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The influence of the transverse magnetic field on the electron mobility in a quasi-one-dimensional
channel along the liquid-helium surface is investigated. The mobility calculations are carried out by
using the Boltzmann kinetic equation and the criteria for the validity of this approach, which are
different from those for two-dimensional systems, are established. Two different limiting regimes
corresponding to different roles of the electron-electron interaction in the quasi-one-dimensional electron
system are considered. The mobility is shown to be a decreasing function of the magnetic field. it is
shown that the temperature dependence of the mobility in the presence of the magnetic field, as in the

case of zero field, is a nonmonotonic function.
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In the last decades the investigation of low-densi-
ty electron systems localized on the liquid-helium
surface became one of the developing directions in
the physics of systems with reduced dimensionality.
In addition to the well-known features such as
purity and homogeneity, these systems are very
attractive because of their ability to vary their
properties through external fields or constraints.
The influence of a magnetic field is especially inter-
esting because it drastically affects the energy spec-
trum of electrons and the character of their motion.
In the case of a quasi-two-dimensional (2D) system
of surface electrons (SE) over the flat surface of
bulk helium, the energy spectrum in the presence of
a magnetic field B along the z axis (electrons are
located in the xy plane parallel to helium surface)
is given by the Landau levels (n + 1/2)fi0_ ; where
o, = eB/mc, in addition to the quantized energies
A, along the z direction [1].

In the last years quasi-one-dimensional (Q1D)
electron systems over the liquid helium surface were
predicted theoretically and realized experimentally
[2]. In such a Q1D system formed due to the
finiteness of the curvature radius R of liquid helium
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either along parallel channels on the surface of
dielectric substrate with linear grooves or between
two dielectric polymer sheets meeting at a sharp
angle, electrons are confined across the channel near
its bottom due to the holding electric field E,
normal to the channel axis with a confinement
frequency @, = (eE J_/mR)V 2, In the presence of a
transverse magnetic field (along the z direction) the
energy spectrum of the electron in the Q1D channel
can be written as [3]

n2k2
En,=2—"+(n+1/2)n£z+A,, (0
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where k is the wave number along the x direction,
the hybnd frequency Q= (0 + )72, and the
effective mass is m* = m.Q2/u)(2) The electron wave
function is given as
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Here the effective magnetic length is (l:)2 =H/mQ,
and Y=—hmckx/m$'22 is the y coordinate of the
center of the electron orbit; H (x) is the Hermite
polynomial, and L is the size of the system along
the x direction.

The energy spectrum E, (k, , B) for electrons
localized in the Q1D channel reveals interesting
peculiarities in the electron transport coefficients.
Our aim in the present work is to calculate the
electron mobility along the Q1D channel in the
presence of B and to analyze the applicability of the
Boltzmann kinetic approach in the same manner as
the authors performed in Refs. 4 and 5. To begin
with, we derive the criteria for the applicability of
this approach in the case of Q1D electrons in
magnetic fields. Here the equilibrium distribution
function of the electron in the nth subband is
approximated by the Boltzmann factor given by

(2"71!1&1/2[;)1/2
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Note, however, that in the presence of magnetic
field there are constraints to be imposed on &, due
to the structure of @,(y) given by Eq. (2). The
magnetic field mixes electron motions along the x
and y directions and the y coordinate of the center
of electron orbit depends explicitly on k.. The
electron which moves along the y axis can therefore
escape at some values of &, , from the region of the
applicability of the parabolic confinement. This can
modify significantly the conditions for the normali-
zation of the distribution function f, 4(k,) and for
the wave function @,(y) in comparison with the case
of B =0 considered in Refs. 4 and 5. To clarify this
situation let us assume that the y coordinate of the
electron satisfies the condition |y} < L, , where L_ is
the size of the system along the y axis. In order to
make reliable the applicability of a parabolic-poten-
tial approximation for the electron confinement,
which is suitable for y << R, L must satisfy the
inequality L, << R. The condition |Y] < L o must be
also satisfieé’. We must therefore impose the upper
bound lkxl < mQAL /hw. in order to perform the k,
integration of the ﬁoltzmann factor. However, only
the values of k, which satisfy kg < k%- = 2m*T /h?
contribute substantially and &y plays the role of the
maximum k, in the integral of f o, . If kp is
significantly smaller than the upper bound of %, ,
then that condition does not affect the integration
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of f,o over k, because the effective cutoff takes
place at significantly lower wave numbers than the
limiting value of &, . The standard normalization of
[0 With infinite limits in the normalization integral
is therefore valid if the condition 2m'T /#2 <<
<< (mQZLy/fimc)z is satisfied. By substituting
the value of m®, which appears in Eq. (1), this
inequality can be easily transformed into

