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We describe the effect of zero-temperature attenuation, which has been recently observed in spin
dynamics of Fermi liquids, on various processes in helium and ferromagnetic systems. After a brief
review of theoretical and experimental data on zero-temperature attenuation in transverse spin dynamics
of helium systems, we discuss coupling between longitudinal and transverse processes, the Castaing
instability in 3He and 3He-"He mixtures, and applications to pure ferromagnetic metals.
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1. Introduction

One of the recent developments in physics of
Fermi liquids was a discovery of peculiar zero-tem-
perature attenuation in transverse spin dynamics of
spin-polarized Fermi liquids. In contrast to all other
dissipative processes in pure Fermi liquids, the
transverse relaxation time 1, and the coefficient of
transverse spin diffusion D, do not increase with
decreasing temperature as 1/72, but saturate and
remain finite even at T — 0. By transverse dynam-
ics we mean the dynamics of components of mag-
netization perpendicular to its equilibrium direc-
tion. The transverse processes are excited, for
example, by inhomogeneous tipping of spins in
NMR experiments. Longitudinal processes in ex-
change systems, i.e., processes which do not change
the direction of polarization, do not exhibit any
zero-temperature attenuation irrespective of spin
polarization.

The zero-temperature attenuation in transverse
dynamics was predicted first on the basis of general
conservation law and symmetry arguments [1,2].
This prediction was confirmed by direct transport
calculations for degenerate Fermi gases [3-5] and,
later, dense Fermi liquids [6]. The temperature
saturation of transverse diffusion and relaxation has
been observed in low-temperature spin dynamics
experiments in spin-polarized liquid 3HeT [7] and
3HeT ~4He mixtures [8].

The transverse zero-temperature relaxation time
is 1,(T=0) ~(NvI,-0’)"(TF/BH)2 for a system of
fermions with Fermi velocity (temperature) v (T f),
magnetic moment B, effective cross-section ¢, and
density N in the external magnetic field H. Since
the usual temperature-driven relaxation time is
T (H=0)-~ (NvFo)‘i(TF/T)z, the transition from
the temperature-driven to polarization-driven trans-
verse attenuation occurs at the temperature
T, ~ BH when the phase space between the spin-up
and spin-down Fermi spheres is comparable to the
thermal smearing of the Fermi spheres.

The reason for such an unusual behavior is that
the transverse relaxation and spin diffusion at low
temperatures are determined by collisionless decay
of magnons. Spin polarization of the Fermi liquid
opens phase space between the spin-up and spin-
down Fermi spheres necessary to allow these decay
processes for magnons with finite k (inhomogene-
ously tipped spins) even at T = 0. Mathematically,
the zero-temperature attenuation can be described
by a pole contribution in the transverse component
of the interaction function, and is, in this sense,
similar to the Landau damping in collisionless
plasma [5].

Below we will briefly describe theoretical and

“experimental aspects of this phenomenon, and dis-

cuss its consequences. We are interested in both

“helium and electron systems. In spin-polarized he-
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lium Fermi liquids, the zero-temperature transverse
attenuation can affect other dynamic processes via

the magnetic dipole-dipole interaction and non-lin-

ear coupling. Electron Fermi liquids with large
degree of spin polarization exist in ferromagnetic
metals. In itinerant ferromagnets, the manifesta-
tions of the zero-temperature transverse attenuation
are similar to those in helium systems (with spin-
lattice coupling to longitudinal modes). In Heisen-
berg ferromagnetic metals, the analogy is less di-
rect: the Fermi-liquid zerc-temperature transverse
attenuation affects ferromagnetic properties only
via exchange coupling of localized ferromagnetic
spins to spins of conduction electrons.

In the next Section we give a simple theory of the
zero-temperature transverse attenuation. In Sec. 3
we highlight experimental aspects of this phenome-
non in helium systems. Then, in Sec. 4, we describe
the transfer of the zero-temperature attenuation into
longitudinal channels by means of magnetic dipole
interaction. Section 5 deals with Castaing instabil-
ity in spin dynamics in an inhomogeneous setting.
The last Section contains applications to pure ferro-
magnetic metals.

2. Theory

Usually, the conservation laws restrict all low-
energy relaxation processes in Fermi liquids to a
thin layer (with a relative thickness T /T ) near the
Fermi sphere where the occupation numbers n
change gradually from 1 to 0. Everywhere else there
are either no particles (no «initial» states nin), or
all states are completely occupied (no space for
«final» states ng ). The probability of relaxation
scattering processes for the fermions, which is pro-
portional to m, (1 -mn; ), acquires the factor
(T/T,,-)2 and is very small. As a result, the rélaxa-
tion time increases at low temperatures as (T,,-/T)2.
In spin-polarized Fermi systems the situation is
different: if the collision flip the spin of spin-up
particle in the region between spin-up and spin-
down Fermi spheres, this particle can easily change
its energy since all spin-down states in this area are
unoccupied.

