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Hocaiowyemvcs  iCHYy8aHHA NepioOUHHUX PO38°A3KI6 (DYHKUIOHAALHO-OUpEpeHUIaNbHUX CcUcmem
Opy2020 NOPAOKY 3 3AAEHHUM 8I0 HACY Onepamopom ma 3anidHeHHamu. IIpu yvomy mampuysa Ko-
eqpiyienmis HellMpAaabHO0 PIZHULEB020 ONEPAMmopa He € CMAA0I0 HA BIOMIHY 8I0 8UNAOKI6, Onuca-
Hux y aimepamypi. Ompumano 0eaxi 84aCMUBOCHI HEUMPAAbHO20 3MIHHO20 34 HACOM PISHUUEB020
onepamopa ma pe3yabmarmu u4000 iCHYB8AHHA NePIOOUUHUX PO36 A3KI6 HelMPANbHUX PYHKYIOHAALHO-
ougpepenuyiarbHux cucmem 0py2020 nopaoky. Hasedeno uucaosutl npukaad 0as iarocmpauii meope-
MUYHUX Pe3YAbmamis.

1. Introduction. In recent years, the problem on the existence of periodic solutions to functional
differential systems was extensively studied, see [1, 2, 4, 5, 7—12] and their reference lists. In
[2], Cac discussed the existence of 27-periodic solutions of the systems

d
"+ 2 lerad F(2(t)] + (¢, 2(1)) = e(t),

under various asymptotic behaviors of g by applying a theorem in [12]. By using Mawhin’s
generalized continuation theorem, Ge [4] proved three theorems for the existence of harmonic
solutions to the systems

d

I+ 7 grad F'(z) + grad G(x) = p(t),
where F € C*(R",R),G € CY(R",R),p € C(R,R") and p(t + T) = p(t). Besides, Kiguradze
and Mukhigulashvili [7] studied the existence and uniqueness of an w-periodic solution of two-
dimensional nonautonomous differential systems.
Recently, Agarwal and Chen [1] studied the periodic solutions of the first-order differential

system

¥ =Gt x(t), z(0)=x(2m).

By applying the inverse function theorem, they obtained the existence and uniqueness results
for periodic solutions. Mallet-Paret and Nussbaum [11] studied the stability of periodic soluti-
ons of state-dependent delay-differential equations of the form

2(t) = g(z(t),2(t = 11), ..., 2(t —13)),

where z : R — R™,r; = ri(2(t)),i = 1,2,...,n.

On the other hand, neutral functional differential systems were also studied. In virtue of
an extension of Mawhin’s continuation theorem which was established by the author, Lu [8]
studied the existence of periodic solutions to a second-order p-Laplacian neutral functional
differential systems in the form

d
Z ewl(@(t) + Ca(t = 7)) = (&, x(t), 2(t = p(t)), '(1))-
Lu and Ge [9] studied the following second-order neutral differential systems:

d2

@(x(t) +Cx(t—r))+ %grad F(z(t)) + grad G(z(t — 7(t))) = p(t),
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182 ZHENGXIN WANG, JINDE CAO, SHIPING LU

which the coefficient matrix of the neutral difference operator being the constant matrix C.
Under this and other assumptions, they presented some results on the existence of periodic
solutions.

Very recently, Henriquez, Pierri, and Prokopczyk in [5] studied the existence of periodic
solutions of an abstract neutral functional differential equations with finite and infinite delays

of the form
d

dt
where z(t) € X and X is a Banach space. Lu, Xu and Xia [10] studied new properties of the
D-operator which is described as

(x(t) — Bz(t)) = Ax(t) + L(z) + f(t), t € R,

D(x) = z(t) — Bx(t — 1),
and the existence of periodic solutions for the neutral functional differential equation

d_D.%‘t
dt

= f(t,xy).

It is easy to see that the coefficient matrices C' of the difference operator D, [Dz|(t) =
= x(t)+ Cz(t—r), are all constant matrices in above studies including the zero matrix. In some
cases, however, the coefficient matrix C is not a constant matrix which is related to the time-
variable ¢. The studies of the existence of periodic solutions to functional differential systems
with time-varying coefficient matrix C'(¢) are rare. Therefore, it is worthwhile to study how to
obtain the existence of periodic solution from the existing results. Since the difference operator
contains a time-varying matrix C(t), this paper is different from the literature.

