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Phase diagrams and dynamic properties of strongly anisotropic, easy-plane antiferromagnets in the

presence of external pressure are studied. It is demonstrated that the phase with tensorial order

parameter is possible in the system. Spectra of bound magnetoelastic waves are studied in the vicinity of

the phase transition points.

PACS: 75.50.Ee

Introduction

Special attention has recently been focused on

the study of peculiarities of the behavior of easy-
plane magnets with one-ion anisotropy [1-3]. Sys-
tems with the energy of uniaxial anisotropy compa-
rable or greater than the energy of the exchange
interaction have attracted considerable interest.
First of all, it is connected with the fact that such
magnets are low-temperature magnets. They are
[4,5]
NiSiF, 06H,O, NiZrF, 06H,0O, FeSiF; 06H,O0,
CsFeCl; , and some others. The behavior of these
magnets in a transverse magnetic field has been
studied extensively [1,3] and interesting peculiari-
ties of their properties, such as the emergence of the
quadruple phase (QU) and discontinuity of phase
diagrams when the value of the magnetic ion spin is
greater than unity, have been revealed. The dynami-
cal properties of such systems have also been stud-
ied extensively in the vicinity of the orientational
phase transition (OPT).

However, the behavior of such magnets in a
longitudional field (parallel to the basic plane) has
been studied insufficiently since investigations of
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this case were limited to small anisotropy (B << J,
where [ is the constant of one-ion anisotropy, and
J is the exchange constant) [6]. The influence of
mechanical boundary conditions on the properties of
strongly anisotropic easy-plane magnets and spectra
of elementary excitations with allowance for mag-
netoelastic interaction have virtually been ignored
in those studies.

In this study we have focused our attention on
these factors.

Phase diagram of a strongly anisotropic
easy-plane antiferromagnet

The system under study is a strongly anisotropic
(B >>J) antiferromagnet with the Dzyaloshinski’s
exchange. The resulting magnetic momentum lies in
the easy plane (XY), as does the applied external
magnetic field. Let us determine the influence of
the external pressure on the static and dynamic
properties of the magnet. We assume that the exter-
nal pressure is applied parallel to the easy plane. As
we shall see, this is the most interesting case.

The Hamiltonian of the system has the form
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Fig. 1. Orientation of the sublattice magnetic momenta.

where S¥ is the spin operator at site n of the ith
sublattlce D(n, — n,) <0 the Dzyaloshinski’s ex-
change, v is the constant of magnetoelastic (ME)
exchange, A and n are the elasticity moduli, u]-k(ni)
is the deformation tensor, [J(n; —mn,) >0 is the
exchange integral, P is the external pressure, and
H is the external magnetic field.

In (1) the first three terms describe the magnetic
subsystem, the fifth term describes the elastic sub-
system, and the fourth term describes the ME
exchange. Further investigations are carried out in
a low-temperature limit (T << T, , Ty, is the Neel

Hy== 3 HS 43 S +5)-F 3 A

n, n,
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1 . .
= A+ B (S3)7 + 24(S) + 5ty + iy, +

Here we denote
Sy =S ISk

H,=H cos 9, - 0S¢ 0L cos2y + Dy sin 2y,

AZ- = u;x cos® Bi + uiy

Cl=(1) @,

= ud},) sin 26, + 2u},

where J, is the zero Fourier component of the
exchange integral, and D, is the zero Fourier com-
ponent of the Dzyaloshinskii exchange. Here

=3 Jo).
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temperature) since in this case it is possible to make
all calculations analytically. Without lack of gener-
ality we can assume the magnetic ion spin to be
S =1. The orientation of the sublattice magnetic
momenta for the system described by (1) can be
represented as shown in Fig. 1.

Rotate the coordinate system around the axis
(perpendicular to the plane of Fig. 1) so that the
new quantization axis & would be parallel to the
vector of magnetization of the ith sublattice. In this

local coordinate system define the new spin opera-
tors Sil , 8%, and Si as follows:

i

S Sii cos O, + (—1)”1531_ sin ©,

SY = (_1)i+15’£1. sin 6, + S cos 6, , (2)
0, +6 06, — 6
1 2 1 2
SZ = Si s l-IJ = 2 ) ¢ = 2

i i

We carry out further calculations with use of the
Hubbard’s operators [3,6], which make it possible
to exactly take into account the one-ion and ME
exchange. These operators are built on eigenfunc-
tions of the one-site Hamiltonian %(ni) . After
separation of the mean field in the exchange part of
(1) and transition to local operators (2) the one-site
Hamiltonian assumes the form

zz

Lo A) (555, 8,50+ (Ch+ CY) (5,85 + S55T) +e.g.§.