co% Ly 2
T<<m|—s||-%|. (s)
207 1 I
e )
Assuming that the above condition is satisfied, we
can write the normalized f, (T) as

2
2nh2 T/ | (_ L A (6)
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where
Z,=Y exp [- Zl—?&)wiz[i + coth [?;J] .
n=1

The quantity L o must be larger than the scale of the
electron localization across the Q1D channel, which
is of the order of the effective magnetic length [ .
As shown in Ref. 3, I7 is always smaller than the
scale of the electron localization y, = ('h/mmo)'/ 2in
the case of B=0. For y,= 1075 cm (Ref. 4), the
inequality I7 < y; << R will than be well satisfied.
This assures the validity of the approximation of a
parabolic confinement potential along the y axis for
y << R. For this reason, Lz/(l:)2 >> 1,

Another problem stems from the normalization of
¢,(»). Considering the conditions under which the
finiteness of the system along the y axis (finite
value of L ) does not influence the integration, we
see from ﬁq. (3) that the range of y, which is
relevant to the integration of ((p”(y))z, is limited by
the condition |y - Y|< 7 . Since I} << L, . the
effective cutoff in the integral takes place at values
of y significantly smaller than L  if, in turn, the
condition |Y] << L, is satisfied. 'lyhis can be easily
seen if the integrand is rewritten in terms of the
variable [y - Y|/I7 , after which the dependence of
the normalization integral on Y moves into the
limits of the integration. As a result, lower and
upper limits of the integral can be extended to & «.
Assuming Y(k;) S 7 <<L,  , we obtain the in-
equality which is formally t?xe same as Eq. (5) but
without the large factor Lz/(l;)2 on the right-hand
side. If the inequality
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is satisfied, then Eq. (5) is also satisfied and we
obtain from Eq. (7) the following condition by
substituting the expression of the hybrid frequency
Q:

mc < Amo , (8)

where the coefficient A depends on the temperature
and the frequency w, as

2

AT, wp) = % (ilw.‘l] {1 + [1 + 16(ftw0/7)’2] v } :

¢
The Eq.. (8) should be satisfied in order to have

reliable expressions of @,(y) and £, o . The inequal- .

ity (8) gives the estimate of the upper value of w,_ ,
and consequently of B, under which we can employ
the usual Boltzmann transport equation, as devel-
oped in Refs. 4 and 5. Note that in 2D electron
systems the tranmsition from the quantum limit
where o >> T/f to the classical regime where
© << T/h comes from the change in the occu-
pation of the Landau levels with the temperature.
In the Q1D charged system with parabolic-poten-
tial confinement across the channel, limitations for
the applicability of the standard classical approach
given by the condition (8) are based on other
grounds, i.e., due to the constraints imposed on the
normalization procedure of the electron wave func-
tion and the Boltzmann distribution function. The
inequality (8) relates the upper bound of the cyclo-
tron frequency which is given not only as a function
of the temperature, as in the 2D case, but also a
function of the confinement frequency @, across the
channel.

