium average of an arbitrary quasilocal op-

erator ¢(x) of a magnetic system with spontaneously
broken symmetry is defined by the formula

B(x)0= lim lim Tr o, ¢(x) = Tr we(x) , (2.1)

Vo0 Voo
w,=exp{Q,-Y_ y,-VG}.

Here Y, = (Y, , Y,) are the thermodynamic forces

conjugate to the additive motion integrals \A/a

(Y61 =T is the temperature, and -Y, Y61 = hy is
the effective field). The source G in (2.1) lifts the
degeneracy of the statistical equilibrium state and
represents itself as a linear functional of the order

parameter operator
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G =Id3x g(x, DAX) +h.c. = G@) . (2.2)

The specific form of the function g(x, ) (which can
depend on time) is defined by the symmetry proper-
ties of the equilibrium state.

In the case of anisotropic magnetic systems the
total spin .S, stops to be the integral of motion so

that in Eq. (2.1) one should set Y, = 0. Allowance

for anisotropy in the Hamiltonian H lifts the degen-
eracy relative to the uniform spin rotations. There-
fore, the summand with the source in Eq. (2.1)
should be put down. Nevertheless, in the investiga-
tion of weakly anisotropic magnetic systems we
shall use the statistical operator of the form (2.1),
which is a «main» approximation of the weak an-
isotropy. Here the next elucidations can be done.
Since we consider the weak anisotropy, the total
spin S, can be assumed to be the approximate

motion integral and we include the corresponding
summand with spin in the exponent of the Gibbs
distribution (2,1).

The source G is introduced in Eq. (2.1) for the
following purpose. If we take into account the weak
anisotropy in the framework of perturbation theory,
then as zero approximation we will have the statis-
tical operator which corresponds to the magneti-
cally ordered state with broken symmetry relative
to the spin rotations. The source G in distribution
(2.1) plays a role of the parameter that lifts the
degeneracy.

This can be illustrated by using the following
example. If we consider a ferromagnet with ex-
change interaction in the magnetic field, then the
term describing the interaction with external field
will play the role of the anisotropy and will fix the
direction of the magnetic moment in space. When
the field goes to zero (weak anisotropy), the source
in the Gibbs distribution plays the role of the
infinitesimally small anisotropy, which removes the
degeneracy and fixes the direction of the moment.
Thus, the statistical operator (2.1) describes the
weakly anisotropic quasiequilibrium states of the
magnetic system in the main approximation of the
anisotropy and we shall use it in what follows for
generalization of the case of locally equilibrium
states.

In the given section we shall study the magnet
with total symmetry breaking relative to spin rota-
tions, for Wthh the order parameter has the struc-

ture A(x) =A ((x) + i 5(x) and A+ A1 . AQ AQ

We formulate the symmetry properties of the equi-

699



librium state. For the spiral magnetic ordering in
accordance with Eq. (1.15) we have

[Z@, pk _pk(nq Sq)] =0 )

[w, Yo H+ Y, S,1=0.

(2.3)

From the Jacobi identity follows the condition of
compatibility of Egs. (2.3)

SGBV n, Yl3 [w, Sy] =0.

We thus obtain n, =Y, /[Y|. The relations (2.3)

allow us to find the function g(x, f)

glx, t) = Ea(0V)a(d(x, 1)) = Ea(x, 1) ,
q)a(x) t) = na(px - ht) , (2.4)

where ¢8 is a uniform rotation; k, = hng ; and & is
a constant complex vector which we can choose for
convenience in the form & =§&, + &, , E% = E% =1,
&, & =0. From here one can see that the statistical

equilibrium state is characterized by the thermody-
namic forces Y, the spiral vector p,, and the

rotation angles ¢ . The vector &, fixes the refer-

ence frame for the rotation angles and is not a
thermodynamic parameter. In accordance with defi-
nitions (1.13), the left and right forms correspond-

ing to the rotation matrix a(x, t) in (2.4) are

Wap =Pp g » Wgp = Prp By » (2.5)
where n = a(¢")n.

Note that in the case of collinear magnets intro-
duction of a source in the statistical operator (2.1)

in the presence of thermodynamic forces Y has no
meaning since the term Y, Sa lifts the degeneracy

of the statistical equilibrium state.
Let us examine the locally equilibrium states. It
is well known [17] that the statistical operator

w(Y(x) = exp (Q, - I B Y (X)) (2.6)

generalizes the Gibbs statistical operator for the
normal systems in the case of locally equilibrium
states. For the systems with spontaneously broken
symmetry the locally equilibrium states are de-
scribed by the statistical operator

w,(Y(x), o(x)) =

700

= exp {Q, - J' P Y (X)) ~VULGU g =

S
= U(p@VU(p, (2.7)

where

w, = exp{Q,

J' &Bx Y (L (x) - VG

4,09 = Uy 40U

and Uy is the local unitary operator which corre-

sponds to the broken symmetry [see, for example,
Eq. (1.10) for symmetry breaking relative to spin

rotations], and @ is the order parameter phase that
enters into the source G. Introducing the statistical
operator (2.7) for the locally equilibrium states
based on the calculation of the averages with the

statistical operator w, (Y(x'), ¢(x')), we can go over

to the averages with the statistical operator
Tr wa(x) = Tr wU, ax)U?* |

where the operator U(p cAz(x) U(; = b(x), as a rule, can
be easily found. This operator is of the type cAz(x). In
the statistical operator w, the source G is space
uniform and for calculation of the averages
Tr wb(x) the standard perturbation theory [on gra-
dients of the parameters Y (x), @(x)], which leads to

the ordinary quasiaverages, can be used.