Motivated by the above studies, this paper discusses the existence of periodic solutions to
the following second-order neutral functional differential systems with time-varying coefficient
matrix and deviating arguments:

2
%(w(t) —Ct)x(t—r))+ %grad F(z(t)) + grad G(z(t — (1)) = e(t), (1.1)

T
where F € C2(R",R), G € C'(R",R), e € C(R, R") with e(t + T) = e(t) and/ e(t)dt = 0,

where 0 is the n-dimensional zero vector, vy € C'(R,R) and y(t + T) = ~(t) Eor a constant
T > 0, ris aconstant. C € C?(R, R™") is a symmetric matrix for all t € R. Because the
coefficient matrix in the difference operator is not a constant matrix, the methods of estimating
a priori bounds of periodic solutions in [2, 4, 8—10] can not be used directly. For this reason,
in this paper, we analyze some properties of the linear difference operator D : [Dz|(t) =
= x(t) — C(t)x(t — r) firstly, and obtain some results on the existence of D=1 and on properties
of D~!. Then the existence results of periodic solutions to Eq. (1.1) are obtained by applying
Mawhin’s continuation theorem.

The main contributions of this paper include: (1) The difference operator contains a time-
varying matrix, which is rare and different from the constant matrix case. The paper obtains new
properties of time-varying difference operator. (2) The paper investigates periodic solutions
of the neutral functional differential systems under the time-varying difference operator. The
methods to estimate the priori bounds are different from those in the literature.
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The rest of the paper is organized as follows. Section 2 introduces preliminary results. The
point is that properties of time-varying difference operator are obtained. Section 3 investigates
existence of periodic solutions of neutral functional differential system (1.1). Section 4 gives an
example and two simulations to verify the theoretical results.

2. Preliminaries. In this section, we will make some preparations. At first, we recall Mawhin’s
continuation theorem [3].

Let X and Y be Banach spacesand L : D(L) C X — Y be a Fredholm operator with index
zero, here D(L) denotes the domain of L. This means that Im L is closed in Y and dimker L =
= dim(Y/ImL) < +o0. Consider the supplementary subspaces Xi, Y7 of X, Y respectively,
suchthat X = ker L X;andY = ImLEPYi,andlet P : X — kerLand @ : Y — Y] be
natural projectors. Clearly, ker L N (D(L) N X1) = {0}, thus the restriction Lp := L|p(z)nx, is
invertible. Denote by Kp the inverse of Lp.

Now, let 2 be an open bounded subset of X with D(L)N ) # @. Amap N : Q — Yis
said to be L-compact in Q, if QN (Q) is bounded and the operator Kp(I — Q)N :  — X is
compact.

Lemma 2.1 [3]. Suppose that X and Y are two Banach spaces, and L : D(L) C X — Y isa
Fredholm operator with index zero. Furthermore, Q0 C X is an open bounded set and N : Q0 —
— Y is L-compact on Q. If:

(1) Lv # ANz, forallz € 0Q N D(L), A € (0,1);

(2) QNx # 0, forall z € 0Q2Nker L;

(3) deg (JQN,Q Nker L,0) # 0, where J : Im@Q — ker L is an isomorphism.

Then the equation Lz = Nz has a solution in Q N D(L).

We denote by (-, ) the inner product in R, moreover, |x| = \/(z, x) is the Euclidean norm
for x € R". In order to apply Lemma 2.1, we take

X={zecCYR,R") :2(t+T) = z(t)},

with the norm ||z|| = maxcjo 7 V0z@®)]2 + |2/ (t)]%, for all z € X, and
Y={zxe€CR,R"):2t+T) = x(t)},

with the norm [|y|lo = maxc(o 7 |y(t)|, for all y € Y. Then X and Y are both Banach spaces.
Denote