Mathematically this means that the collision inte-
gral of the form

J. Eprp,@padp W B (€1 + €, = €5 = €4 = o = 26H){py + ;= B3 = Py )X

X [”n"zT (1 = ngp)(1 = my) + nyqmyy (1= n3(1 = "41)]

does not go to zero at T — 0 as (T/TF)2, but
remains finite and is proportional, at small polariza-
tion BH /T , to (BH/Tp)>.

This mechanism of zero-temperature attenuation
requires a spin flip during collision and exists in
exchange systems only in transverse spin channel,
i.e., for processes with changes in direction of
magnetization such as spin waves, spin echo, and
other NMR effects. The attenuation for exchange
longitudinal processes — processes without changes
in direction of magnetization — involves similar
collision integrals, but with equal numbers of up
and down arrows, and vanishes at T 50 as
(T/Tp)

In general, there should be no dissipative colli-
sions at T = 0. In Fermi liquids at T = 0 all incoher-
ent processes, including the transverse ones, should
disappear, and the interaction should be described
by the Landau interaction function, i.e., coherent
molecular field. This seems to contradict the exist-
ence of zero-temperature attenuation. This contra-
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diction is resolved if one notes that the microscopic
equation for the transverse component of the Lan-
dau interaction function contains the integrals of
the form [5]

c,J' dsp' 1~ ni -n{T _
@ny3 | p? +p} - p - p'% - i0 sign (0 - ppy)

1
-p -
p2+p$—p'2—l>¥]

The imaginary (pole) part of this interaction
function reproduces the integral (1). Therefore, the
zero-temperature transverse attenuation can be in-
terpreted as the imaginary (pole) part of the inter-
action function. In this sénse, the zero-temperature
attenuation is a direct analog of the Landau damp-
ing in collisionless plasma. Needless to say, this
pole part disappears in the absence of polarization
or for longitudinal processes.

The above simple theory is directly applicable to
low-density Fermi liquids such as the 3He compo-

- Fizika Nizkikh Temperatur, 1997, v. 23, Nos. 5/6




Zero-temperature relaxation in spin-polarized Fermi systems

nent of 3He T—4He mixtures, or to dense Fermi
liquids at low spin polarization. The situation in
dense highly polarized Fermi liquids is more compli-
cated. Here the molecular fields acting on slightly
tilted spin-ups and spin-downs are different because
of the large distance between spin-up and spin-
down Fermi surfaces. [This effect is analogous to
the well-known particle-hole anisotropy away from
the Fermi surface.] Then the microscopic equations
of transverse spin dynamics, i.e. the equations for
(small) transverse components of slightly tilted
spins, have the form of two separate equations for
_tilted spin-ups and spin-downs with different mo-
lecular fields. It is not clear how these equations
translate into macroscopic equations of spin dynam-
ics, and what are the necessary modifications of the
Leggett equation of macroscopic spin dynamics.
The Leggett equation of Fermi-liquid spin dy-
namics is a closed equation in macroscopic magnetic
moment M. This equation in its original form can-
not be applied to highly-polarized Fermi liquids:
the molecular field term in the effective magnetic
field inevitably involves integration of the magneti-
zation distribution m with the Fermi-liquid interac-
tion function f between spin-up and spin-down
Fermi spheres

_“ fip, p) m(p) [n‘T"’(p’) - n(f)(p')] d3p/@nty’ . (2)

Integral (2) can be written via the macroscopic
magnetic moment

M= j m(p) [n‘f’(p’) - ng°><p'>] d3p’/@2am3  (3)

only if the interaction function is constant between
the Fermi spheres. This is true either for dilute
Fermi gases [2], or, as in the original Leggett
derivation, at very.low polarization when the Fermi
spheres almost coincide.

3. Experiment

Recent experiments at Nottingham [8,9] have
used the techniques of pulsed nuclear magnetic
resonance to measure both transverse and longitudi-
nal spin diffusion in a saturated (xz =6.4%) solu-
tion of 3He in *He. The active region of the experi-
mental cell consisted of a 1 mm diameter Stycast
tube, 20 mm in length around which an R.F. coil (3
mm radius, two turns of 0.6 mm diameter Cu-wire)
was positioned. A main field of 8.8 T and a uniform
gradient of 80 mT/m were applied to the cell, in a
direction normal to the axis of the tube. The polari-
zation of the saturated solution in such a field was
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a few per cent and the Leggett spin rotation pa-
rameter WM, had a value of about 4 at the lowest
temperatures.