Thus, in accordance with (2.1) and (2.7), the
statistical operator of the weakly anisotropic, lo-
cally equilibrium states of the magnet with total
symmetry breaking relative to spin rotations is
written in the form

w (Y (x), a(x)) =
= exp (Q, - J' B [V ,(X)EX)+Y  (x)5,(x)] = VG, } =

=U»,U,, (2.8)

G,=UGU, = J' By (Ea(x)Ax) +h.c)

where

1, = exp (@, (& [V (1)) + Yo (1)34(0)] = VG,
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G =J-d3x EAx) + h.c. , (2.9)

and é =U, ;,U;', Y = aY. Here the thermodynamic
forces Y (x) and the orthogonal rotation matrix

aaﬁ(x) are the arbitrary functions of coordinates. In
the equilibrium state [see (2.1)] Y (x) = Y, and the

structure of the orthogonal rotation matrix aaﬁ(x) is
determined by Eq. (2.4). The matrix of rotation
dqp(X) for the locally equilibrium states is intro-

duced in the distribution (2.8) by the trans-
formation of local spin rotation performed on the
source G.

We obtain now the main thermodynamic identity
for the locally equilibrium states and show that the
locally equilibrium averages of the densities of ad-
ditive motion integrals and fluxes corresponding to
them can be expressed in the approximation of
small inhomogeneities in terms of the locally equi-
librium thermodynamic potential. In this connec-
tion, it is worthwhile to go over to the statistical
operator @, which is defined by Eq. (2.9). From

(2.9) it follows that the locally equilibrium thermo-
dynamic potential Q is the functional of the thermo-

dynamic forces Y = (Y, , Y,) and the rotation ma-

trix a(x):

Q =J'd3x wx, Y(X), a(x)) . (2.10)

Here w is the density of the thermodynamic poten-

tial. Varying the potential Q with respect to the
thermodynamic forces Y, and Y , we obtain

5, Q= J' d3x 5V (x) Tr we(x) = J' dx 5Y (%) £(x)

8y Q= J' d3x 8Y(x) Tr ws(x) = J' d3x Y (x)s(x) ,

where s(x) = Tr @s(x) = a(x)s(x). Varying the po-
tential Q with respect to the orthogonal matrix a,
we have §,Q = [ d3x Y, (x) Tr @6&(){). By virtue

of the explicit form of the operator é(x) and the
relation (1.12) we thus find

5,Q =

Fizika Nizkikh Temperatur, 1997, v. 23, No 7

= iJ- d3x d3 SR (X)Y,(X) Tr (Y, a} [5,(x), £x)].

2.11)
Under calculation of the trace in Eq. (2.11), by

virtue of quasilocality of the operator g(x'), the
points x' placed near x give the main contribution.
Therefore, expanding the quantity Y (x) near the
point x, Y (x')=7Y(x)+ (X -x),0Y, 0x, +...,

we obtain in the main approximation

5,Q=

= J' d3x B8R (X)Y (%) Tr @[5 (x), H] + OOY,) .

(2.12)
We thus have

0O oQ [O

‘0,

= 5 Equy Gou(¥)Yo(X) Tr @[5(x), H] + O@Y,) .

(2.13)

Thus, the thermodynamic relationship for the lo-
cally equilibrium states takes the form

50 =

- J-dsx%(x)éYo(x)@q(X)EXG(X)+D o0 Eéaaﬁ(x)ﬁ,
] Wy
(2.14)

where the variational derivative (6Q/6aal3(x))y is
determined by Eq. (2.13). If instead of the vari-
ables Y we use the variables Y = XB gy then
relation (2.14) can be rewritten in the form

0
3Q = J' d3x %(x)éyo(x) + 5,(X)8Y () +J-
0
L0380 O

W S ;
GB(X)E aQB(X)g
Y

where

06Q O _0dQ 0 [ 06Q0

= Y, .
Praply, Baply, DYl °
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We define the entropy density by the expression
0=-w+Y,{,. Wecan then easily show that with

an accuracy to 0OY the following equations are

valid:

SH _ Yy 8H _ 1 30

6aa[3 YO 6dal3 .
(2.15)

Here H = [ d3x g(x). If the density of the thermody-
namic potential in the local limit allows expansion
on gradients of the parameters Y, a

w(x; Y(x'), a(x')) =

= W(Y(x), a(x), w,(x)) + O(LY, Ow,) , (2.16)

then Eq. (2.14) can be simplified. In the operator
identity (1.6) setting a(x) = ;,(x), b(x) = §a(x) and
taking into account that for the anisotropic mag-
netic systems [:Sa , c‘:,(x)] # 0, from (2.12) we obtain

5,Q=
:J'de ESRG(X)YO(X) {i Tr w[&a , ;Z(x)] + 0, flak} )

jak =Tr wjak ’
where the operator of the spin flux density }ak is

defined by Eq. (1.8). Since [, R, = —00k, gy

the last relation can be rewritten in the form

5,Q=i J’ d3x SR (X)Y (%) Tr wl[S, , (x)] +

+J'd3x Y () (X0, (%) s [y = ajp, . (2.17)
From it we find
ow .
=Yolgp - (2.18)
0 Lak
0k -
In addition,
ow _ iY, Ao
67w = 5 Eapy Yup TrzlS,, ex)]. (2.19)

Therefore, the main thermodynamic identity can be
represented in the form

702

_ ow .
d(JL)-SdYO +§0an +67dad[3+y010k d@aky

ap
(2.20)

or, taking into account the definition of the entropy

density o, we can write

_ o€ .
da‘TdOJ'ﬁadﬁa*aTd“aB*lqkd@ak
ap
(2.21)