T
L= {12 o] = [).y@)d, foral oy ey,
0

A vector-valued function z(t) = (x1(t),z2(t),...,2,(t))" is continuous if z;(¢) are conti-
nuous functions for all t € R,i € I,,. Similarly, a matrix-valued function A(t) = (ai;(t))nxn is
continuous if a;;(t) are continuous for all t € R, i, j € I,, and the definitions of their derivati-
ves and integrals are similar. Let

2'(t) = (2(8), 25(t), .. 2 ()T, A'(t) = (af;(1))nxns

T T

T T T
/:c(t)dt: O/xl(t)dt,/xg(t)dt,...,O/xn(t)dt ,

0 0
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184 ZHENGXIN WANG, JINDE CAO, SHIPING LU

and
T T

/ At)dt = / aiy ()t

0 0 nxn

Let Z = {A € C(R,R"™™) : A(t+T) = A(t)} represent the set of all continuous matrix-
valued functions, with the norm || A[|,,, = maxco 7 [|A(t)||F, where

IA@)IF = [ D> (ay(t))?

i=1 j=1

Then Z is a Banach space. Suppose that C € C?(R, R"*") and C(t) = C(t + T). We denote

n n

€= i -3 0u(r, Cr= e [ SSS 0P Com e [3° a

i=1 j=1 i=1 j=1 i=1 j=1

Then C ) 5’1, O, are all finite constants.
The following lemma holds by calculation, moreover, it also can be found in books on matrix
analysis such as [6].

Lemma 2.2. Let a,b € Y and A, B € Z. Then the following relations hold:
(1) I|A+ Bl < |Allr + | Blr,

2) [ ABllr < Al ]| Bl r,

(3) |Ad| < [Allrlal,

(4) leA|lr < |e|||A||r, where € € R is a constant,

(5) la+b] < |af 4 [b].

These results, as well as conclusion (3), which shows compatibility of the Frobenius norm

and the Euclidean norm, are very crucial to obtain a priori bounds for periodic solutions to
Eq. (1.1).

Lemma 2.3 [9]. Let 0 < a < T be a constant, s € C(R,R) with s(t +T) = s(t) and
maxcio7] |5(t)| < «, then forall x € X we have

T

T
/|x(t) —z(t — s(t))|?dt < 2a2/\x’(t)\2dt.
0

0
Defining an operator D as follows:
D:Y =Y, [Dz|(t)==x(t)—Ct)x(t—r). (2.1)

It is easy to see that D is a continuous linear operator with | D|| < 1+ C.

Lemma 2.4. If C < 1, then D has its continuous inverse D~ with the following properties:
(1) |1D~

_1_6’7
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2) [DTHI(E) = f(O) + X2 [, Ct = (i = )r) f(t — jr), forall f €Y,

(3) ID-111(8)] < ”f "i,forazzf ey,

4) [ |[D7'f(e)|dt < A/ |f(t)|dt, forall f €Y,
0 1-CJo

(5) [Df)(t) = [DfI(t) + C"(0) f(t =), forall f € X.

Proof. Define a linear operator

E:Y =Y, [Ez](t)=C@{t)x(t—r).

Then |[Ez](t)| < ||C#)|p|z(t —r)] < C|z|o, so |E|| < C. Moreover, for all f € Y,

. J
[E/f1(t) = [ Ot = (i = D) f(t = jr),

i=1

which yields

S I Al
j=1

ZH (i—Dr)f(t—gr)| <
=1i=1

HC(t— (@ =D)r)|[plf(t—gr)| <

IN
.Mg
:u

112

1

<
I

/\

¢ fllo < aHfHo-

|M8

Since D = id — E and ||[E|| < C < 1 it follows that

D':Y =Y, D'=(id-E)" :zd+ZEﬂ
and | D1 1HE! _15 Forall f € Y,
00 oo J
(D7) = f(8) + D (B A@) = f&) + > J[Ct — (i = Dr)f(t - jr),
j=1 j=1i=1
furthermore,
1 [ < Ifllo
D~ A +; B0 < 725
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On the other hand, forall f € Y,

T T o j
/ D f1(0)dt = / 1)+ ST C - G — 1)) (= )| dt <
0

5 j=11i=1
T T 00 j

< / @)+ / C(t— (i — 1yn)|| 1£( — jr)ldt <
d o =1 lli=1 P

T

T T
. 1
< | e+ 30 / fOld < — / o

0

Therefore, the conclusions (1) to (4) hold, and the conclusion (5) can be obtained by a direct
calculation.