In order to measure the transverse spin diffusion
coefficient a @ - ¢, — 180° R.F. pulse sequence was
applied to the 3He spin system resulting in a spin-
echo at time 2¢; . The presence of transverse spin
diffusion causes this echo signal to decay with
inter-pulse time ¢, . The height 4 and phase ¢ of the
spin-echo was fitted to the Leggett-Rice equations

(1 + p2M3 cos? 9) In (A(t) +

2a42
ueM;
+ oy sir B(A%(¢,) - 1) = - % ¥GD, 83,

= ~M,, cos 0 In (A(t,))

to obtain values for the spin-rotation parameter,
uM, , and the transverse spin diffusion coefficient
D,

Longitudinal spin diffusion was measured using a
technique similar to that used by Nunes et al. [10].
By applying a 8 = 180° R.F. pulse, the magnetiza-
tion in the active region of the cell can be inverted.
A longitudinal magnetization gradient will thus be
set up between this region and the remainder of the
cell. This will result in the diffusion of spins into
this region to recover equilibrium. The recovery of
the magnetization can be characterized by harmon-
ics in the wavenumber of the spin current, &, as

Fig. 1. Temperature dependence of transverse (O) and longitu-
dinal (@) diffusion coefficients, D |, and Dy .
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My, - M) = che Dy Rt
k

The magnetization is sampled at times, ¢, after
the application of the initial 180° pulse using a
21°-1 ms—180° pulse sequence. The resulting recov-
ery profile can then be used to find the longitudinal
spin diffusion current, D, .

The measured transverse and longitudinal spin
diffusion coefficients are plotted on the same graph
in Fig. 1. A clear deviation of D, from D, can be
seen at temperatures below about 30 mK. The
longitudinal spin diffusion follows the expected
T-2 dependence of a degenerate Fermi liquid
(Tp = 417 mK for a 6.4% solution of 3He in 4He)
whereas the transverse spin diffusion approaches a
constant value as T — 0 K. The results for D, have
been fitted to the theory [6] in the low spin polari-
zation approximation. A value for the anisotropy
temperature of T, = (19 * 3) mK was obtained. A fit
of the theory to earlier measurements of the trans-
verse spin diffusion coefficient in an x3= 3.8%
mixture yields a value of T, = (13 + 2) mK for this
concentration.

Similar results in pure 3He have been obtained by
Wei et al. [7] using the same pulsed NMR spin echo
technique. In this case, the anisotropy temperature
T, = 16 mK.

a

4. Dipole effects and longitudinal attenuation

Since the transverse attenuation is the only zero-
temperature relaxation mechanism in pure exchange
Fermi liquids for low-frequency long-wave proc-
esses, it is interesting to inquire whether this dissi-
pation mechanism is coupled to and affects longitu-
dinal Fermi-liquid processes.

There are two general mechanisms that couple
longitudinal and transverse processes in helium: the
magnetic dipole-dipole interaction and the non-
linearity of equations of motion. We will look only
at dipole coupling, which is quite strong in highly
polarized systems [12], though the non-linear cou-
pling also leads to interesting effects especially near
the spin-wave (Castaing) instability.

The dipole interaction transfers the zero-tempe-
rature transverse attenuation into the longitudinal
channel by two different mechanisms [11]. First, in
spin-polarized systems with magnetic dipole-dipole
interaction the spin-flip processes of the type (1) with
dipole vertex W are allowed in the longitudinal chan-
nel and enter the collision integral directly. Second, the
dipole interaction couples the longitudinal modes to

(attenuating) transverse spin waves. Then the collision -

integral (1) enters the longitudinal processes with
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transverse exchange vertex W and dipole interac-
tion in the coupling constant. '

As a result of both, direct and indirect dipole
processes, the effective zero-temperature attenu-
ation in the longitudinal channel 1 ¢ (T = 0) should
differ from 1, (T = 0) by an extra coupling factor
(Ey/T )2 where the characteristic dipole energy is
Bzzzmg/ 21%2/#3 , and Z is the microscopic pa-
rameter which describes the difference between the
(pole terms for) Fermi liquids and gases. The tran-
sition from temperature-driven to polarization-
driven zero-temperature sound attenuation should
occur for longitudinal sound in sub-puK region, i.e.,
at considerably lower temperature than the recently
observed anisotropy temperature T, at which the
transverse attenuation loses its 1,/T2 dependence.
[For liquid 3HeT this corresponds to the tempera-
tures below the superfluid transition when the the-
ory of normal Fermi liquids cannot be applied
directly. Thus the unmodified results can only be
applied to liquid 3HeT —4He mixtures.]

In order v avoid separate independent calcu-
lations of attenuation for different hydrodynamic
and high-frequency longitudinal modes in 3HeT
and 3HeT—“He mixtures, we calculated (zero-)
sound attenuation in a generic polarized Fermi lig-
uid. This allowed us to extract the effective mode-
independent zero-temperature relaxation time

Tost (T 0) and viscosity Negs (T=0)=

= pvd t(1 + F{)/3)/5. The effective relaxation
time could be used in conjunction with standard
hydrodynamic and %f equations [2,13] for polarized
3HeT and 3HeT—*He mixtures giving the attenu-
ation of all sound and &f modes in terms of effective
Nefs and Teff -

Although the effective zero-temperature longitu-
dinal relaxation parameters are quite small because
of the weakness of dipole interaction, these parame-
ters provide the real zero-temperature cut-offs for
longitudinal relaxation and transport. Since liquid
helium, in contrast to electron systems, does not
have any impurities, one may expect to observe
these limiting cut-offs at ultra-low temperatures in
highly polarized 3HeT or SHeT —4He mixtures.