To find the energy flux density in the locally
equilibrium state we use the relation

i Tr w[A + B, a(x) + bx)] = 0,

where a(x) = Y (X)(x) and b(x) = Y ,(x)5,(x). Tak-

ing into account (1.6), we obtain

U, Opx) =0,

0,x) = - ;J'de' ) x
1

XId)\ Y, (x = (1 = Nx) Tr @f{,(x - (1 - Mx) ,
0

Z,(x + AX)]Y,(x + AX') . (2.22)

Ignoring in this expression the gradients Y, and
gy, , using (1.8), we find
04 = V34 + VoY, gy + OO)

Because of the arbitrariness of the gradients of the
parameters Y and @, , we have Q, =0. We thus

obtain

Gy = holgp »

and, therefore, in accordance with (2.21),

aC
(=% =00, 2
0%y, 0

3. Reduced description. Hydrodynamic
equations

The reduced description method is used in de-
scribing the nonequilibrium states of macroscopic
systems at the hydrodynamic stage of evolution
(small inhomogeneities) [17]. For the weakly an-
isotropic magnetic systems with total symmetry
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breaking relative to spin rotations the reduced de-
scription parameters are the densities of the additive

motion integrals { (x) (with respect to exchange

Hamiltonian) and the rotation matrix baﬁ(x) in spin
space. To formulate the hydrodynamic equations, it
is necessary to introduce the rotation matrix baﬁ(x)
as a functional of the nonequilibrium statistical
operator E), b(x) = b(x, E)) This matrix, which char-
acterizes the orientation of the mean value of the
Tr pA)AQ(x) rela-
(12 =

Im =0), does not coincide, in general,

order parameter operator A (x, pA)) =
tive to some fixed frame |, m, | xm
=m?=1,
with the rotation matrix aQB(X) that enters into the
locally equilibrium Gibbs distribution and into the
thermodynami(i potential . We define the rotation

matrix bQB(X, p) as a functional of the nonequili-

brium statistical operator E) by the relations [19]

Ib(x, p) A(x, p) =0, mb(x, p) A(x, p) =0
(3.1)
By virtue of (3.1) and (1.10) for the rotation

matrix b(x, p) the following equation is valid:

b(x, UtpU,) = b(x, p)e(x) , (3.2)

where ¢(x) is the arbitrary matrix of local rotation.
We take into account the variation of the orthogo-

nal matrix of rotation 0b(x, pA)), which is associated

with the variation of the statistical operator &p:

db(x, p) = b(x, p +p) — b(x, p) =

= b(x, p) X(X, P, 3P) . (3.3)

Here the matrix x(x, pA), ESpA)) is a linear functional of
Op that can be represented in the form

Xap(X: P, 8p) = Tr 3pX,4(X, P) -

The operator )A(GB(X, pA)) which depends on the in-
itial statistical operator pA) obeys, by virtue of the
orthogonahty cond1t1on bb = 1, the antisymmetry
property XGB(X p) = XBa(X p) Defining the dual

quantity Xy= by 80(!3\/ XaB’ we represent the vari-

ation of the rotation matrix db(x, pA)) in the form

ébaB(x, p) = bay(x, P) €0 Tr 8px,(x, p) . (3.4)
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We attribute the following properties to the opera-
tor ;(a(x E)) Whose proof one can find in Ref. 19:

1. The operator Xa is determmed to an accuracy of
the transformation X - X = X + c(p) where c(p)
is an arbitrary c-number functional of the statistical
operator pA)A, and is uniquely fixed by the condition
Trpx (x, p) =0

2. For the operator X, the following equations are
valid:

i Tr pls,(X), Xg(x', P)] = 855 8(x = X)) ,

. - s . (3.5)
i Tr p[Py , Xo(X, P)] = y(x, P) -

The transformation laws relative to spin rotations

and spatial translations for the operator X, are
Uy XX UZPUUT = XX, P)pg(x)
ePY Xy, P p P TPV =y (x -y, p)

where ¢(x) is the arbitrary matrix of local rotation.
We formulate now the equation of motion for the
orthogonal rotation matrix. Accordingly we choose

the variation &p in the form &p = pdt and assume

that the statistical operator p(t) satisfies the Liou-
ville equation

O . (3.6)
p(t) =ilp(t), HI .
As a result, by virtue of (3.4), we obtain the

equation

o . . DU
bap(X, P) = ibgy(x, p) &g, Tr PLH, X (x, P)] -
(3.7

We consider the evolution of a nonequilibrium,
spatially inhomogeneous state of the magnet with

total symmetry breaking in the range t >> 1, (1, is

the relaxation time) at the hydrodynamic stage of
evolution. In accordance with the reduced descrip-
tion hypothesis, at these times the nonequilibrium
statistical operator is a functional of the reduced
description parameters

p(t) l;>|]>|9_’p(1(x: t): b(X, t)) )
" (3.8)
{x) = Tr p(@, b) L(x), b(x) = b(x, p(, b)) -

In these relations the orthogonal rotation matrix

b(x, p) as a functional of the nonequilibrium statis-
tical operator is defined by Egs. (3.1). In accord-
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ance with (1.7) and (3.7) and by virtue of the
reduced description hypothesis (3.8), the equations
of motion for the reduced description parameters,
have the form

£(x, p) = -0, Tr p(Z, b) 7,(x) ,

5%, p) =i Tr p(Z, b) [H, 5,01, (3.9

0 N N N N N
bql?,(x: p) = ibq)\(x) p) 8}\l3y Tr p(Z) b) [H: Xy(xr p)] .

We represent the statistical operator pA)(Z, b) in the
form

oL b) = w(Y, d) + P, b).  (3.10)