Lemma 2.4 is proved.

Now, we define

d*(Dx)

L:D(L)CX =Y, Le==— 3=, (2.2)
where D(L) = {z : * € C*(R,R"),z(t +T) = z(t)} and
N XY, [Nait) = —% orad F(z(t)) — grad G(z(t — 1)) + e().  (23)
d*(Dzx) .
Let z € ker L, one has e - 0, thatis, x(t) — C(t)z(t —r) = wit+we, where wy,ws € R™.

Since z(t) — C(t)z(t — r) is T-periodic, we have w; = 0. Let ¢;(¢) be a solution to z(t) —
—C(t)x(t—r) =e;, where e; = (0,0,...,1,...,0)" € R*. Let U(t) = (¢1(t), ¥2(t), ..., vn(t) €
~————

€ R K = (ki,...,k,)" € R*. Thenforallw = Y.  kie; € R", ¥(t)K is a solution to

z(t) — C(t)x(t — r) = w. Therefore, ker L. = {¥(¢)K : K € R"}. Furthermore, ker . =
T
= codimImL = R", ImL = {y €Y : / y(t) dt} . Hence, L is a Fredholm operator with

index zero. Define operators P, () as follows, respectively,

T
/ U(t)(t)dt .
0

T
P:X —kerl, Pr=VY{l)=sz———, @Q:Y —=>ImQ, Qy= T/y(t)dt.
JRLEI o

Then Im P = ker L, ker@ = ImL. Let Kp represent the inverse of Lye, pnp(r), S0 Kp :
ImL — D(L)Nker P.Since ImL C Y and D(L) Nker P C X, Kp is an embedding operator.
Furthermore, Kp is a completely operator in Im L, which together with (2.3), makes it is easy
to see that N is L-compact on {2, where (2 is an arbitrary open bounded subset of X.
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For the sake of convenience, we list the following assumptions.
0?F (x)

H1) There is a positive constant 7 such that (H(v)z,x) > n|z 2, where H(z) = —(———,
p n n ox2
T

for all v,z € R™.
(H2) There is a positive constant M such that

0G
z,— >0 or mz;

<0, forall i€, with [z;] > M.
8951-

O

(Hg3) There is a positive constant L such that |grad G(z) — grad G(y)| < Ljz — y|, for all
x,y € R™

(H4) There is an integer m > 0 such that |y(¢) — mT| < aand +/(t) < 1forallt € [0,T].

Since the matrices of H(z) and C(t) are symetric, it follows that C’(¢), H (x)C(t)C(¢t)H (z)
and H(z)C'(t)C'(t)H(x) are also symmetric for all x € R", ¢t € R. Therefore the matrices
C(t), C'(t), Hx)C(t)C(t)H (z) and H(z)C'(t)C’(t)H (z) have n real eigenvalues respectively.
Furthermore, the maximums of n eigenvalues of C(¢) and C’(t) are finite respectively, which are
denoted by Ao and A1, and \g < C, Ay < C, from [6]. Throughout this paper, we denote the
eigenvalues of H (z)C(t)C(¢t)H (x) and H (z)C"(t)C"(t)H (x) by p1, p, - - ., pn and gy, phy, oo il
respectively, moreover, we assume that pys := max;ecs, {max,cpn ter |pil} < +oo and py, =

= max;ey, { €%§?€R|Mﬂ} < +o00.

3. Main results. Based on properties of the difference operator D and Mawhin’s continuation
theorem, some results on the existence of periodic solutions of the neutral functional differenti-
al systems (1.1) are obtained.

Theorem 3.1. Under the assumptions (Hy) —(Hy), Eq. (1.1) has at least one T-periodic soluti-
~ 1
onifC < T and n > \/npy, T + /i + V2La + 2n LT + /2 oL + ny/A L T? +
n
+ 7”L>\0L1T.