3)

DSZ O= DSZ 0= 0S¢ O,
0 . )
%H sin §, - [s¢ Dgo sin 2¢ = D, cos ZIJJEE ,
B, = -2i %‘;Z cos®, + (-1)*1ui_sin eié :

cos 6, + (-1)*1u

5.0 . O
C2 =-2 E”“ 42 SiN Big,

(3a)

Solving the one-ion problem with the Hamiltonian

3)
Hn) , (M) = Epytb, (M) .
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we determine the eigenvalues and eigenfunctions of 7‘6 (M is the magnetic quantum number. For S =1
M=-1,0,1):
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The Hubbard’s operators are built on eigenfunctions by standard rules [9] YQTM =| P, (M) 0 lIIJn,(M)|
and describe the transition of a magnetic ion state M to state M'. These operators are related to ‘spin
operators through familiar relations [9].

From the condition of free energy density minimum

F=%-ThZ, (5)

where %, is the free energy of an elastics subsystem which is determined by the last term in (1)
Z=Y exp(-Ey/T)
M

and Z is the partition sum. Determine the equilibrium (spontaneous) deformations u](.g)(ni). They appear to be
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As is evident from (4) and (6), the energy level
corresponding to the ground state is E, whose
analytical expression in our approximation is

2 I7 2
B n

H.H,

2‘:) e dT L sin 20+ (119

(8)

In (8) the terms proportional to v2,n are rather

cumbersome and we will omit them here. Near the

phase-transition lines these expressions are impor-
tant and we take them explicitly into account.

In this case the free energy density can be repre-

sented in the form

Fi=F+Ef, (9)

i = A+ ”(H2+u2 +y

2 2 2
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u,,) + Pu,.

Using (9), we determine the phases in which the
system under study may exist. Suppose that the
system has such values of field H and pressure P
that the mean magnetization at the sites is oriented
as shown in Fig. 1. With an increase in the field to
a certain value H 2 (at constant pressure), the
vector of mean magnetization is oriented along the
direction of the magnetic field H. In this case the
angle ¢ =0 and  is determined from the condition
of free energy density minimum (9). This condition
leads to that in a phase with Y =0, Fi =0 from
which it is easy to obtain

H+5%0D |
27, [3%0

cos Y =

One can demonstrate that in the H , vicinity the
mean sublattice magnetization approximately
equals unity, [3¢0= 1. The phase which is realized
at H > H_, is called the FM1 phase. We determine
the value of H, from the ME wave spectra.

A further increase of the field leads to the fact
that the vector M =M, + M, orients along the
direction of the field (i.e., § =P =0) as well as
vectors of sublattice magnetization. Such configura-
tion occurs at H =2 H , , where H_, = 2], - |D | .

The phase realized at H > H 5 is called the FM2
phase. Of most interest is the case of small fields in
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which the so-called quadruple (QU) phase is real-
ized. In this phase the magnetic vector order pa-
rameter equals zero [7].

For our system it means that the mean sublattice
magnetization and the mean magnetization at the
site equal zero. It is well known [7] that for
easy-plane ferromagnets in a transverse magnetic
field the realization of a QU phase is accompanied
by the inversion of energy levels; i.e., the E level
becomes the lowest level. In the system under
investigation there is no such inversion and the QU
phase is realized due to certain purely quantum
effects.

Let us discuss this question in detail. Let us
assume that in a certain field the system indergoes
a transition to the QU phase. The magnetic phase
realized in fields H , < H < H, is called the QFM
phase (quadruple ferromagnet). In our geometry
the pressure plays the role of an effective anisotropy
with the easy magnetization axis (EMA) parallel to
the OY axis [6]. At fields close to the field of the
QFM-QU phase transition, as follows from the
analysis of the free energy density [9] its minimum
corresponds to values of the angles and is close to
the following: ¢ =m/2, Y =0; i.e., the vector of
mean magnetization at the site the vectors of the
sublattice mean magnetization tend to «turn» along
the «effectives EMA. For mean magnetization of
sublattices we obtain

IIS%D= 4 1;[ cos (P + (=1)2HN¢) . (10)

At P =0 and H =0 the system is in the QU
phase since this result may be interpreted in the
following way: there is no distinct axis in the
system and all the directions in the basic plane
(XY) are equal. Therefore, magnetizations at differ-
ent sites may be directed arbitrarily and their aver-
age equals zero. This situation is similar to the one
in which the QU phase is realized in strongly
anisotropic easy-plane ferromagnets [7].