Here w(Y, a) is the locally equilibrium statistical
operator (2.8) and the operator p'({, b) determines
the dissipative processes. Since we are interested in
the main approximation of the spatial gradients,
and since we disregard the dissipative processes, we
can disregard the contribution of the operator
p'(¢, b) in Egs. (3.9). We can therefore assume that

the relation Tr p(¢, 6)... = Tr @w(Y, a)... is approxi-
mately satisfied. The relation between the densities
of the additive motion integrals and the thermody-
namic forces is defined by the relation (2.14). We

recall that the orthogonal rotation matrix a(x),
which enters into the locally equilibrium Gibbs

distribution and the thermodynamic potential ,

does not coincide with the rotation matrix b(x, ).
To find the equation of motion for the spin

density s (x), we make use of the expression (2.13)

for the variational derivative 8Q/da of the thermo-

dynamic potential Q with respect to the rotation
matrix a. Comparing Eqgs. (3.9) and (2.13), we
represent the equation of motion for the spin den-

sity s,(x) in the form

. 1 0oQ O
SG:_TSGHV Cl)\u o - (311)

0 aAvQ,
In Eq. (3.11) the thermodynamic potential

Q=g d3x o(x) is considered to be a functional of
the variables Y, (x), aaﬁ(x) under the local depend-
ence of the inverse temperature Y (x): w(x) =
= w(x; Y,(x), Y, (x'), aqﬁ(x')). If the thermodyna-

mic potential is a functional of the form
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Q =J-d3x w(x) ,

@) = @x; Y0, Yo(X), agq(x)) | Yo = Yg apy

then in terms of the new set of variables we have

. Vg 6Q | 1 06Q 0 O
Sa T "y Oy, 5y T Y, ‘B, 00 (312)
O y wyG, U

In the local limit, when the density of the thermo-

dynamic potential w is represented as
o(x) = (Y (x), Y, (x), a(x), w,(x)) ,
from (3.11) we obtain

‘éor =" Yi Eapy up o _ Ok jak J (3.13)
0 9ayy

Jak = yi aaw apy -
0 Qﬁk

The first term on the right side of Eq.(3.13) takes
into account the anisotropy.

We obtain the equation of motion for the or-
thogonal rotation matrix. Substituting expression
(3.10) in (3.7) and ignoring the influence of the
dissipative processes, we find

U R R R N R
baB(x, w) = ibay(x, w) €gA Tr w[H, X,(x, ©)] .

Noting further that in the main approximation for

the statistical operator w(Y, ) the stationary con-
dition (2.3) holds, we can rewrite the last equation
in the form

0 R R JEDUEPN R
baB(x, w) = ibay(x, w) € hg Tr wlsg , X, (x, @)] =

= by (X, ©) g, Iy
where the relation (3.5) is taken into account. We

note that the asymptotic relation (3.8) contains the

rotation matrix b(x, p), which is defined by the
relations (3.1). On the other hand, Eqs. (2.23) for
the flux densities of the additive motion integrals
contain the Cartan forms which are the functions of

the rotation matrix a(x) that enters into the locally
equilibrium Gibbs distribution and, in general, is

not identical to the matrix b(x, @). Therefore, to
close the equations of motion we must establish a
connection between these two orthogonal matrices.
Using the relations (3.1), (3.2), and (2.8), we have

Ib(x, w) Ax, w) = 1b(x, @) a(x)Ax, w) =0,
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mb(x, w)A,(x, w) = mb(x, w) a(x)B,(x, w) =0 .

We see, therefore, that the rotation matrix

b(x, @) a(x) = b(x, w) is a function of the argu-
ments Y, @, w, . The variables Y and w, change
slowly in space and the time and the dependence on

the matrix a is weak because of the small anisot-
ropy. Therefore, the equation of motion for the

rotation matrix «(x) in the main approximation
with respect to the spatial gradients and small
anisotropy can be represented in the form

u
aaB(x) = b;; X, Q)byﬁ(x, w) = aa\Xx)ayB)\ hy .
(3.14)
Thus, we obtain a closed system of equations for the
magnets considered by us, without regard for the
dissipative processes:

o = 1 ¢ % oQ g oQ O

a” Y, By OB gy T “uB 0

o gt oYy %2,5
Y, (3.15)

CIZGB = _day SVB)\ ?0 .
The equation for the energy density is

_ 1 0w 0w

= Oy 2 . (3.16)
Y 0s, 0w,

By virtue of (2.15), Eqs.(3.15) can be written in
the form

. . [OH o+ oH o . . oH
Sa = Eapy y Yy %ap = Egoy Tay 5o
Bsp Y Bag M Os,
(3.17)

Since the energy density € is a function of the

quantities 0, «, s, and w, [see Eq. (2.21)] and since

the quantities o, s, and w, for the weakly inhomo-
geneous and weakly anisotropic states vary slowly
in space and time, it is useful to change to the
variables €, a, s, and w, in Egs. (3.15) and (3.16).

By virtue of (1.13) and (2.15), we obtain from
(3.15) and (3.16) a closed system of equations

0e Ot . oe

g=-0, — —, a,=&  d,
k » Tap T Topv “pp ’
Osy 0Ly Os,

oe O o oe oe U

Sq= _Dk

Sy Yo

(3.18)
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I3
+e€ — + —+a .
El3 ('—"‘{k 0
0w, , agu 0 0w, )

As a result of the equation of motion for the
rotation matrix, we find the equation of motion for

the Cartan form Wyp

: 53 (03
W, =0, —+¢€o W, — . (3.19)
=uk k =Bk

ds,, apy aﬁy

From these equations and from the thermodynamic
relation (2.21) follows the adiabaticity of the proc-

esses in the approximation considered by us, ¢ = 0.