Proof. Let )y = {zr € D(L)NX : Lv = ANz, A € (0,1)}. If z(-) € 4, then from (2.2)
and (2.3), we have

d? d
@(m(t) —C(t)x(t—7r))+ A pn grad F'(z(t)) + Agrad G(z(t — v(t))) = Ae(t). (3.1)
T
Integrating both sides of Eq. (3.1) over [0, T, we obtain / grad G(x(t — y(t)))dt = 0, that is,
0
foralli € I,,,

T
OG(x(t — (1) ., _
0/ o dt = 0. (3.2)

Now, we claim that there exists a constant ¢p; € R (which depends on the subscript i) such
that

|xi(to;)| < M, forall i€ I,. (3.3)
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In fact, if z;(t — y(t)) > M Vvt € [0,T],4 € I, then from (H2) we know

T

9G(z(t = ~(1)))
[P

which is in contradiction to formula (3.2). So there exists a constant &; € [0, 7] (which is related
to the subscript ¢) such that

For the same reason, there exists a constant 7; € [0, 7] (which is related to the subscript 7) such
that

xi(mi — () > —M Vi € I,. (3.5)

Case 1. If z;(§; — v(&;)) < —M, then according to (3.5) and the intermediate value theorem
for a continuous function we know there exists a constant ¢;; between &; — v(&;) and n; — v(1;)
such that iL'i(th') = —M,i € I,. Take tg; = t1;.

Case 2. If z;(& — v(&)) > —M, then according to (3.4) we obtain |z;(& — v(&))| < M,
i € Ip. Take to; = & — v(&)-

Combining Cases 1 and 2, it is easy to see that (3.3) holds. Let to; = k;T + to;, where k; is
an integer and to; € [0,7],4 € I, 80 |x;(t2;)| = |zi(toi)| < M Vi € I,,. Therefore,

t T T
|z (1) < |z (t2:) |+ [ |2} (¢)dt| §M+/|:c;(t)|dt§M+/|x’(t)|dt vt € [0,T], i € I,. (3.6)
i 0 0

to;

Moreover,
T
lallo < Vbt + v [ 00 dr (37)
0
It follows from Eq. (3.1) that

[dQ( (t) — Ct)x(t — ))+)\i radF(z(t)) +
et x(t—r e x

+ Agrad G(z(t — (1)), % (z(t) = C(t)a(t — 7“))} =
d
= [/\e(t), - (a(t) = C(B)a(t - 7"))} : (3.8)
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As [2"(t),2'(t)] = 0,[grad G(x(t)),2'(t)] = 0, it follows from (3.8) that
T

77/ [’ (0)7dt < |[H (x(t)2'(t), ' @)]] < [[H(2(t))2' (1), C"(#)a(t — r) + C(t)2'(t — )]+
0

|+ [e(), C(H)z(t — 7)]| + [[e(t), C()2"(t — 7). (3.9)
We have

[[H (x(6)a' (1), C"(0)a(t = r)]| = [[C" (0 H (a(6)a’ (1), a(t = r)]| =
= |[C" () H ((t)2"(8), x(t — 7)) <

< \/W/|z:’(t)|2dt. (3.11)

0

ISSN 1562-3076. Heniniuini koausarns, 2014, m. 17 N2
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Let v(t) — mT = s(t), then by Lemma 2.3 we can obtain the following inequalities:

lerad G(a(t — 7(1))) — grad G(a(t)), 2'(1)]| < L / Ja(t — () — 2(t) |/ (¢)] dt <

A
~
o
\ ~
]
-
|
w
=
|
S
=
o
QL
~
v
X

. !
lerad G(a(t — 7(1))) — grad G(a(t)), C'(De(t — )| < VA ( / x<t>2dt) x

T
X (/ lgrad G(z(t — v(t))) — grad G(x(t))th) <
0

T 2 T %
< v/2M\ La :z:’(t)th) ( x(t)2dt> , (3.13)
(o) (]

and

T
|lgrad G (z(t — (t))) — grad G(z(t)), C(t)2'(t — r)]| < V2 oLa / |2/ (¢)]? dt. (3.14)
0
From assumption (H3),

L+ gg := g1, for |z| <1,
< = <
ad Glo)| < Ll arad GO = el +an < { (A0 00 S
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Let Ay = {t € [0,T] : |x(t)] < 1}, Ao = {t € [0,T] : |z(t)| > 1}, then