4.1. Dipole collision integral and sound
attenuation

Dipole interaction leads to spin-flip collisions
even for longitudinal processes such as sound propa-
gation. As a result, one can find zero-temperature
terms with the spin structure (1) in the collision
mtegral with the scattering probability

W(p] s p2 ’ p3 ’ P4) =
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_ E, 2 Py - Pa)g Py — P3), _ P, - P4)§ Py - Pys
T; (P1 - I:’3)4 Py - P4)4

where the z-axis is chosen along the magnetic field
(spin polarization), and the dipole energy is equal
to E; = p22%m321%2 /13 .
The resulting sound attenuation is [11]
2

Ey (pH
Imow= _1-6_1;?’!7'—’.. (T;-] I(S cos 0) (4)

where s = w/kvg is the (dimensionless) sound ve-
locity, and the function I(s cos §) is plotted in
Fig. 2 for several values of s.

4.2. Coupling between sound and spin waves

In Fermi liquids with exchange interaction bet-
ween particles, longitudinal and transverse proc-
esses are decoupled. Weak magnetic dipole-dipole
‘interaction couples longitudinal and transverse
processes. As a result, the zero-temperature attenu-
ation in transverse channels can lead to zero-tem-
perature dissipation even for ordinary longitudinal
processes.

In spin-polarized Fermi liquids, sound propaga-
tion in the absence of dipole interaction is described
by a set of two coupled equations for densities nq
and nj of spin-up and spin-down particles. The
coupling of longitudinal dynamic equations for
ny , ny to the transverse equation of motion for the
mixed spin component of the density matrix nq is

0 0.2 0.4 06 . 08 1

Fig. 2. I(s, x) as a function of x = cos @, Eq. (4), for four val-
ues of s; s = 2; 3; 3.47; 5.
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provided by magnetic dipole-dipole interaction with
the Hamiltonian [14,15)

-;- ﬂ:ﬁz [__2__3(0'(14)(0"@ - (c.o"):l , q=p-p . (5).

This Hamiltonian is responsible for twe effects.
First, it causes demagnetizing factors which, in an
elliptical sample, are equivalent to the demagneti-
zing field H, . The integration of dipolar interac-
tion, necessary for the calculation of demagnetizing
field, is not trivial because of the divergence at
small wave vectors. It is possible to show [16—18]
that the demagnetizing field in spherical samples is,
with good accuracy, equal to

HMH) M .
—T—(H )_.3.)22, M=(ﬂ/2)Tra“‘<mcdl".

(6)

This equation for H; includes both the equilibrium
contribution with M, and the non-equilibrium part
with 6M.

Second, the dipole interaction changes the effec-
tive Landau interaction function (molecular field):

S opr6 @ P) =

3(G. - i
= % x 22p2 {fﬁ%@ - ("py"’as)] (7)

where Z is the usual renormalization coefficient in
the pole part of the single-particle Green’s function
for Fermi liquids. [Note, that Eq. (7) contains only
one of the diagrams for the vertex I'®. The other
diagram is already included into the term with M
in the demagnetizing field H, (6).] The substitu-
tion of the dipole terms (6), (7) into the commuta-
tor in the equations of motion,

n € =e0 .
[n1 €] s €w ew Boa.y SHd +

(8)
+If@,,5 (p, p)Onzy dT”,

on results in coupling of longitudinal and transverse
equations.

As a result of this coupling, the sound waves
acquire the zero-temperature attenuation [11]
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2
Rkvp? |  FP E2 (kg k2 - k2

4K4 ~ 3k%K2 + k4
Ty(s)

MO, |FO_Fp| TLF R S A ®
where
a2 . ®2-3-1/30 w@-1-1 5 . o, ., 7]
Iy(9) = 25%(s* - 1) @01 " 17y '+52 3w(s® - 1) 3},
wist+3)-1/3 21
Ty(s) = 252(s% ~ 1) -1 [w(s"' -D-7- '5] ) (10)

w(s)=-§-lnjj:1—

and in the single-harmonic approximation w(s)=
=1/F§.

The most important difference trom (4) is the
k2-dependence of the attenuation (9) originating
from the k-v factor in the coupling coefficient. The
calculation was performed for low frequencies,
kvp << Q, . At higher frequencies, the factor
(kv,,)2 should be substituted by the square of the
Larmor frequency Q; .