4. Ferrimagnet

In this section we consider the thermodynamics
and hydrodynamics of the weakly anisotropic, two-
sublattice ferrimagnet with noncompensated sublat-
tices. We see that there is an essential simplifying
circumstance which allows to consider the two-
sublattice ferrimagnet (for brevity simply «ferri-
magnet») as a special case of the magnet with total
symmetry breaking relatively to spin rotations with
a special kind of dependence of the thermodynamic
quantities on the rotation matrix._

For the ferrimagnet the source G in the statistical
operator (2.1) is defined by the formula

G = J' 3 (x, ) Ax) = G(), A(x) = AX) |

(4.1)
x)=1.
The real vector [ (ZE= ) has a sense of the

antiferromagnetism vector. Assuming that the equi-
librium state is the spiral ordering state [see
Eq. (2.3)], we find the form of the function

l,(x, t)
I(x, t) = Ea(®)a(d(x, 1) = &a(x, 1) ,
¢q(x’ t) = na(px - ht) ’ |E| =1,

(4.2)

where & is a constant real unit vector, and ¢g is a
uniform rotation. Thus, the statistical equilibrium
state of the ferrimagnet is characterized by the
thermodynamic forces Y, and Y, by the rotation

0
o’

ence from the case of the total symmetry viola-
tion [see Eq. (2.4)] is that in Eq. (4.2) &, is a
constant real vector. Therefore, rotations around

angles ¢, , and by the spiral vector p, . The differ-

the vector &, do not change the antiferromagnetism
vector [ and, hence, ferrimagnet is characterized by

the two independent rotation angles (I)g .
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In accordance with (2.1), (2.7), and (4.1), the
locally equilibrium distribution of the ferrimagnet
is defined by the formula

w,(Y(x), I(x)) =

= exp {

Ide Y (x),(x) VG = U w, U,

(4.3)
G, = U'GU, = J' 43y Ea(x)A(X') = J' By 1(x)AKX)
where

@, = exp {0, - I B [V 008E) + Yo(x)5,(9]- VG,

G =J-d3x EA(X) )

Here the thermodynamic forces Y (x) and the vec-

tor [ (x) are the arbitrary functions of coordinates.

In the state of the total equilibrium Y (x) = Y, and
the structure of the antiferromagnetism vector / is
defined by formula (4.2). From (4.3) and the nor-
malization condition Tr @ =1 it follows that the
locally equilibrium thermodynamic potential Q is a

functional of the quantities Y (x), [,(x):

Q =Q(Y(x'), I(x") =J-d3x w(x; Y(x'), I(x)) .

(4.4)

Note the next important peculiarity. It follows from
(4.3) that the antiferromagnetism vector [  is re-

lated to the rotation matrix g by the relation

ly = EB gy - This allows us to consider the ferri-
magnet as a particular case of the magnet with total
symmetry breaking relative to spin rotations, for
which the dependence of the thermodynamic poten-

tial Q on the rotation matrix aqg Occurs only

through the combination EB dpy = I, . Therefore, we
can use the results obtained earlier with allowance
for the indicated peculiarity without repeating the
calculations of the second section.

We write the main thermodynamic identity for

the locally equilibrium states. Variational deriva-
tives of the thermodynamic potential Q = Q(Y, [)

706

with respect to the thermodynamic forces Y, are

defined by the equations
06Q O _ 0oQ O = s,
T
We find the variational derivative (8Q,dl) . Since

in the case of the ferrimagnet

(4.5)

08Q D _ . Q0
= p ?D ,
then scalary multiplying both parts of the last

relation on the vector Ep (Eg = 1), we have

BQO _06Q O E
g g
g, oty
The derivative (8Q/da)y is defined by formula

(2.13), and the derivative (3Q/da), is related to
the derivative (8Q,da)y by the relation

(4.6)

06Q O _0dQ 0 [8Q Da
oo, B, Vel

Using (4.6), (4.7), and (2.13) for the derivative
(0Q,/dl)y, , we obtain

4.7)

0dQ O ]
e = 5 Sy LY () Tr (00, H] -
0
_ 0 6(2 a

Dlp( )Y (%) . (4.8)

Thus, the thermodynamic identity for the locally
equilibrium states of the weakly anisotropic ferri-
magnet has the form

0Q =

=(#3x B 8Y (%) + 5,037, (x) + 22D
I 3 8% gm

U

ol (X)H

(4.9)

Taking into account the expression for the entropy

density 0 =-w + Y, (, , we see that to an accuracy

of Y, the following equations are valid:
8H 1 &H Yo 8H 1 5Q

% Y, 5370(__70’ 670(_?0670(' (4.10)
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Let us consider the local limit of the relations which
we obtained when the density of the thermody-

namic potential w depends on the variables Y, I,

and 0,1 (or, in the last case, on the quantity
Ok = ~ Eapy Ig Dk ly):

w(x) = (Y (x), [(x), 0,(x)) - (4.11)
The connection between the variables Y, /, and v, ,
and the variables Y, @, and w), is given by

Yo=Ygag,, Ly :E'Baﬁa :

Var = gy = &5 &) Cpq Wy -

The quantity j, was obtained in the second sec-

(4.12)

tion of Eq. (2.18) for the spin flux density. Taking
it into account and also Eqs. (4.11) and (4.12) for
the spin flux density in the case of the ferrimagnet,
we find

_— 1 Jdw 0 ~ 0 _
Lok =y, 5y e "ey> Oap = %p "o lp
or
) 1 odw
jo= o . (4.13)
ak YO avak

Here we took into account that since variations of
the quantities /, and o, are not independent (see
Ref. 9), [, 00/0v; = 0. Besides, it is easy to ob-
tain the relation that connects the derivatives
(0w 0l)y , and (0w 0a)y , :