N

lerad G(a()), €' (D)t — 7)]| < |[grad G(=(t)), grad G(a(t)]|2|[C" (D)t = 1), C'(B)(t — )| <

1
2

-

<\ﬁ(/x dt) <T+L2 dt>%<

< gv/MT (/:r 2dt) +L1f/g; ()2 dt, (3.15)

and

[gradG(x(t)), C(t)2'(t —)]| < (/x th)

+ I (/x dt) ( dt) | (3.16)

[e(), 2 (0)]] + [le(t), C"(®)x(t = )] + [[e(t), C ()2 (¢ = r)]| <

<e(/$ t) +ef(/x dt) +eﬁ(/Tx'(t)2dt)2, (3.17)

0
ISSN 1562-3076. Heniniuini koausarns, 2014, m. 17 N2
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1

T 2
where € = < / le(t)? dt) . Substituting (3.7) and (3.10) - (3.17) into (3.9) we obtain
0

T

n/|x'(t)|2dt < (T\/nu’M—l—\/uM—i-Laﬂ%—aLT\/Qn/\l +aL\/2/\o+nL1T2\/)\1+L1T\/n)\g) X

0

T

X /|x’(t)|2dt + (M nph, T + aLM~/20TAy + 2nM Ly T2 /X + 1 T2 /n)y +
0

1
T 2
+ g1V T + LiMA/nT g+ €+ eTv/nA + ey )\0) /$/(t)2dt +
0
+nTM?Liv/ A + gt MT/nA1 + M~/ T. (3.18)

Byn > T\/nph,+/itm + Lo/2+ oL T/2n\ +aLv/2 g +nL1T?/ X1 + L1 Tv/nXg and (3.18),

T
/ |2’ (t)|? dt is bounded. So there exists a positive constant M such that
0

T
JECRE (319)
0
which, together with (3.7), gives
lzllo < vnM + /nTM. (3.20)

From the definition of the operator D we know that, for z € D(L),
[Dz"](t) = [Dz]"(t) + 2C" ()2’ (t —r) + C" () (t — r),

which, together with Eq. (3.1), yields

2" (t)+ D! )\% grad F(z(t)) + A grad G(z(t — v(t)))| =

= D™ 'e(t) + 20" (0)'(t = r) + C"(B)a(t = r)],
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so by Lemma 2.4 we obtain

T
(/H Dl (¢ |dt+/|gradG< (t— <t>>>|dt+/|e<t>\dt+
0

T T
+2/C’(t)Frv’(t?")dt+/0"(t)F:r(t7“)dt) <
0 0

T

/]x”(t)|2dt <

0

_ [Ho\/TM; + GoT + VT + 2C,\/TM,Co(v/nM + /nTM)T] := M,

(3.21)

where Hj and Gy are the maximums of ||H (z(t))||r and |grad G(x(t — v(¢)))] on {x : ||z|o <
< v/nM + /nT M, }. Therefore,

. 1 LT 3
"t)] = (Zu;(t)y?) ( Z/ th) < \/nTM, Vit e [0,T),
=1 i=1 0

that is, ||2/|lo < +/nTMa, which together with (3.20), shows that ||z| < /nM + /nTM; +
nT Ms.
LetQ ={z € X : QNz =0,z € ker L}. If v € Qo,thenz = ¥(¢{)K, K € R" satisfying

—/gradG’ (t—~ t =

where p(s) is the inverse of ¢ — ~(t). '
In view of ¢;(t) = [D71e;](t) = e; + > ieq [They C(t = (k = 1)r)e;, we have

ki (t)] = k—l—Zk‘ <H0t— —Dre ) >
7=1

'ﬂ\*—‘

T
/1 ’Y'l grad G(¥(¢t)K) dt = 0,
0

\Y;
NgE
TL:']Q.