" 4.3. Effective relaxation and viscosity

The above expressions for sound attenuation
allow us to get the values of effective relaxation
time and viscosity. Comparing Eqs. (4) and (9)
with the standard expressions for (zero-) sound
attenuation in Fermi liquids, we immediately get

(111

1 _Imco E2 (BH} I (s cos 0) (1)

Ty &) 16mHTR|TF| &)
Koy = 82 w¥(s? - 1)(3s2 + 1) + 2w(s®* - 1) - 1
w(s* - 1) -1 ’
w(s) = —fln s+1 -1
for direct processes, and
2
i Py’ | FP
T 32m°1,E6) | FY) - FO
E% (k* K?- kS - 3K%K2 + K
T4 ? ——2——k r(s)ar——————Bk4 Iys)
(12)

for indirect ones.

5§58

1,

The high-frequency attenuation can be obtained
by the method similar to that used in calculation of
sound attenuation in Fermi liquids [19]. The analy-
sis of the non-vanishing at T = 0 collision operator
of the type (1) shows that this integral is similar to
those studied in [3,6,19] and should be reduced to
the form

2

)
Tie| 1+ WG (13)
(in dense Fermi liquids the Larmor frequency Q,
experiences the usual Fermi-liquid renormaliza-

tion), where Yj determines the low-frequency sound
attenuation in Fermi liquids,

&(s)
Y= Im k= (14)
! STetf Up
The effective field-driven viscosity at T =0,
1
Nett =5 PURT 1+ FO/3) . (15)

depends on the angle between the velocity gradient
(k) and the direction of polarization z. This anisot-
ropy of the fluid dynamics in spin-polarized systems
with dipole interaction is quite natural.

5. Castaing instability

5.1. Castaing instability in spin dyna;iﬁics

Studies of instabilities and non-linear effects help
towards an understanding of spin dynamics in
Fermi liquids. One of the most important spin-
waves instabilities — the so-called Castaing insta-
bility — occurs in spin dynamics of spin-polarized
Fermi liquids in the presence of a gradient of
magnetic field and /or polarization.
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At low spin po.larization, the transverse spin dy-
namics in polarized Fermi liquids is governed by the
Leggett equation (see, e.g., review [2]):

M o0 D, [oM oM
Wf‘*“"”’"a;{z'm'g{axk*“[“" axk}
(16)

If the magnetization gradients are small, the last
term can be linearized in small deviations from
equilibrium 8M as p[M*3d3M/dx,], and the spin
excitations are weakly attenuated circularly polar-
ized spin waves with the spectrum
Dk |
L W=+ i- .
0 1+ uiMoi ( H'M 0 (17)

Castaing [20] noticed that if the gradient in the
magnetization VM is not negligible, the linearized
last term in Eq. (16) is W[MxddM ox,] +
+ u[8MxVM,], and the excitation spectrum changes
from (17) to

D
0=, +1Tu§174_§ (i - uM(E? - pk VM) . (18)

For a sufficiently large gradient (or sufficiently
small k), the last bracket and, therefore, the imagi-
nary part of the spectrum change sign. Instead of
attenuation, the perturbation increases with time
resulting in instability starting from

k,=punVM, n=k/k. (19)

The non-linearity of the Leggett equation of spin
dynamics, which is responsible for the Castaing
instability, leads to a highly inhomogeneous final
stationary distribution of magnetization (magnetic
domains) even in slightly inhomogeneous magnetic
field [21]. Under certain conditions, the domain
wall could become very wide [22]. Then the differ-
ence between longitudinal and transverse relaxation
disappears, and the overall relaxation is determined
by the shortest of the two, i.e., by the field-driven
zero-temperature transverse attenuation.

5.2. Observation of the spin-wave instability

This instability is very general, and can be ob-
served in helium systems in different configura-
tions. We will illustrate it on the example of
experiments [9] in saturated 3He—4He mixtures.

We observed an oscillating signal that could be
induced by the application of a single R.F. tipping
pulse of angle 0 applied to a small region of the
helium in the middle of the 1 mm tube [23). Large
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Signal amplitude