As is evident, the ground state of an AFM at
P =0 and H =0 corresponds to the eigenvector |10
of the S% operator:

W, (1) =0

With increasing pressure the mean magnetization
should be turned along the axis of the «effectives
anisotropy (OY). The ground state of an AFM is a
superposition of the eigenvectors |1 0and | —10of the
S¢ operator: , (1) = cos |10+ sin §| 10 Such su-
perposition of the vectors |[10and |-10leads to the
quantum redaction of the spin. This effect is charac-
teristic of easy-axis magnets in a magnetic field
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Fig. 2. Phase diagram of an easy-plane AFM in the plane (P, B).

perpendicular to an easy axis. In our case this effect
is caused by the presence of an external pressure,
which plays the role of uniaxial anisotropy.

In the AFM under study the two described quan-
tum effects account for the existence of the QU
phase. It turns out that the QU phase exists up to
pressures determined by the formula

vP
9
=g_J0_2"0’ (11)
n
where a, = v2/2n .

This expression can be obtained by investigating
the existence domain of a phase with nonzero mean
magnetization. In Fig. 2 we show the phase diagram
at H = 0 in the plane (P, B). The field of QFM-QU
phase transition (H,) can be determined from the
ME wave spectra. The behavior of angles and
sublattice magnetization as a function of external
magnetic field is shown in Figs. 3 and 4, where we
denote

5 1,2
[l] :&4. DO +ﬁ d =PV/r]
0 4]0 6f(2) 2]0 >0 )

Spectra of bound ME waves

The dynamic properties of magnets have several
special features in the vicinity of orientational
phase transitions. It is well known that allowance
for the ME interactions leads to hybridization of
elementary excitation [3,6]. Although the ME ex-
change is weak in the vicinity of OPT, precisely
this parameter plays the decisive role in the dyna-
mics of a system [3,6]. To investigate this question
we represent the deformation tensor as a sum of two
terms: spontaneous deformations u(g)(ni), which are
determined by (6), and the dynamic term ”;(}e)(”i):
which corresponds which to the lattice oscillations.
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Fig. 3. Dependence of the sublattice magnetization on the ex-
ternal magnetic field.

The latter may be written in terms of phonon
operators as follows [8]:

@g:%x
exp (ign.) )
l b2, 2) @@, + ex@)ay) |

where e,(g) is the unit vector of a phonon polariza-
tion, A =1, £, T, m is the mass of a magnetic ion,
N is the number of sites in a lattice, w\(q) = ¢,q is

b4
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Fig. 4. Dependence of the angles of sublattice orientation on
the external magnetic field.
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the dispersion of a free phonon, and ¢, is the
velocity of polarized sound.

After separation in the one-site Hamiltonian (3)
of a part proportional to u(}Q)(ni) and its quantization
in accordance with the given formula it is possible
to write the Hamiltonian describing the processes of
magnon-phonon transformations:

7, = > E%}E‘Q%{J£f4'§£‘g§}§25’
n oM a O

where

i 1 M
?,,ll(q) = IN Z (bq,)\ + b;’)\ ) T”z‘ @ (g, N,
q,\

o are the root vectors [6,9], and Tz/[(“)(q, A) are the
amplitudes of transformations. !

Further, we consider the simplest and the most
interesting case in which the wave vector is parallel
to an external field H. In such geometry the only
nonzero components of the unit vector of phonon
polarization are ej(q), eY(q), and é(q) and the
corresponding amplitudes of transformation have
the form

_ _ v H; . O .
T}z, Yq, )= Tn_“(q, )= > Tg_(q, D) qef ?g cos 20, - 4—[:0 sin 261.Dsm2ljJ ,
i 7 J ] i

O

Y ] .
T, D =13, ) = O 5 7@, D q efvia,) - vi(a,) sin 2,

T;;O(q, l) = ng_i(q, I) = (-1y*! % ng(q, ) q efty)(as) - y(ag)) sin 29 ,

7

T}lf(q, t) = 72;(61, t) = (-1y*! % ng(q, ) q e?(yé(m) - yé(az)) cos 2y ,

O

- _ v 1 . .
T}l} (g, t) = T”j“(q’ f)=- s ng(q, t) q 7 g(—(; cos 26]. - % sin 26].Dsm 20,
] ]