Q)

Q

)

|
\
>

3

and

i (t) Z(HCt— —1r)e ) SZH@:lcé::p,
g

Jj=1

where ! # i, forallt € [0,T]. Then |k;|—p> 7, |kj| < M. Otherwise, if |k;|—p > 7, |kj| > M,
then

K)z‘ = Z kjwji (t) = z'@bm Z k‘l]djjl
j=1

JFi
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> kil = plki| = pZIk‘I—Ik\ pZ|k\>M
J#

forall¢ € [0,77], and
T

1
0/1_7/(M(t))grad G(Y(t)K)dt # 0,

by assumption (H>). This is a contradiction. Therefore, |k;| — p3_7_; |k;| < M, which together
with > 7%, |k;| < /| K|, gives [ki| — /np| K| < M, thatis, [k;| < /np|K|+ M. Furthermore,

2

K= [ S 1512 | < va/aolK| + M) = nplK| + VM.
j=1

therefore, | K| < 1\fn On the other hand,

U(t) = ([D‘lel](t),[D_leg](t),...,[D_len](t)) =

o J oo J

=lea+d J][Ct—(k=Dr)er.....en+ > [ CCE— (k= Dr)en | =

j=1k=1 j=1k=1

oo j
=I1+> [[ct—k—-1r)1,
j=1k=1

where [ is the identity matrix, moreover,

[l = macx 19 r < HIHF+ZH max 1C¢ = (k= Dr)lllr <

tel0.T 7j=1k= 1
oo J
N 1L np
v llevm=vinTa =72
np /nM npM
Then [lz]lo = max,cpor [F(OK] < []|5] < Y22 YIM = My

C l=np C(1—np)
Now,ifweletQ = {z : z € X, ||z|| < V/nTM;++/nTMa+ Ms++/nM}, then Q1 UQy C Q.
So the condition (1) and condition (2) of Lemma 2.1 are satisfied.
If x € 0QNkerL, then z(t) = ¥(t)K, K € R" with ||z||o > +/nM, hence there exists an
i € I such that |(V(¢)K);| > M, t € [0,T]. Otherwise, |(¥(¢t)K);| < M,t € [0,7T], for all
i € I, then ||zllo = maxeor (3iy \(\II(t)K)ilz)% < /nM. 1t is a contradiction. It follows

T
_% /0 M erad G(¥(1)K)dt # 0 and

from |(V(¢)K);| > M,t € [0,T] that QNz =

WY s |
sgn (xz o > = (—1)%,s; € {0,1},7 € I,.
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Let
H(p,z) = pSxr+ (1 — p)JQNw,

where S = diag {(—1)®',(—=1)*2,...,(—1)*"} and J(z) = z for all z € R™. Therefore, for all
(u,z) € [0,1] x 9QNker L, H(p,z) # 0 and

deg{JQN,QNker L,0} =deg{H(0,-),2Nker L,0} =deg{H(1,-),Q2Nker L,0} =
= deg{id,QNker L,0} # 0.

Now, we know that conditions in Lemma 2.1 are all satisfied, therefore Lx = Nz has at least
one solution in X.

Theorem 3.1 is proved.

If we replace the assumption (Hs3) with the following assumption:

(Hs) There is a positive constant ¢ such that |grad G(z)| < {|z| 4+ w, for allz € R™.

Then the following theorem holds.

Theorem 3.2. Under the assumptions (Hy), (Hs2) and (Hs), Eq. (1.1) has at least one T-
1 and n > \/TZMSWT + \/a + 0T + flnTQ\/)\l + 1T/ Xo.

Proof. From assumption (Hj;) we obtain

periodic solution if C <
n

(+w = wy, for |z| <1,

(4 w)le| == ]z], for |z| > 1. (3.22)

lgrad G(z)| < l)z|+w < {

It follows from (3.8) that

77/ [’ (1) Pdt < |[H(x(t)’ (1), 2" (O]] < [[H(2(t)a'(t),C' (Bt —r) + C#)a'(t — )]+
0

+[grad G(x(t — 7(1))), 2'(t) — C" (W) (t — r) = C(O)2'(t — 7))+
+lle(t), 2'(t) = C'(t)z(t —r) = C)'(t - )] <

< [[H(x(8)2' (1), C' (Ot — )| + [[H (x(t)2'(t), C(H)2' (¢ — 7)1+
+|[grad G(x(t — v(1))), 2" ()] + |[gradG (x(t — v(1))), C"(D)a(t — 7))+
+[grad G(a(t — v (1)), C(O)"(t — )l + lle(t), " ()] +
+1le(t), C' (W)t = r)]| + [le(t), C()2'(t — 7)]]. (3.23)

