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Through a treatment of three-phonon processes, the wide-angle scattering rates and the absorption
rates of phonons, which characterize viscosity and ultrasonic attenuation, respectively, are calculated for
“He below 0.6 K. These rates are obtained from the collision matrix which is constructed approximately
from an integral eigenvalue equation for the collision operator. The sequence of the lowest eigenvalues
of the collision matrix, as the angular momentum quantum number ! increases, shows a saturated
behavior which has not been reported before. The calculated viscosity and ultrasonlc attenuation are
compared with previous theoretical and experimental results.

PACS: 67.40.Pm

1. Introduction

Since the anomalous phonon energy spectrum for
4He was proposed [1], its transport properties have
been studied based on that spectrum [2—4]. For the
case of the anomalous phonon spectrum, the lowest-
order phonon processes are three-phonon processes
(3PP), while for the case of the normal spectrum
- they are four-phonon processes (4PP). Thus, in
order to investigate the properties of superfluid
4He at low temperatures, we have to completely
understand 3PP.

Maris [5] explained the temperature dependence
of the viscosity of 4He below 0.6 K in terms of the
eigenvalues of the 3PP collision operator. Later,
using a variational calculation, Benin [6] obtained
similar results. Their fundamental idea is that the
relaxation rate characterizing the viscosity is the
eigenvalue of the 3PP collision operator with angu-
lar momentum. quantum number !/ =2. Although
their results provide a good explanation for viscos-
ity experimental data [7], in the development of
their theories, over-simplified approximations were
used for simplicity of the numerical calculation.
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Maris, for example, used only the linear term in the
expression for the anomalous phonon energy spec-
trum in the matrix element calculation, and for the
procedure of transforming an integral eigenvalue
problem into a matrix form he divided the range of
the integral into a relatively small number of sum-
ming points '(10-20). In Benin’s theory, rather
rough trial wave functions were used. The effects of
these rough approximations in both theories can be
shown in the behavior of the sequence of the lowest
eigenvalues with increasing / at a given tempera-
ture. Maris' theory [3,8] shows increasing behavior
of the sequence with /, i.e., no saturation, and in
Benin’s variational theory this increasing behavior
is more severe.

In general as [ increases, the angular distance 6,
between the maximum point and minimum point of
the variation of the phonon distribution from an
equilibrium value decrease inversely with [
(8,, = n/I). Roughly speaking, when 8, /2 becomes
smaller than the average value of the scattering
angle of 3PP at a given temperature, the lowest
relaxation rates may be constant, which shows a
- saturated behavior. We provide our numerical re-
sults showing this saturated behavior in Sec. 3.

For the eigenvalues of the 3PP collision operator,
Maris [8] obtained a discrete spectrum. According
to our calculation, the spectrum of the eigenvalues
with /=2 is a continuous one having a finite
positive minimum value. This continuous property
of the eigenvalue spectrum seems to be in aecord-
ance with the theoretical work of Buot {9] about
the relaxation rate spectrum of phonons. For the
first-sound attenuation in 4He, a shoulder observed
by Roach et al. [10] is explained to be the result of
the restriction of 3PP, which means that the zero-
temperature spectrum depends on pressure [11].

In present paper we obtain, using a similar me-
thod to Maris, the integral expression of the eigen-
value problem and convert it into a matrix form.
From this collision matrix we calculate the eigen-
values and phonon viscosity for 4He below 0.6 K.
From the diagonal elements of the collision matrix,
we also give a natural explanation for the shoulder
of the ultrasonic attenuation. In Sec. 2 the collision
matrix for 3PP is constructed. The numerical analy-
sis of the eigenvalues for the matrix is given in
Sec. 3. In Sec. 4 we evaluate the viscosity and
ultrasonic attenuation, and compare them with
available experimental data. Conclusions are given
in Sec. 3.
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2. Collision matrix for three-phonon processes