BwO Oow O Oow O

= E, D - D l Y .
1 U H yUd ' e
Vi, a“VEi_/,Q v,
Using Eq. (2.19), we thus have

w0 Yy s
?)D =iy Eupy ll3 Tr w[S, , e(x)] -
ME

-~ gy, (4.14)
YV
Lo

The second law of thermodynamics in the local limit
can thus be written in the form

*

dwo=¢edY,+sdY+ %—? dl+Y,j,do,, (4.15)

where the derivative (aw/al)Y’U is defined by

Eq.(4.14). Using the entropy density o, we can
rewrite the last relation as follows:
_ 0 :
da-Tdo+hds+adl+]kdvk. (4.16)

Here we have taken into account that

%0 .
=y .
l@,s,vk 0 Dal |:YO,Y,vk

To find the energy flux density in the locally
equilibrium state we use, by analogy with the case
of the total symmetry violation, the relation (2.22).

Within accuracy of 0Y, we then obtain

A = ho Jar - (4.17)

Therefore, in accordance with (4.16),

., = oe &
ak 00y, 05y

Let us consider the hydrodynamic stage of evolu-
tion of a weakly anisotropic ferrimagnet at times
t >>1, (1, is the relaxation time). To construct
hydrodynamics we will use, by analogy with the
case of a magnet with total symmetry breaking
relative to spin rotations, the reduced description
hypothesis. The reduced description parameters are

the densities of the additive motion integrals ¢ (x)

and the antiferromagnetism vector g (x, pA)) consid-
ered as a functional of the nonequilibrium statistical
operator E)*. In such a scheme the equation of
motion for the antiferromagnetism vector is ob-
tained on the basis of the operator éa(x, p;) of the
antiferromagnetism vector. As in the case of the
magnet with t9tal symmetry breaking, we have used

the operator X(x, p) [see Eq. (3.4)] to derive the
equation of motion for the rotation matrix. How-
ever, we can at once obtain the equation of motion
for the vector [, by using the connection between

the antiferromagnetism vector [, and the rotation

matrix dyp > I, = EB gy s indicated above. After

As for the magnet with total symmetry breaking in the case of the antiferromagnet, it is necessary to differentiate between the

antiferromagnetism vector la that enters into the Gibbs disctribution and the antiferromagnetism vector g, g?)) considered as a

functional of the nonequalibrium statistical operator p.
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convolution of both sides of Eq. (3.14) with the

constant vector Ep we have

O
la = E4py hB ly
or (4.18)
O
_ B
o= “Capy Y lv‘

Further, the equation for the spin density s, in

the general case was found earlier and is given by
Eq. (3.12). Assuming that the density of the ther-

modynamic potential w depends on the variables
Y,,Y,,and [

w(x) = 0(x; Y(x), Y (x), [;(x)) ,
[we recall that in the derivation of Eq. (3.12) the

potential Q is considered under the local depend-
ence on the inverse temperature Y], then, switch-

l, = EB gy

ing from Eq. (3.12) to the new variables, we obtain

Sa =7y, Sapy %YB

Thus, Eqgs. (4.18) and (4.19) are the dlssipation—
free dynamic equations for the weakly anisotropic
ferrimagnet. The equation for the energy density is

tly 61 D (4.19)

I 0w 0w

4.20
k Y2 ds, 0, (4.20)

[here we have used the expression (4.17) for the
energy flux density g,].

Using (4.10), we can write Egs. (4.18) and
(4.19) in the form
_. BH ESHDZDS 6Hl
Sa = Eapy v " vD’ a” fapy 5. v
%I A s,
(4.21)

Equations (4.21) coincide with the corresponding
equations obtained in the framework of the Hamil-
tonian approach in Ref. 9.

Since the energy density € is a function of the
quantities o, s, I, and v, [see Eq. (4.16)], for
verification of the adiabaticity condition we switch

in Eqs. (4.18) and (4.19) to the variables ¢, s, I,
and v, . By virtue of (4.16), from (4.18) and (4.19)

we obtain in the local limit the system of equations
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- aS + |+ oe o O 0 o€
- YR 5, Y0 SRS o
OBV s Y ol Y dg, WD R g,

(4.22)

os de oOg

O
Il =¢ . — 1 , €¢=-0
a “BVasBV kas 00y,

From the equation for the antiferromagnetism vec-
tor follows the equation for the quantity v, :

_ og _ _ og
Uak = SGBVaT Uyk (6al3 ZG ll?’) Dk aT
B B
Using (4.16) and (4.22), we have 0 =0, which
proves the adiabaticity of the processes in the ap-
proximation which we are considering.

3. Spectrum of spin waves

To find the spectrum of spin waves for the mul-
tisublattice magnet with total symmetry breaking
we linearize the system of equations (3.18) and
choose as parameters, which describe the deviation

from equilibrium, the quantities &s,(x,f) =
=s,(x,) =50 and Bagp(X, 1) = €5 (X, 1) X

x agg(x, 1) , where s© and @(0) are the equilibrium
values. The matrix of rotation a&O&(x, t) satisfies the
apy (aa/agy)ag)g . The variation of
the right Cartan form is

0 (@) = Wy (ba) — Wy(@) = U3,

b ,= 60!6 ~ Eqpy 6¢y )

equation c'zgog =g

~ Eqpy Do Oy
aB

Assuming &8s, 0p O exp i(kx — wt), we obtain the
system of equations

(il = hN = if + ['N = T)y5 805 = £,5 8,
(5.1)
(=il + if + hN = Me —= Nf —T)Qﬁesﬁgz
=(D - ND'"N - Mf'N + GN +
+iD'N + iND' + iMf - iG - iQ +
+i0 + NO' —(:)'N+H+MT)GBES¢B,
where