-

A 1 1

0 4 8 12 16
Time , ms

Fig. 3. The ringing signals observed following a 6 =105°
pulse. .
magnetization gradients were induced in the helium
at the edges of this small region. We approximate
these gradients as [VM] -~ M(1 - cos 8)/Ax, where
Ax is the distance over which they extend. A typical
NMR signal produced by a @ = 105° pulse is plotted
in Fig. 3. _
This long-lived ringing, which we interpret as a
sign of instability, was observed only when the
tipping angle exceeded some critical value 8, = 70°.
The frequencies of the oscillations were determined
by Fourier transforming the signals; the frequency
shift 8w away from the Larmor frequency increased
with tipping angle. By substituting the expression
for the magnetization gradient into the spectrum
Eq. (18), we find that the frequency, 80 =0 - o,
depends upon tipping angle as 8w o cos 8 — cos _,
where @, is the critical angle; i.e. the angle for
which the last bracket of the spectrum is equal to
zero (Fig. 4). Our estimate gives the value &, ~ 600
cm™! . This implies that the large magnetization
gradient is over a distance of order 0.05 cm; this is
consistent with the scale of our experimental setup.
These ringing signals possess several features
which support an explanation in terms of an insta-
bility. There is a cutoff in tipping angle 8, below
which no signals were observed. This, together with
the fact that there was no ringing signal at higher
temperatures when UM, is small, confirms the
threshold nature of the phenomenon. The long-time
scale of the signals and the initial increase' in
amplitude (Fig. 3) are also characteristic of an
instability. The frequencies of the oscillations scale
as the cosine of the tipping angle, cos ® — cos 6_ .
The presence of two frequency peaks on the Fourier
analysis of the spectrum suggests that the signals
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of, kHz
N
i

-5 i 1 1

] 1 1
60 100 140 180
Tipping angle , degrees

Fig. 4. The frequency shift as a function of ‘the tipping angle.
The line is a 8f = A(cos 8 — cos8).

are coming from regions either side of the R.F. coil
where the magnetization gradients are slightly dif-
ferent. No such signals were observed during experi-
ments on solutions with lower 3He concentrations.
Here pM,) is of the same magnitude but negative, so
that the instability propagates in the opposite direc-
tion, away from the receiving NMR coil.

Similar instabilities have been observed by Nunes
{10] and Dmitriev et al. [24]. The ringing contin-
ued for extremely long times, leading to conclusions
about the existence of a metastable state (precessing
spin domains) [21] after the instability develops. In
our experiment we did not see such a long-time
behavior due to the different setup. Only a small
fraction of the spins in the lower chamber was
tipped and the longitudinal spin diffusion coeffi-
cient D, was large, so that the instability was
quickly suppressed by diffusion of up-spins into the
coil.

5.3. Dipole effects in Castaing instability

The non-linear coupling between longitudinal
and transverse channels is enhanced close to the
instability in spin dynamics (see, e.g. , Ref. 23 and
references therein). We analyzed {11] the dipole
effects near the onset of Castaing instability. With-
out the dipole effects, the instability occurs at &,
Eq. (19). The dipole interaction makes the instabil-
ity anisotropic by adding terms of the form k2
pk,V,M , (WWM)?%, and (uV,M)? to Eq. (19). How-
ever, these terms contain a small factor E /T (we
will not give here the cumbersome coefficients).
These anisotropic corrections do not have any fixed
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sign so that it is impossible to say whether the onset
of instability occurs earlier in certain directions.

Though this instability exists in transverse spin
dynamics, one of its features is that u in Eq. (19) is
proportional not to the transverse relaxation time
T, , but to the longitudinal time T H=Q; /M.
Since 7 e 1/T% the onset of instability k%=
= uk,V, M happens, with decreasing temperature, at -
larger and larger wave vectors. The usual derivation
of the instability condition assumes that the gradi-
ent of the longitudinal magnetization leads to a
large longitudinal diffusion current and not to lon-
gitudinal oscillations, i.e., that 1,/7, >> kvp . These
two conditions, taken together, limit the tempera-
ture range in which the instability can be observed
to :

T(oa/L)/4

TF >> T >> '—xl73_ (20) |

where o is the degree of spin polarization, x is the
molar density of the Fermi liquid, and L is the
spatial scale of the polarization gradient.

The dipole coupling between longitudinal and

- transverse channels leads to ‘a substitution of 1, by

;s and lifts this temperature limitation. At zero
temperature, the instability occurs at k2 = Hesh;V; M,
Hegr = €; Tg¢/M under the condition 1/t >> kvg .
The compatibility of these equations requires high
polarization with small gradient,

E;>>Tg (a/on‘?L)V4 .

As a result, the instability exists even at zero

temperature, but occurs at extremely small values
of k. ‘ ~

6. Application to pure ferromagnetic metals

Ferromagneétic metals can be roughly separated
into two groups: itinerant ferromagnets with ferro-
magnetism of conduction electrons, and metals with
ferromagnetic ordering of inner, localized electrons
(with Heisenberg interaction). The zero-tempera-
ture transverse attenuation in the former systems
seems similar to helium systems, while in the latter
group such effects appear only as a result of ex-
change coupling between the localized ferromag-
netic electrons and the Fermi liquid of conduction
electrons. In addition, the spin-lattice relaxation,
absent in helium, presents a strong coupling mecha-
nism between longitudinal and transverse channels
for both types of ferromagnetic systems.
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6.1. Itinerant magnetism

The theory of transverse spin dynamics in elec-

tron Fermi liquid in itinerant ferromagnets should
~ be similar to that in spin-polarized helium. To a
large extent this is correct, especially well below
the transition temperature. Close to the transition
temperature the Fermi-liquid description is not ap-
plicable (see, e.g., [25]). It is well-known [26] that
the spin wave spectrum in ferromagnetic metals is
similar to the spectrum of Silin spin waves in Fermi
" liquid . Careful analysis of the spectrum [26] shows
that this spectrum contains the zero-temperature
attenuation: the expression for the spectrum in-
cludes the integral between the spin-up and spin-
down Fermi spheres, j e Iy = "l]dr , which, as
any integral not localized near the Fermi surface,
should contain a large imaginary part. However,
this integration deep into the Fermi spheres makes
the derivation [26] not self consistent; a consistent
derivation should be based on the microscopic equ-
ations [6].