In the long-wavelength limit, the interaction for
3PP is given by

1 1 m,s2
V3 =Jdr [7 mV (Npr)v(r) + 4 %{ %4} P 4(1-)3]’
4
‘ 2.1)

where m, is the 4He mass, and v(r) and p(r) are the
local superfluid velocity and local density variation
of “He from equilibrium density n, , which are
small quantities. These small variations can be ex-
panded within a volume V in terms of phonon
annihilation and creation operators, bq and b} , as
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where @ is the energy of a phonon with momentum
q. We can then obtain the matrix element for 3PP
by a straightforward calculation as

1/2
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and u is the Griineisen constant defined by
n
o (2.6)
S any

with a value of 2.84 [12].
The collision integral due to the 3PP is given by
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where €; and €, are the phonon energy of initial and final state, respectively, and n_ is the distribution of
phonons with momentum q. In Eq. (2.7), the first term represents the process q «» q’ + q” and the second

term the process @' & q + q”. .

If the phonons are in their equilibrium state, i.e., n = ng, where n_ is the equilibrium phonon
distribution, the collision integral vanishes by detailed balance. If we consider a small variation from the
equilibrium as

0

_ 0
g =7g*+ an , (2.8)

then the collision integral can be rewritten to first order in an as

1 ’ 7 .
Iypp(@) = - Y jdq’ dQ, q T(q,q'.q )8(e— €) x [Sng(1 + ng, + ng,,) - anqmg,, - ng) - an,,(ng. - ng)] -
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q
@
Due to momentum conservation, ¢” = q — q in the first integral and q =q - q in the second integral,
which are denoted by (1) and (2), respectively, in Eq. (2.9).

The variation of the distribution function from the equilibrium state can be expanded by spherical
harmonics as

= agnV
dng = qng Y, V(@Y 1, Q) (2.10)
o Im
where for simplicity we define
on?
=0__4
nq aa)q (2.11)

Ylm(Q )is a spherlcal harmomc and Q  is the solid angle of q. Using the addition theorem, the spherical
harmomcs for q and q” are transformed to those for q as follows:

Y,m(Qq,) — P{cos G)Y,m(ﬂq) , (2.12)
Y ;(Q,) = P/(cos 6’)Y,m(9q) , (2.13)

where P, is the Legendre polynomial, and © and & are the angles between momenta (q, q) and momenta
(q, q”), respectively.
After performing the angular integration, we obtain the collision integral as

Ippl@) = g7 ] X ¥ () X
: Im
w
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o
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where B(q, q', q”), originating from the delta function representing energy conservation through 3PP, is
defined by

|3te, - €))|
’ ” f i
B(q, ¢, = |—] . (2.15)
, @ 9> 97 {acose|
If we represent the collision integral in terms of the relaxation time 7, , that is,
Y, (Q)P,(q)
[/ [}
Lpp(@ =) Y, J_Z,—L , (2.16)
Im

we then obtain the eigenvalue equation for each /. Because the different values of m do not change the form
of the eigenvalue equation, we suppress the index m. :
The eigenvalue equation for a given / becomes
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where the eigenvalue A; = 'c, .

Since this integral eigenvalue equatlon can not be

solved analytically, we use a numerical method. If
we replace the integral on the left-hand side by a
sum over a finite set of points, a matrix eigenvalue
equation is obtained as l

Mo =\, (2.18)
where M denotes the collision matrix with a given
I symbolically. The diagonal elements of the matrix
M; come from the terms containing ®(g) in
Eq. (2.17), while the terms containing ®,(q") or
®(g”) give the off-diagonal elements. Then the

number of eigenfunctions and eigenvalues is equal

to the matrix size j,, , the number of points to be
summed over.