0% _ 9%

€ = ) - 7 ’
WP s, 0y fap 05, 0w,
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! o’ D .=k k L
apf — pl as 6%1 ap i ™ a%l a@B[ ’
9% 0%
=kp - D' =p.p
0[3 lplaw a@ﬁ[ 0[3 plpla%iag)ﬁ[
Nag = Eap My Mop = Eayp Sy »
_ oe . oe
GGB - Sayﬁ k’i TQW ) GB - SGVB pl Tgﬂ ’
9% 0%
= , k.
B s, 0dg Qap = ki 0wy 00
9% 9%
Q' =p H = .
B o, 0dg B ap, g

The terms connected with the matrices T, Q, O,
and H take into account the anisotropy. Eliminat-

ing & from Egs. (5.1) and equating to zero the

determinant of the equation for &, we find the next
dispersion relation for determination of the spec-
trum of spin waves:

det (w’a + w(ib, + by) +ic, +c,) =det A=0,

(5.2)
a=-¢"', by=M-aRN - NRa+aT -Ta,
R=f'- b2=—af—7a, (5.3)

=-G + (D' + faR)N + N(D' + Raf) +
+Taf - faT -0+ 0,
-~ ND"N + faf = NRaRN + TaT + NQ' -
- O'N+H + (G - hM)N .
It is easy to see that the matrices ¢ and b, are
symmetrical and that the matrices b; and ¢, are
antisymmetrical. In the matrix c¢, all terms are

explicitly =~ symmetrical,  except the term

(G' = hkM)N. For the study of the symmetry of this
matrix we note that equilibrium values s, , p, , and

h, , as follows from Egs. (3.18), are related by the
relation
0 ~0e O_ o0t
aﬁﬁﬁ aQBkD a¢a

In the absence of anisotropy the right side of
Eq. (5.4) is equal to zero. Using Eq. (5.4), it is not
difficult to  see that ((G' - hMN)GB =

= (G - hM)N)Ba . Hence, in the absence of anisot-
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ropy the matrix A is a Hermitian that leads to real
values of the spin wave frequencies [8]. In the
presence of anisotropy we have

(G - hM)N)OIB - ((G" - hM)N)Ba =
0€
= (ny Ng, — 13 N) =
By ay aq,y

For the Hermitian character of the matrix A it
follows that the relation

oe _ o€

NavaTy:aaﬁvnﬁaTw

=0, (5.5)

which means that the anisotropy should be such
that the rotations around the direction n, =k, /h

do not change the energy functional €. If the energy

functional € does not satisfy the relation (5.5), then
the matrix A is not a Hermitian and complex
frequencies, in general, arise in the spectrum. This
means that the corresponding state is unstable.
Therefore, when the matrix A is not a Hermitian,
the exchange and anisotropy constants should sat-
isfy certain inequalities for the spectrum of spin
waves to be real. Further, we assume that Eq. (5.5)
is satisfied.

We rewrite the dispersion relation (5.2) in the
form

6
S Ak =0,

n=0

(5.6)

where the coefficients A, (n =0, ..., 6) in terms of

the convolution

|abc| or[3y uvt Tou va Cyt
are defined by the formulas
Ay =ley ¢y o =3leg o cql s
Ay =—6lby cq ol = 3lby ¢y | = 3lby cq |

A,y = =Blac, ¢,| + 3lac, co| + 3|b, b, co| =

= 6b, by ¢4l = 36y by ¢yl ,
Ag =1by b, by| + 6lab, c,| = 6lab, c,| - 3lb, b, b,|,
A, = 3laac,| - 3lab, b,| + 3|ab, b,|
Ag = 3laab,|
Ag = |aaal
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We carry out the analysis of the possible spectra of
spin waves in the limit of small wave vectors k.

Note that in the absence of anisotropy and at w = 0,
k =0 we have det A(0, 0) = det ¢, and by virtue of
matrix ¢, (5.3),

det A(0, 0) = 0. This means that in the isotropic
case the system has at least two Goldstone modes

the evident form of the

[since A, (k=0)=0]. In the presence of anisot-

ropy the situation changes: det A(0, 0) = det ¢, # 0

which means that all modes of the anisotropic
magnet, in general, are activation modes. However,
the order of the activation frequencies with respect
to anisotropy may be different, and it changes from
first to third. Since we are considering a small
anisotropy, we take into account the anisotropy in
the linear approximation. In the given approxima-
tion the modes, whose activation frequencies are
quadratic and cubic in anisotropy, become activa-
tionless. Let us consider some special cases of equi-
librium values of the quantities s, &, and p, .

1.5=0,2=0,p, =0.
The dispersion relation (5.6) has the form

Ag 0 + (A, + ARt + ATR0? + ARE =0 .
(5.7)

Here we have evidently given the dependence of the
modulus [k| in the coefficients A, in Eq. (5.6).

Solution of Eq. (5.7) yields two pairs of Goldstone
and one pair of activation modes

‘*’%,2=F1,2k2"*%=°%+F3k2’

where
-
A6 ’
1 N T R TT
Fyy=— 14 i\/ZAZ) —4AGAY ),
24
. _Ag 4y - AL A |

Ag 4y

We present here for comparison the spectra of spin
waves for the isotropic magnet [13,14] in the case
under consideration

=Mk, i=1,2,3.
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The dispersion relation has the form
Ag of + (A + AR + (A + AJRD)W? + AR = 0.
(5.8)

At small k& we have one pair of Goldstone and two
pairs of activation modes

=R AR, @Ry

Here

w?