The range of values of the magnetic field and the
clamping electric field, which satisfies the condition
0, < Awy for the validity of the classical Boltzmann
approach to the electron mobility, is shown in
Fig. 1, where the coefficient A was evaluated for
the curvature radius R = 5-10~4 cm. Note that for
limited values of o, the separation #Q between the
energy subbands is always larger than #iw, in the
case B=0. It was shown in Ref. 4, that A, is
comparable to T for all reasonable values of holding
electric fields. For this reason, the Q1D electrons in
the presence of a magnetic field still form a mul-
tisubband system, and we must take into account
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Fig. 1. Dependence of the magnetic field on the holding clec-
tric field B(E,), defined by the equation @ (B) = Awy(E ), for
three temperatures. The curves show the region of the validity
of the classical Boltzmann approach to the calculation of the
electron mability along the Q1D channcl, given by inequa-
lity (8).

all subbands in the calculations of the electron
mobility.

We have calculated the electron mobility in the
Q1D channel in the single-particle approximation
(SPA) and in the complete control approximation
(CCA), where the influence of frequent two-elec-
trons collisions is taken into account in the struc-
ture of the electron distribution function in the
presence of a driving electric field E|| along the x
axis. The procedure is straightforward and the for-
mulas are quite similar to those in Ref. 4 with few
replacements due to the introduction of Q and m*.
The calculation gives the following expression for
the electron mobility in the Q1D system within
SPA:
2e ”"’% "

T Q=——FT——|——
Mh D=5 m*Z (T, Q) \TQ
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(10)

vg';)(x) + vg"g)(x)

where vg';)(x) [v(e';)(x)] is the collision frequency of
an electron in the nth subband due to electron-rip-
plon [electron-atom] scattering.

We assume in the complete control approxima-
tion (CCA) that the electron system can be charac-
terized by a drift velocity 4, when the frequency of
electron-electron collisions is v{® >> v, vg"g)
Under this regime, the electron momentum is effi-
ciently redistributed between the carriers, which
leads to a shifted distribution function {6,7]. The
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advantage of the CCA 1s that the kinetic equation
can be used for the calculation of electron mobility
1n the case of strong enough electron electron inter-
action without using an exphicit form of such an
interaction The role of electron-electron collisions
in the Q1D system with a more complicated nature
of the electron motion 1s not well established at this
time One can hope, however, that this approxima-
tion would display the mamn features of the electron
mobility in the correlated Q1D system 1n some
range of the electron densities Note that for B =0,
the mobility caiculated in CCA differs from the
one-electron mobility, both qualitatively and quan-
titatively, since 1t 1s nearly three times smaller at
T <1 K [4,5] We also calculate the electron mo-
bility in the CCA 1n the presence of B

The results of numerical calculations of the mag
netic field dependence w(B) in SPA are plotted 1n
Fig 2 for T=06 K and for some values of the
holding field E, As can be seen from Fig 2, the
WB) 15 a decreasing function of B at a low enough
electric field E, With an increase n E; , the
mobility at the high electric field becomes insensi-
tive to B It 1s a consequence of the fact that, as we
increase E | , the frequency Q = (u)f.(B) + m%(E L))V 2
tends to w, and W(B) for fixed T becomes negligible
and comcides with the mobility calculated for
B =0 In the region where the mequality 1s satisfied
one can estimate that B cannot exceed 1000 Gs, and
the corrections to the mobility due to the magnetic
field are significant for E L <500 V/cm

Figure 3 shows the temperature dependence of
mobihty W(T) in SPA, calculated for two values of
the magnetic field and for B =0 We see that w(7)

10%cm?/v's

B, 10%Gs

Fig 2 Electron mobihity slotted as a function of the magnetic
field calculated in the one electron approximation The curves
are numbercd 7 through 4 corresponding to the clamping elec
tric fields E, = 500 V/um (7) 1000 V/cm (2) 2000 V/cm
(3), and 3000 V/cm (4) The temperature 15 T=06 K
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Fig 3 Temperature dependence of the electron mobility for
B =0 (solid hne) B = 1000 Gs (dashed line), and B = 2000 Gs
(dotted hne) at E =500 V/cm (1), 1000 V/cm (2),
2000 V /cm (3), and 3000 V/cm (4)