3. Numerical analysis for the eigenvalues

3.1. Phonon energy spectrum

In order to perform numerical calculations we

should choose an anomalous phonon energy spec-

trum to use. As we will see later, the wide-angle
scattering rate depends sensitively on the phonon
energy spectrum. Among the various spectra pro-
posed by many authors, we take two forms, one
suggested by Greywall [13] and another by
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Fig. 1. Phase and group velocities at P =0 and 10 atm. The
solid lines are the phase velocities of Greywall’s spectrum: the
upper curve is for P =10 atm and the lower curve for P = 0.
The dashed line is Maris’ phase velocity. The phase velocities of
both spectra are consistent with neutron scattering experiments
{14]. The dotted line represents Greywall’s group velocity.

Maris [3]. The phonon energy spectrum suggested
by Greywall is

0, =5q (1 +0, P+oq°+agq®, G
where
s=237.0m/s for P=0 atm ;

§=298.9 m/s for P= 10 atm ;

a, = 1.30-0.065P ;

o, = -10.25 &, + 108.5 (s,/s —1) - 28.44 (s5/s —1);

ag = 25.0 o, - 434.0 (s,/s ~1) + 177.8 (s5/s —1) ;
s¢=247.0 +2.86 P ;

sg=242.0 +2.20 P

Here s is the velocity of first sound and P is the
pressure. This spectrum has pressure dependence, so
is available under arbitrary pressure. Another spec-
trum given by Maris is

2 1-(p/py?

o, =sp|1+yp? ——2|,
L B Py

3.2)
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where

§=2383m/s; y=10x 103 CGS units ;

pa/H=0542R8" ; pp /m=03324" .

Let us test the properties of the above two spec-
tra. Figure 1 shcws the phase velocities of the two
spectra and the group velocity of Greywall's spec-
trum at P =0 atm. The phase velocity of Grey-
wall’s spectrum at P = 10 atm is also presented. It
is shown that the phase velocities are consistent
with neutron scattering experiments [14]. For the
case of P =0 atm, the maximum positions of the
phase velocities, v, , of both spectra are almost the
same at about ¢ = 0.3 A~!, while the maximum
value of Greywall's is larger than that of Maris’.
For P = 10 atm, the range of v_ /s is reduced con-
siderably compared to the case of P =0, which is
related closely to the cut-off momentum, g, , above
which 3PP do not occur.

For the above spectra, we obtain the allowed
range for 3PP and the 3PP scattering angle, using
conditions of energy and momentum conservation.
The 3PP do not change the total momentum and
total energy, so that the momentum and energy of
the initial state equal those of the final state. For
convenience, we denote q = q' + q” as the first pro-
cess and q’' = q + q” as the second process. For the
case of the first process, for example, the energy
and momentum conserve as

04 —””‘—’ \\\\
o Y
1.
2 \
0.3k \
o P=0 ‘ll
.o-; ™ ‘:
0.2 !
]
)
i ]
]
01 B Il’
X P=10 atm : /’
] .
L 1 1 l 1 1 . II lll
0 0.1 0.2 0.3 0.4

0.1
q ’ A

Fig. 2. The allowed range of 3PP for Greywall's spectrum
(solid lines) at P =0 and 10 atm and that of Maris’ spectrum
(dashed lines). The vertical arrows indicate the cut-off mo-
menta. The lower part (g > ¢") denotes the allowed range of
the first process and the upper part (¢’ > g) that of the second
process.
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Scattering angle , degree

Scattering angle , degree

Fig. 3. 3PP scattering angle distribution of the first processes.
Greywall’s spectrum (@). Maris’ spectrum (b).

q= q' + q" , (3.3)

Wy = Oy + O - (3.4)

q q

Using the above equations, we can determine the
allowed range for 3PP in the gq’ plane, which is
shown in Fig. 2. The lower part of the diagonal line
in Fig. 2 is the region in which the first process is
allowed, and the upper part corresponds to the
second process. The allowed regions have symmetry
about the diagonal line, i.e., under exchange of ¢
and g’ as expected. The changes of the range with
pressure also are shown. As pressure increases, the
allowed range for 3PP becomes smaller, which can
be expected from the behavior of the phase velocity
as a function of pressure in Fig. 1. We can see the
cut-off momentum, g., for 3PP indicated by a
vertical arrow in Fig. 2. We note that the allowed
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range for 3PP and cut-off momentum from Maris’
spectrum are larger than those of Greywall’s.