Apart from the zero-temperature attenuation,
these equations have another interesting feature,
namely, the spin-up — spin-down asymmetry. This
effect is similar to a well-known particle-hole asym-
metry in Fermi liquids away from the Fermi sphere.
In itinerant ferromagnets the radii of the Fermi
spheres for spin-up and spin-down particles differ
by a large margin resulting in different molecular
fields (Landau Fermi liquid functions) for quasipar-
ticles near these Fermi surfaces. This means that the
frequencies of inhomogeneous precession in the ef-
fective field for tipped spin-up and spin-down par-
* ticles are different. :

In general, the transfer of the microscopic equa-
tions [6] from Fermi liquids polarized by an external
magnetic field to ferromagnetic Fermi liquids is
rather straightforward, and we will not dwell on
this here. Instead, we will mention another interest-
ing aspect of microscopic equations. The spin-up —
spin-down anisotropy of the effective field can give
credence and microscopic justification [27] to the
concept of reaction field suggested by Onsager [28]
for segnetoelectric systems (this concept for ferromag-
netic systems was discussed in [29]).

6.2. Heisenberg systems

The above zero-temperature dissipation mecha-
nism is inherent to Fermi liquids and, in its original
form, does not exist in solid-state magnetic system
of localized spins with Heisenberg interaction J.
However, this unique Fermi-liquid dissipation
~ mechanism should lead to some residual attenuation
of magnons in pure ferromagnetic metals with Heis-
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enberg interaction. We want to emphasize that in
this section we are interested not in itinerant mag-
-netism, for which the manifestation of Fermi-liquid
effects is natural, but in an exchange magnetic
system of localized electrons.

The effect is fairly straightforward, and is based
on exchange coupling of localized ferromagnetic
spins (e.g., 3d electrons) to conduction (e.g., 4s)
electrons. This exchange coupling results in small
polarization (not to exceed several per cent) of
conduction electrons of the order J(S)/Tf , where
J4 is the exchange coupling constant between local-
ized ferromagnetic electrons with spins S and spins
of conduction electrons ¢. Polarization of spins of
conduction electrons ensures the propagation of Silin
spin waves in ‘this system with finite zero-tem-
perature attenuation 1, (T=0)~(Nvg o) 'x
X(Tg/J 1(S))Z. The exchange coupling between these
attenuating Silin spin waves and ferromagnetic He-
isenberg magnons transfers the zero-temperature at-
tenuation to the magnon system resulting in the
effective relaxation time Ti -1, /D2, The com-
peting processes ‘that lead to the magnon attenu-
ation are, obviously, scattering on impurities and
spin-lattice processes studied long ago (see, e.g.,
{30]). The former processes are small in pure met-
als, while the latter are suppressed at low tempera-
tures.

The equilibrium energy of conduction electrons

has the form
e =e-Pfo;, H-J,0,-(S)/2 (1)

while the Hamiltonian of localized electrons is
1
e = —B'S;H ~ 5 J(0)S; = JT (Sisy + Sisq + S )'S;
a x v 2
(22)

The effective parameters for conduction electrons
are already renormalized by their Fermi-liquid in-

teraction, B§ =B¢/(1 + F{P), J,=Jo/(1 +F{M),

while the averages
&= 8N; .
(Y=Y o;n;=ppm(BH + ' J 1(Sz))/1t2)‘z3

The Fermi-liquid term in the energy of conduction
electrons has the usual form,

(23)

1
&gﬁ = - 5 jcﬂ.ﬁ -8S + '[ faBa’Br(p, P')Snﬁ'a'(l)')dl"’

(24)
with the Landau Fermi-liquid function
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pgm ,
ﬁg’ fggu'p'(l’, p)=

= Fp, p')saﬂ 80:’[3’ + F9(p, P’)O'aﬁ "Oup - (25)

Often, in ferromagnetic systems J(S,) >> Jo,),
PH, and Q,>> @, . In this approximation, the
analysis of the coupled equations of motion for
localized and delocalized spins S and o with the
Hamiltonian (21)—(25) yields, after some algebra,
the following expression for the attenuation of
ferromagnetic magnons [31}:

plH (o) kRt (1+F)1 + F{/3)

Imow=

This equation is valid only for p!H >> J(Sz)kza2
and formally yields zero at H = 0. In smaller fields
the attenuation does not vanish, but becomes pro-
portional to k4 in accordance with the general result

132].