LetV, ={t € [0,T] : [z(t—~(t))| < 1},Va = {t € [0,T] : |x(t—~(¢))| > 1}. Then it follows
from (3.7) and (3.22) that

. :
[grad G (a(t — 7(1))), ' (1)]] < ( / x’<t>2dt) (( [+] ) gradG(w(tw(t»)?dt) <
0

V1 Vo

=
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. :
1
( / x’<t>2dt) (T + o |3T)¥ <
0

IN

IN

T 2 T 3
(/x'(t)th) wiVT + 0. MNnT + 06T (/x’(t)2dt) <
0

0

T % T
(wiVT + (Vi) ( / a:’(t)th) T / 2 (1) dt. (324)
0

0

IN

We can also obtain the following two inequalities:

l[erad G(z(t — (1)), C"(D)x(t — 1)]| < VA (wiTMv/n + nby TM?)+

N|=

T
+\/Y1(w1T%\/ﬁ+2n£1MT%) (/ :L"'(t)th> +

0

T
+ 00T/ N / |2/ (t)|? dt, (3.25)
0

and

T 7
|lgrad G(z(t — y(t))), C(t)z' (t —)]| < \/%(wlﬁwlM\/ﬁ) (/x’(t)zdt> +

0

T
0TV N / o (1) 2t (3.26)
0

Substituting (3.7), (3.10), (3.11), (3.17), (3.24), (3.25) and (3.26) into (3.23) we obtain

T T

0 [18OF < (T faiiy + i + 6T + T/ +67V/5) [ 10
0

0
+ (M /ngdy, T+ w VT + 6 MVAT + w T2 y/ndy + 206 MT2 /X +

1
2

T
+wivVT Ao+ 1M~/ 1T Ny) (/ x/(t)2dt) +
0

+ V(i TM/n + by TM?) + M /n\ T. (3.27)
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Byn > T'\/nuhy,+/km + 0T+ 0nT?/ X1 +£1T+/ N and (3.27) we know there exists a positive
constant M3z such that

T

/ 2 (8)[2dt < M. (3.28)
0

The remainder proof is similar to Theorem 3.1.

Theorem 3.2 is proved.

oG
Remark 3.1. 1t is easy to see from assumption (H>) that the sign of Tig is different for
T
everyt € I,.

Remark 3.2. As the coefficient matrix C(t) is not a constant matrix C, the results in this
paper can not be obtained from [1, 2,4, 5, 8—11].

4. A numerical example. In this section, we consider a example and give two simulations to
illustrate the theoretical results of Section 3.

Example 4.1. Consider the following systems:

1 1 "
o1 sint 61 cost J
z(t)— x(t—2)| + pn grad F'(z(t))+
1 .
@ cost 674 sint
sint
ardGlale )= (B}, @

1 1
where z(t) = (z1(t),22(t))", F(z) = 22 + 23, G = — (2 4+ 23) and ~(t) = — cost. By

32 16
1
calculation, we obtain A\g = A\ = 0.0221, a = L = L1 = —, T = 2n,n = 2, uyy =
16
~ 2 1
= p, = 0.002. It is easy to verify that (H;)- (H4) hold. Furthermore, C' = £ < - and

64 3
n=2> /npy T+ /Bar+V2La+v2n LT + /2 oaL+ny/A L1 T? +/nXo L1 T = 1.5196.
Therefore, it follows from Theorem 3.1 that Eq. (4.1) has at least one 27-periodic solutions.
Simulation results are shown in Figures 4.1 and 4.2. As showed in Figures 4.1 and 4.2, there
exists a periodic solution, and solutions (x (t), z2(¢)) which start from 4 initial values tend to it.
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1
0 50 100 t

(®)
Fig. 4.1. Evolution of (a) the z1(¢) and (b) the z2(¢) with 4 initial values.

_3 1 1 1 1 1 ]
-2 -1 0 1 2 3 x,(®

Fig. 4.2. Phase plane of systems (4.1) with 4 initial points.
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