From the conditions of momentum and energy
conservation, we also obtain the 3PP scattering
angle distribution. The distribution of the 3PP
scattering angle of the first process, i.e., the angle
between q and q’, is given in Fig. 3. The maximum
scattering angle for Greywall’s spectrum is 23.8°,
which is larger than 19.6° for Maris’ spectrum.

3.2. Numerical calculation of the eigenvalue

The eigenvalues of the 3PP collision matrix with
=2, M, , are the relaxation rates characterizing

_ the viscosity, because they are related to the phonon

momentum transfer in the perpendicular direction.
We note that the eigenvalues depend on the matrix
size j,, . As we can see in Fig. 4, the eigenvalue
spectrum becomes denser as j,, increases. Such be-
havior of the eigenvalues indicates that the eigen-
value spectrum at infinite j, is continuous, unlike
the result of Maris [8] in which a discrete eigen- .
value spectrum is obtained. Only the lowest eigen-
value has physical importance because the corre-
sponding eigenfunction, having no node, is
appreciable in the range of momentum considered,
while the eigenfunctions corresponding the eigen-
values just above the lowest one are negligible
except for very small momentum. A similar argu-
ment for eigenvalues with /=1 was given by
Maris [8].

In Fig. 5, the temperature variation of the lowest
eigenvalue A, with j, are shown. We can see that
Ay(T) converges with increasing Jm - This fact is

10

8
©
2 6
v
[
=
©
>
g 4
2
Ll
2
0 ] 1 I ] } 1 + T
'"20 40 60 80 100
Jm

Fig. 4. Several eigenvalues, including the lowest one, plotted
as matrix size j, .
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1 1 1 :
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Fig. 5. Convergence of the lowest eigenvalues (A,) as a func-
tion of matrix size j,, .

different from Maris’ argument that, for j, =15,
A(T) is independent of the details of the mesh to
better than 1%.

We also obtain the lowest eigenvalues for several
! as shown in Fig. 6. A saturated behavior appears
when we take j, =100, which means that the
phonons relax sufficiently in one collision time. At
higher temperatures this saturated behavior may
begin to appear at smaller /, since the typical 3PP
scattering angle increases due to the higher average
value of momentum (Fig. 3). Figure 6 shows this

107
T=045K, =100
] [ 4 L J L ] L 4
106:' e d
g E o
= o
: T=02sk.i =10 . * * |
.8’105_ R Am=10, .
o ,
- r L 4
§ ]
3 ! e T=0.25K, j,, =100
104} °
L]
3
10 L 1 i ! 1 1 1
0 2 4 6 8
l
Fig. 6. Lowest eigenvalues versus /.
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P =10 atm

i
0.3 0.4 0.5 0.6 0.7

T, K
Fig. 7. Lowest eigenvalues (A,) as a function of T. Greywall’s
spectrum (7), Maris’ spectrum (2). The case of P =10 atm
from Greywail’s spectrum is also shown.

behavior correctly. On the other hand, the results
obtained by Maris [8] and Benin [6] have no satu-
rated behavior. Their results are very similar to the
case of j, = 10 in our calculation. But j,, = 10 is too
small to reveal the properties of the anomalous
spectrum correctly. Therefore, we guess that their
results with no saturation are due to the rough
approximations in their numerical calculations.