1s qualitatively the same as in the case of B=0,
even though the values of the mobilities become
small with increasing E; At higher E, , the
difference 1n the curves W), calculated for differ-
ent B, becomes small for the same reason as that
described before We observe that maximum points
appear 1n the curves of WT) for T< 02 K The
reason for this nonmonotonic temperature depend-
ence of the mobility and the maximum in w(7) are
discussed 1n detail in Ref 4 for zero field

The low temperature expansion of Eq (10) can
be written as

1,2
= 6(0:(2)+64 (n%T (11)
o= R P (e '

where u, = ah‘/meEi (o 1s the surface tension of
liquid helium) This result explains the increase of
WT) starting from zero until 1t reached the point
where the contribution of the excited levels with
n > 0 becomes dominant and leads to a decrease of
W(T) with ncreasing T As one can see, increasing
B causes both the mobility at T = 0 [the first term
in Eq (11)] and the temperature-dependent coeffi-
cient of the second term to become decreasing
functions of Q and, hence, of B For this reason, for
higher values of B, the mobilhities W(7) reach lower
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Fig. 4. The same as in Fig. 2 but in the complete control ap-
proximation.

values and the peak becomes broader. Such a behav-
ior of u(7) is observed in Fig. 3. .

In Figs. 4 and 5 we present our results for p(B)
and ﬁ(T) in the CCA. As one can see, the curves
1(B) and ﬁ(T) are qualitatively similar to those
shown in Figs. 2 and 3 in the case of SPA. How-
ever, the values of ﬁ are lower than those of w(T)
and for T < 1 K the values of p(T) are nearly three
times smaller than the values of u(7T) for a given B.
The maximum on the ﬁ(T) curve occurs at tempera-
tures higher than those at which the maximum
occurs on the w(T) curve. The reasons for the maxi-
mum on ﬂ(T) are the same as in SPA. The mobility
in the CCA at a very low temperature is given by

0

Fig. 5. The same as in Fig. 3 but in the complete control ap-
proximation.
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Equation (12) gives the lower limit of the mobility
at T = 0 [the first term in Eq. (12)] for p(T), which
is three times smaller in comparison with the lower
limit in SPA. The coefficient of the sect.nd term in
Eq. (12) is eight times smaller than that in Eq.
(11). As a result, the maxima in p(7) are signifi-
cantly smoother than in w(T).

In conclusion, we have investigated theoretically
the influence of a magnetic field on the mobility of
electrons localized in a Q1D channel on the liquid-
helium surface. The dependence of the mobility on
the magnetic field and temperature are calculated
by using the classical Boltzmann approach in the
framework of the usual SPA and by introducing the
CCA, which takes into account the electron-elec-
tron interaction in an indirect way. The influence of
the electron-electron interaction on the electron
mobility seems to be more relevant in the Q1D case
due to the more restricted nature of the electron
motion. We hope, however, that the CCA would
make it possible to describe the electron mobility
under certain conditions. According to the results
obtained in this study and in those of Refs. 4 and 5,
W(T) in the Q1D electron system in the complete
control regime must differ both quantitatively and
qualitatively from those conditions, under which
the electron-electron interaction can be considered
negligible. We should emphasize that the results
obtained in our study can become invalid in the case
of a sufficiently large magnetic field, for example,
when the condition given by inequality (8) is not
satisfied. In addition to the experimental studies
[2], the study of the electron mobility in a wide
range of B and T is very desirable. The experimen-
tal evidence for the deviation of the calculated
mobilities obtained by us allows to confirm the
region of B and T where the classical regime of
electron system is reached.
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