" The strength of the effect depends on the ex-
change interaction J,S-o between spins of ferromag-
netic and conduction electrons. In free atoms the
s—d exchange is of the scale of 1 eV. In metals,
screening weakens this exchange by about one or
two orders of magnitude. There is also an enhance-

ment factor which is related to the Kondo-like

logarithmic divergence of the effective field. The
localized electrons create the (transverse) coherent
exchange field for conduction electrons which is
equal to [33]

in
Looh =395 [85+(nT ~ny) - sc+<sz)1v] x

‘x[4t +J CP oo L e + 2np-ny +N)
LZW,(uzTL )iE

€ —-€

The exchange field for localized electrons is simi-
lar. Here t, and t, are the bare direct and exchange
interaction constants, and N is the density of local-
ized spins. If the polarization of conduction elec-
trons is low, the direct interaction ¢, disappears
from the results. The above integral, as other simi-
lar integrals in the theory of metals, diverges loga-
rithmically. After introducing the usual cut-off, we
get the following renormalization of the bare inter-
action:
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- 6J(S,) 6':)- 1+[7, Qy(1+F@ /3) /(1+F )12 '

o , Ti(1+ FP)
Jo=ty11+ 8rtvp In —mmoreo—
02 2F T BH + £(S,)/2

where v is the density of states on the Fermi
surface. As a result of this large logarithmic enhan-
cement of the interaction, Jo can reach several
hundred Kelvin and the polarization of conduction
electrons can exceed one per cent. Then the zero-
temperature attenuation for conduction electrons
T, can become shorter than 10-10 5, and t* can reach
1077 s.

7. Conclusions

The zero-temperature transverse attenuation in
spin-polarized Fermi liquids, which was observed
recently in spin dynamics of SHeT and 3HeT-4He
mixtures, is the only low-frequency dissipative pro-
cess in Fermi liquids at T = 0. This effect can have
much broader implications than a simple low-tem-
perature saturation of transverse transport parame-
ters in polarized helium systems. We highlighted
several of such effects.

The dipole coupling between longitudinal and
transverse spin dynamics processes in spin-polarized
Fermi liquids leads to the transfer of zero-tempera-
ture transverse attenuation into longitudinal chan-
nels. This transfer is responsible for the zero-tem-
perature dipole contribution to the sound
attenuation in a generic Fermi liquid described by
the effective mode-independent longitudinal rela-
xation time and viscosity. These effective parame-
ters provide the low-temperature limit for dissipa-
tion of various hydrodynamic and high-frequency
modes in helium systems.

The zero-temperature attenuation processes have
interesting implications for ferromagnetic metals.
Of course, the direct manifestations of this Fermi-
liquid anomaly can be observed in itinerant ferro-
magnets. Here the most interesting effect is, prob-
ably, not the zero-temperature attenuation itself,
but a pronounced spin-up — spin-down asymmetry
of the effective field which could manifest itself in
the formation of a peculiar Onsager reaction field.

In metals with ferromagnetism of localized Heis-
enberg spins, the effects of the zero-temperature
Fermi-liquid interaction are indirect. In this case,
the exchange coupling of localized and conduction
electrons results in low residual polarization of
spins of conduction electrons. This, in turn, leads to
the propagation of Silin spin waves with small
zero-temperature attenuation in the system of con-
duction electrons. The coupling of these spin waves
to the spin waves in the system of localized Heisen-
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berg electrons transfers the zero-temperature at-
tenuation to ferromagnetic magnons. This mecha-
nism is responsible for the residual attenuation of
ferromagnetic magnons in pure ferromagnetic met-
als.

Another important peculiarity of spin dynamics
in spin-polarized Fermi liquids is the spin-wave
instability in inhomogeneous setting (Castaing in-
stability). We presented and analyzed experimental
data confirming the existence of this instability,
and discussed some further experimental options. As
a result of dipole transfer of zero-temperature at-
tenuation into longitudinal channels, the Castaing
instability does not disappear at ultra-low tempera-
tures, though its observation would require a rela-
tively large experimental installation. In addition,
the dipole interaction makes all the processes, in-
cluding the instability in spin-polarized Fermi liq-
uids, highly anisotropic.

The non-linearity of the Leggett equatlon of spin
dynamics, which is responsible for the Castaing
instability, results in a highly inhomogeneous final
distribution of magnetization even in almost homo-
geneous magnetic field. In these conditions, the
difference between longitudinal and transverse re-
laxation disappears, and the overall relaxation is
determined by the shortest of the two. Then the
overall low-temperature relaxation is similar to the
field-driven zero-temperature transverse attenuation
in homogeneous systems.
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