Using both spectra presented before, we calculate
the lowest eigenvalues A, as a function of tempera-
ture by taking j,, = 300 and the upper bound of the
integral of Eq. (2.17), G = 0.45 A1, e,
Aq =0.0015 &' . This value of q,, is enough to
cover the effective range of the integral, because the
cut-off momentum g, at P =0 is about 0.4 A1 as
shown in Fig. 2. The results are shown in Fig. 7.
When Greywall’s spectrum is used, the values of
A)(T) are larger than those of Maris. This can be
understood from the fact that the maximum value
of the 3PP scattering angle distribution for Grey-
wall’s spectrum is greater than that of Maris’.
Using Greywall’s spectrum with P =10 atm, we
also obtain a smaller Ay(T) than for the case of
P =0, which is a trivial result because the cut-off
momentum and 3PP scattering angle become
smaller as pressure increases.

4. Viscosity and ultrasonic attenuation

4.1. Viscosity

The viscosity is written in terms of the phonon
mean free path characterizing the viscosity [3] as
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1
N=35 P00 A, 4.1

where Pph 18 the phonon mass density defined by

2 ond

-y 4 _9
q

and (v ) is the average of the phonon group
velocity

1 q2 ang d(nq
(v >E——Z-§— . 4.3
g Poh g aa)q dq

The mean free path for 3PP is related to the
eigenvalues of the collision matrix as
(v,)

A= :
A'2

(4.4)

The results for A are depicted in Fig. 8. The
dashed line denotes the mean free path due to 4PP
calculated by Landau and Khalatnikov [15], which
has a T-9 dependence. At P = 0, the mean free path
from Maris’ spectrum, drawn by the dotted line,
shows good agreement with the experiment per-
formed on thermal conductivity by Greywall [13].
The mean free path from Greywall’s spectrum ap-
pears to be lower than the experimental data. It can
be well deduced, at least qualitatively, from the

1 —
£
(&)
<
0.1
0.01 L { 1 i i
0.3 0.4 05 06 0.7 0.8
T.K

Fig. 8 Phonon mean free path resulting from 3PP. The solid
line represents the result using Greywall’s spectrum, and the
dotted line that using Maris’ spectrum. The open circles and
the triangular marks indicate the experimental data on thermal
conductivity by Greywall [13] and Whitworth (7], respec-
tively. The dashed line shows the theory of Landau and Khalat-
nikov based on 4PP [15].
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higher maximum value of the 3PP scattering angle
in Fig. 3 and the larger phase velocity in Fig. 1.

4.2. Ultrasonic attenuation

At low pressures, the temperature dependence of
the high-frequency ultrasonic attenuation (o) is ap-
proximately described by a T4 law as under vapor
pressure, whereas at higher pressures ( 2 10 atm)
the o(T) curve is significantly changed, and a shoul-
der occurs [10]. Roach et al. [10] suggested that
the shoulder might indicate the existence of a new
relaxation mechanism. However, Jickle and
Kehr [11] showed that the formation of the shoul-
der in o(T) is explained by assuming that the 3PP is
allowed only for very long-wavelength phonons
(«partially allowed 3PP») due to deformation of
the phonon spectrum under pressure.

Now we show the appearance of the shoulder
using the collision matrix introduced in the pre-
vious section. The ultrasonic sound means very
long-wavelength phonons, which are injected from
outside of the system. So, we can suppose that
thermal phonons are in equilibrium, and only very
long-wavelength phonons have variation from equi-
librium due to the injected sound phonons.

Let the momentum of sound phonons be ¢. For
thermal phonons with momenta ¢’ and ¢” in the
equilibrium state,

®(q) =0, (4.5)

@) =0 (4.6)
in the collision integral of Eq. (2.17). Then only
the terms containing ®(q) remain, which means
that only the diagonal elements of the collision
matrix are nonzero. Then the /-dependence of the
collision matrix equation disappears. The absorp-
tion rate, T (g), of sound phonon by thermal pho-
non, therefore, becomes the diagonal part of the
collision matrix.