. (12)

T 0= 19, )= (Y 5 700, 1. ely)le) = vi(og) cos 24
J 7 J

- _ -\ .
7@ 0 =g 0 = 1Y 5 T (9, D g e sin b,

V . .
Mg, 0= =T}, 1 = T8 (3, 0 g iy/(@)) + v/(a,) cos

T, 0 = T3, D = 4 T) (0, D) 4 G050) + v/(ag) cosw

The functions y/(a) in (12) are determined from
the relation between the spin operators and the
Hubbard operators [6] and in the given geometry
yé((x) ynf(a) = 0 for all a, » is the number of the site,
and j is the number of the sublattice.

The spectra of ME waves are determined by the
poles of a full Green’s function

Gmn, T, n,T) =~ Df"f’g(r)f’;,“(r') 0,

where T is the time-ordering operator, and Y3(1) are
the Hubbard operators in the Heisenberg representation.

The Fourier transform of the Green’s function to
be found is related to the irreducible transform by
the Larkin part Z?j“'(k, w,) and the amplitudes of
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transformation T?(k, M) are related by the Larkin-
type equation

G%?'(k, W) = Z;?‘j?'(k, w,) + Ik, ) o(RP(k, w) +

+ z;?ka, oon)T;'.‘11(k, AND, (k, w,) T;?;z(—k, )\)G]‘?‘j‘,"(k, w,) .

(13)
In (13) Dy(k, ) = 20 (k)/(w2 - (k) is the

Green’s function of a A-polarized free phonon, and

>9(k, w,) is the six-dimensional vector, which in the
7 n

block notation has the form

2 (k, w,) = %;?1 (k, ), =5; (k, wn)g,
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where the three-dimensional vectors Z?j, (k, w,)
have the form

z;'x] (k, ) = z“1cf' (-a,) Z%%(k, w,) ,

¢,(0) = (yf (@), V@), YE(-0)) .

The six-dimensional matrix is f/'(k) =o' OV,
and o! is the Pauli matrix

O/ —y+ —y+0

V = EV+§ \Vasks V+—E
3 + = +0

A v vy

V& -n') = J(n - 1) cos 2y + D(n — ) sin 2y ,

1
Vi - ) = 5 V8@ - ) - J(n - )2,

Do —

Vi(n - n) =

The six-dimensional vectors P;‘ (k, w,) can also be
represented in a block notation

P (k, @) = (Pji(k, w,), Pyi(k, @),

while the three-dimensional vectors P?j,(k, w,) are
determined by the relation

P;?‘j,(k, w,) = z cj(a1)G]‘?‘j91(k, w,) -

%

Equation (13) can be solved due to the <split»
dependence on index a. Finally, the dispersion
relation in the mean-field approximation for the

_ 1o a ME waves has the form
VI =) =4 V@ =) + T (n = )3,
U= @y —y)HE (g +yx)*2=0, (14)
[} oo [}
where
k —V++k§b GY(w )y (a)? + Dyl ) b(a)b(B) G2 e T“k)\TBk)\'H
Yok, w,) = ()S(G) 0(W)Y(0) 1= 0yD,(k ) (@bBGH(W,)Y (BT (k, T (=k, )E,
(15)
y3(k, w,) =
D,(k, )

0
=V* (k) %(G)Gg(wn)vg(a)vg(-a) +
0O

1= O\nwDy(k, w)

O
b(a)b(B)GS(,) GB(w, )Y (QV(-B) T %(k, A) T F(-k, N)@

O

Oy = TSk, N) z;?j?’ (k, ®) 7;0" (k, N)

Here we sum over o, 3, A , and \'.