+

Ay + A o Ay’
Ry=35 — 5 5, Ry=-—
T A -od) P

2

Similarly for the isotropic magnet [8] we have
WO =v kY, b=y k2, o = wd vy R

In connection with the appearance of the activation
frequencies in the isotropic magnet, it should be

noted that the quantities s, and W, are invariant

relative to the right uniform rotations with the
matrix b:

r

s - 8=bs, a-d=ab.

The energy density in the isotropic case €=
= g(s, w,) is therefore also invariant relative to the

right rotations. However, it need not necessarily be
invariant relative to the left rotations

! r

s -8=sb, a-da=ba,

when, for example [8], the quantities s, and W,

enter € in convolution with some «foreigns vector,
which characterizies the given magnet

l

e=e(l a @ak)

aSa

(I, is the unit vector of anisotropy, which is con-
nected with the left rotations). This is the reason
for the occurrence of the activation branches in the
spectrum. Such situation is characteristic of the
considered exchange multisublattice magnets,
whose state is described, jointly with the spin
density, by the additional dynamic variable which
is the matrix of rotation; if the state of the magnet
is characterized only by the spin density, then the
activation frequencies are absent. We emphasize
that in the equations of motion for the additive
motion integrals the expansion in terms of spatial
gradients begins with the linear terms on gradients
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and in the equation of motion for the rotation
matrix the expansion begins with zero-order terms
on gradients, which corresponds to the precession
motion with the corresponding activation frequen-
cies.

3.520,h#0,p, =0.
Equation (5.6) has the form

Ag 05 + (A, + AR + (A + AT R +

+ Ay + AR =0 . (5.9)

In this case all branches are activation branches

W=+ 2k, i=1,2,3,
i 01 i

where the activation frequencies w?; are determined
from the cubic equation, which is obtained from

Eq. (5.9) at k = 0. For the isotropic magnet in this
case [8] we have one pair of Goldstone branches
and two pairs of activation branches

P T N L

4.520,h#0, p, #0.

This is the most general case. Analysis of the
dispersion relation shows that there are six activa-
tion branches whose spatial anisotropy is caused by
the presence of the spiral structure

W, = wy; + ¢;(pk) + di(pk)? + ¢} k* .

For the isotropic magnet in the given case [8] we
have

Wy 5= a(pk) + VB_kT'T'_V_@-k_)2 )

W, =y, *+ Ajpk) + pi(pk)? + Wk (=3, .., 6) .

6. Conclusions

Thus, on the basis of generalization the quasiaver-
ages method for the weakly anisotropic, locally
equilibrium states and with use of the reduced
description method with the elements of the matrix
of rotation as additional dynamic variables, we have
built thermodynamics and have found the equations
of low-frequency dynamics of the multisublattice
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magnets with strong exchange interaction. In some
special cases the results are in agreement with the
results of the phenomenological approach based on
employment of the Hamiltonian formalism [8,9].
Except for the multisublattice magnets, the concept
of total spontaneous symmetry breaking relative to
spin rotations has been used in the Hamiltonian
approach for the description of the low-frequency

dynamics of the superfluid B-phase of 3He
(Ref. 19) and of the quantum spin crystals [20].
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of Mathematics and Natural Philosophy of Rostock
University for hospitality and for partial financial
support of this study.

1. L. D. Landau and E. M. Lifshitz, Phys. Zc. Sowjet. 8, 153
(1935).

2. A. I. Akhiezer, V. G. Bar’yakhtar, and S. V. Peletminsky,
Spin Waves, North-Holland, Amsterdam (1960).

3. A. A. Tsayev and S. V. Peletminsky, Teor. Mat. Fiz. 102,
470 (1995).

4. H. Goldstein, Classical Mechanics, Addison-Wesley Press
(1950).

5. L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Ap-
proach in Theory of Solitons, Nauka, Moscow (1986) (in
Russian).

6. I. E. Dzyaloshinskii and G. E. Volovick, Ann. Phys. 125,
67 (1980).

7. S. J. B. Einchcomb and A. J. McKane, Phys. Rev. Ed,
2974 (1995).

8. M. Yu. Kovalevsky, S. V. Peletminsky, and A. L. Shishkin,
Ukr. Fiz. Zh. 36, 245 (1991).

9. A. A. Isayev, M. Yu. Kovalevsky, and S. V. Peletminsky,
Teor. Mat. Fiz. 95, 58 (1993).

10. N. N. Bogolyubov, Physica 26, 1 (1960).

11. J. Goldstone, J. Nuovo cim. 19, 154 (1961).

12. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry
and Correlation Functions, Benjamin, Reading, MA
(1975).

13. D. V. Volkov and A. A. Gheltukhin, Izv. Akad. Nauk
SSSR, Ser. Fiz. 14, 1487 (1980).

14. B. 1. Halperin and W. M. Saslow, Phys. Rev. B16, 2154
(1977).

15. A. F. Andreev and V. I. Marchenko, Usp. Fiz. Nauk 130,
39 (1980).

16. B. 1. Halperin and P. C. Hohenberg, Phys. Rev. 188, 898
(1969).

17. A. 1. Akhiezer and S. V. Peletminsky, Methods of Statisti-
cal Physics, Pergamon, Oxford (1981).

18. V. G. Bar'yakhtar, V. G. Belykh, and T. K. Soboleva,
Teor. Mat. Fiz. 77, 311 (1988).

19. M. Yu. Kovalevsky and A. A. Rozhkov, Fiz. Nizk. Temp.
21, 1138 (1995).

20. A. A. Isayev and M. Yu. Kovalevsky, Fiz. Nizk. Temp.
20, 1125 (1994).

711