The attenuation of sound is related to the absorp-
tion rate as

T @
a= T :

Therefore, if we know the phonon energy spectrum
under pressure, the attenuation of first sound can be
obtained. Figure 9 shows the results for the attenu-

. ation of ultrasonic sound. For temperatures below

0.6 K the results show good agreement with experi-
mental  data. The parameters of the phonon energy
spectrum used in this calculation are listed in Table.
The maximum scattering angle ,, and cut-off mo-
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Fig. 9. Ultrasonic attenuation for different frequencies under
pressure 16.4 atm. The solid points are the experimental data of
Roach et al. [10].

mentum ¢, calculated by these parameters are also
listed in Table. We find that for the case of attenu-
ation of sound, the process q+ q” — ¢ is domi-
nant. This means that the sound phonons are ab-
sorbed by thermal phonons. The scattering in this
case is almost linear since the maximum scattering
angle is 8, = 0.83°, and only very long-wavelength
phonons, g < 0.0625 A~! , take part in the scatter-
ing. The cut-off momentum obtained here shows
remarkable agreement with the result of Jackle and
Kehr (within 1%). The rapidly increasing behavior
at high temperature, T > 0.6 K, can be explained
by considering the existence of rotons [11], and so
for this temperature range the contribution of ro-
tons is essential.

Table

Phonon spectrum parameters used in the calculation of the
sound attenuation at P = 16.4 atm

s, o, ey e e . |9, kg
m/s a2 al 46 -degree K
332.4 0.0454 -8.3 22.35 0.83 1.59
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3. Conclusions

We obtain the wide-angle scattering rates and the
absorption rates of phonons in 4He below 0.6 K by
solving the eigenvalue equation for the 3PP colli-
sion matrix. The sequence of the lowest eigenvalues
of the collision matrix along ! shows a saturated
behavior, which is different from the results given
by Maris and Benin. With Maris’ and Greywall's
phonon spectra, we calculate the viscosity mean free
paths and compare them with experimental data,
where the Maris’ spectrum is seem to be in better
agreement. For the result of ultrasonic attenuation,
the phonon spectrum parameters at P = 16.4 atm
are obtained from a fit, and the cut-off momentum
caiculated from the parameters is in excellent agree-
ment with Ref. 11.

Since the 3PP are also an important phonon-pho-
non mechanism in dilute 3He—~4He mixtures at low
temperatures, it is possible to apply this theory to
such mixtures. This study is in progress.

Acknowledgements

This work was supported by the Research Insti-
tute of Basic Science in Korea University and Non-
directed Research Fund, Korea Research Founda-
tion, 1995.

t. H. J. Maris and W. E. Massey, Phys. Rev. Lett. 25, 220
(1970).

2. H. J. Maris, Phys. Rev. Lett. 28, 277 (1972).

3. H. J. Maris, Phys. Rev. Lett. 30, 312 (1973).

4. C. 1. Um, C. W. Jun, and T. F. George, Phys. Rev. B46,
5746 (1992).

5. H. J. Maris, Phys. Rev. A8, 1980 (1973).

6. D. Benin, Phys. Rev. B11, 145 (1975).

7. R. W. Whitworth, Proc. R. Soc. London A246, 390
(1958).

8. H. J. Maris, Phys. Rev. A9, 1412 (1974).

9. F. A. Buot, J. Phys. C5, 5 (1972). i

10. P. R. Roach, J. B. Ketterson, and M. Kuchnir, Phys. Rev.
Lett. 25, 1002 (1970).

11. J. Jickle and K. W. Kehr, Phys. Rev. Lett. 27, 654
(1971).

12. B. M. Abraham, Y. Eckstein, J. B. Ketterson, M. Kuchnir,
and P. R. Roach, Phys. Rev. A1, 250 (1970); ibid A2, 550
(1970).

13. D. S. Greywall, Phys. Rev. B23, 2152 (1981),

14. W. G. Stirling, J. R. D. Copley, and P. A. Hilton, Proc.
Int. Symp. on Neutron Inelastic Scattering, 1.A.E.A., Vi-
enna (1977).

15. L. D. Landau and I. M. Khalatnikov, JETP 19, 637,
(1949), ibid 19, 709 (1949). ‘

545