As is evident from the analysis of (14) in the
QFM phase, the transverse polarized ME waves (1
and t) «become entangle», while the equation for
the longitudinally polarized wave splits out (1) and
its spectra has the form

(k) = @RI~ ay/T) -

However, in the vicinity of the OPT QFM-FM
phase and QFM—QU phase it is possible to uncou-
ple Eq. (14) with respect to polarizations. Let us
consider the dynamics of a system in the vicinity of
the QFM~-FM1 phase transition. In this case (see
above) ¢ =0, cos 2y = -1, and cos ) =0, while
the mean sublattice magnetization is ES§D=1 It
follows from (12) that the only nonzero amplitudes
of transformations are T10(%, ) and TO!(k, ¢) and
only ¢-polarized phonons interact with the magnetic

1208

subsystem. The equation 1 - (y, + y3)2 =0 decom-
poses in the vicinity of the QFM—-FM1 transition
into three equations, each describing quasiphonon
oscillations of certain polarization. The solutions of
these equations are

w%(k) = w%(k)(1 - ao/Jo) ,
wip(k) = (k)1 - ay/4T )

ak? + [(H? + HID|)/2],] - d
(k) = () AT

(16)
From the condition [(H? + H [D|),/2J ] = d, = 0 we
determine the field of a QFM—FM1 phase transition

) 1,2
D] 2 d
Hp=-— +DB4 "2‘1'0]0% (17)
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It follows from (16) that at the point of OPT in
a long-wave limit (ak? << ag) the spectrum of ¢-po-
larized quasiphonons softens:

w, (k) = wy(k) ,
wy (k) = w (k) (18)

k2
%@Fﬁ@%;,

while the spectrum of quasimagnons is determined
by the expression

EXk) = 2] (ak? + ay) . (19)

Thus t-polarized phonons strongly interact with
magnons in the vicinity of the OPT (QFM~-FM1).
Their spectrum softens while in quasimagnon spec-
trum the ME gap appears.

The value of the gap, as follows from (19), is

wme = V—Z%EO : (20)

The results (18)—(20) obtained by us precisely
coincide with the results for slightly anisotropic AFM
[6].

Of special interest is the dynamics of a system in
the vicinity of the OPT QFM—-QU phase since this
case has not been investigated previously.

As we have noticed above, near the point under
study ¢ = /2 and g = 0, while the mean sublattice
magnetization equals zero: [3¢0= 0. Hence V** =0
and therefore y, equals zero (15). The dispersion
relation (14) has a more simple form:

1-4y3=0. (21)

It should be noted that in this situation
T10(k, 1) and T%!(k, 1) amplitudes of transformation
differ from zero T10(k, t) = T*!(k) = 0 by virtue of
infinitesimally small H/B ratio. Equation (21) ac-
cordingly splits into equations, each of which de-
scribes quasiphonon oscillations of certain polariza-
tion. These equations have the solutions

wr(k) = wp(k) |
ak’ + H? - H?
ak? + H? - H? + 2a,

wpy, (k) = wi(k)

(k) = wi(k) (22)

where
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Here H_, is the field of a OPT QFM-QU. At
the point of a transition in a long-wave limit
(ak? << a,) the spectrum of t-polarized quasi-
phonons softens:

w? (k) = wi(k)ak?2a, (23)
while in the spectrum of quasimagnons
E2k) = (ak? + 2ap) 2y +2a;) , (24
the ME gap appears
w,,= 2V a, . (25)

As is evident from the relations (18) and (23), in
the vicinity of the point of OPT QFM—-QU phase
the soft mode is a T-polarized quasiphonon mode,
while at the point of OPT QFM-QU phase a
t-polarized quasiphonon mode is a soft mode. There-
fore, in the QFM phase (at H, < H < H,) two
transversely polarized modes interact with the mag-
non branch.

Note that the value of ME gap in the spectrum of
quasimagnons in the QU-phase is V2 times larger
than the gap in the vicinity of a transition to the
FM1 phase. Besides, as follows from (20) and
(25), the ME gap suffers the so-called exchange
amplification characteristic of antiferromagnets.

From the condition H, < H, we obtain the
value of a one-ion anisotropy constant at which the
above-described effects are realized

[5>]0+d0+2a0+§(]0+d0+2a0)2+

e 2
+ DX +4d, - 4D | VDZ/4 + ] d, E

Conclusions

As we have noted recently, anisotropic magnets
have attracted considerable attention. Peculiarities
of their behavior were studied in many papers
[1-3]. However, the influence of mechanical bo-
undary conditions on the properties of such systems
was virtually neglected. In the present paper it is
demonstrated that the presence of mechanical
boundary conditions (external pressure P) leads to
a series of specific features in the behavior of
easy-plane AFM.

In particular, these peculiarities exhibit themselves
in the QU phase. We show that this phase is formed
due to the presence of two quantum effects, one of
which is characteristic only of the easy-plane magnets
and the other is characteristic of the easy-axis magnets.
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