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The ground-state energy of two electrons on a ring is calculated for the one-dimensional Hubbard

model with positive and negative on-site interaction and for the contraction model with additive and

multiplicative interaction terms. The Ac/2e periodicity of the ground-state energy with respect to a flux

@ threading the loop is derived. The periodicity may serve as an indication of superconductivity. The

results are shown to be consistent with the Lieb-Wu solution for ® = 0 limit. In addition, the new states

that were missing in the Lieb-Wu solution are derived.

PACS: 74.20.-z, 74.20.Mn, 74.25.Jb

1. Introduction

Among the possible mechanisms of high tempera-
ture superconductivity attention was focused in the
last years on strongly correlated systems [1], non
Fermi-liquid scenarios [2,3], magnetic schemes
(spin-fluctuation [4,5] and spin-bag [6]), and soft
orbital mode interaction mechanisms [7,8]. The ge-
neric Hamiltonian underlying these models are the
one-, two-, or three-band Hubbard positive- or
negative-U Hamiltonians and contraction Hamil-
tonians with a hopping amplitude which depends
upon the sum or product of the near-site occupation
number operators. The criterion for superconducti-
vity can be learned in the pairing instability, in the
Meissner effect, or in flux quantization. In this
paper some of the above models are considered in an
assumption that halving of the flux periodicity in
the energy versus flux dependence (hc/e to hc,/2e)
may serve as an indication of the superconducting
transition.

The purpose of this paper is to show some new
states for the one-dimensional Hubbard model,
which are missing in the Lieb-Wu [9] solution, and
to show that the contraction model may serve as a
mechanism for superconductivity. Similar states ap-
pear in other strongly correlated models of high-T,
superconductivity. Specifically, we will analyze in
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this paper three Hamiltonians for strongly corre-
lated fermions:

(1) Hubbard model with repulsive on-site inter-
action [5].

(2) Negative-U Hubbard Hamiltonians [27,28].

(3) Contraction-pairing mechanisms [7,8,10].

It is known that direct O-O hopping in high-T
superconductors is important. Since oxygen in oxides
like YBa,CugOg, . has almost filled p-shell configu-
ration, holes in a p® shell may play a similar role for
the conduction in oxides in question, as the elec-
trons from nearly empty atomic shells in conven-
tional metals do. Oxygen atoms are specific in the
sense that change of the oxygen ionization state
(0% to O™ and O?7) results in a dramatic increase
of p, , p, orbitals in the CuO plane, and therefore
in the increase of the magnitude of hopping between
near oxygen (as well as near oxygen-copper) sites.
A non-s-wave orbital configuration [10] is expected
to survive with consideration of this occupation-de-
pendent hopping.

2. Ground-state energy of two electrons in the
Hubbard model with positive and negative
on-site interaction

We consider a loop of N, lattice sites with a
magnetic flux @ threading the loop (Fig. 1). The



Fig. 1. Configuration of the sample. There are N lattice sites
on the ring which can be numbered from 1 to N, . The flux ®
piercing the ring is produced by a solenoid inserted inside the
ring.

electrons can hop between neighboring lattice sites,
and each site can be occupied by at most two
electrons with opposite spins. The Hamiltonian for
this system has the form

_ 10( —ia[]
tZD]cr;Ho +C]+1O'C]O'e +

+UZ”jT”j1 , 1)
]
where c] o and ¢, are respectively the creation and
annihilation operators of an electron with spin pro-
jection o at the jth lattice site, ¢ is the electron
hopping amplitude, a = 2T/N )(®/®;) (here d, =
= hc/e is the magnetic flux quantum), njg is the
occupation number operator, and U is on-site inter-
action term. The energy spectrum of H is invariant
under the replacement of ¢ by —f. Hence, we assume
t = +1 in appropriate units.
The wave function for two electrons, one with
spin up and the other with spin down, is

— +
|wo= z flx, , x,) cx1lc;2T o0, 2)
Fp¥y

where |00is a vacuum state.
The eigenvalue equation H|WO= E|WOleads to

- %f@i +1, 1) + flaey, 2y + 1)) €9 +
+ (f(x1 -1, xg) + f(x1 y Xo ~ 1)) e—ia%_i_

+ U6(X1 ’ xz)f(x1 ’ X2) = Ef(x1 ’ X2) (3)

Fizika Nizkikh Temperatur, 1998, v. 24, No 4

or, in the momentum space,

g:" + 2cos (K + @) + 2cos (K, + C‘)Ef[( K. -
159

U
- N, Z fK1_K'K2+K ’ @
4K

where K, ,=Qm/N, )n1 5 with n,=01,2
N, -1 Here fx K, is assumed to satisfy the pe—

r10d1c1ty condition’ fx K 21K fK Kom ™ fK K,
Equation (4) can be rewritter as follows:

pQQ_NaX

1 O_

x =
% E+2cos(K1—p+0()+2cos(K2+p+0()E

(5)
where Py = (1/N,) ) fK1—K,K2+K , Q=K +K, =
K

= (2/N )n, and p = (21/N )m. Hence, either the
term inside the parentheses or P, should be equal
to zero.

(HP,z0. The Lieb and Wu solution

For P, #0, the term inside the parentheses
should be equal to zero, or

1
where
1
SE =N, 7

1
X .
%E+2COS(K1—p+(X)+2COS(K2+p+C()

Using the Poisson summation formula,

exp (ipN n)
U ZI 21 E + 4cos (Q/2 = p) cos (Q/2 + a)
e (8)
S(E) becomes
S(E) =Y S,(E) =
=S,=E) + EME) + SE(E)E- (9)
n=1

S (E) can be calculated by transforming Eq. (8) to
anintegral in the complex plane. Setting z = ', we
have
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Sn(E) = % X

ZNan
xOdz - , , — .
f Zz(ezcx + e—z(Q+a)) + Ez + (ez(Q+a) + e—za)

(10)
The poles (Fig. 2) of the integrand are

-E £ (E% - E})1/2
4 == N ) 11
1,2 E, exp (-i0/2) (11

where E, = 4cos(Q/2 + o). For E? < E%, both of
the poles 2z, and 2, are on the unit circle and §,_,
vanishes, while for E2 > E% one of them is inside
the unit circle and the other one is outside of it, and
S = does not vanish. For both cases

1 exp ((Q/2 - x)N ) +1
4i sin x cos B exp (i(Q/2 -x)N ) - 1 ’
(12)

where x can be real or complex, depending on
whether E? is smaller or larger than E?% , and B =
=Q/2 +a. If we denote new momenta k, , k, as

p =9

2= Taxx, (13)

S(E) =

Eq. (6) takes the form
sin k1’2 -AN+iU/4

exp [i(k1’2 N = sinky o —N-iU/4 (D
where
sin k1 + sin k2
A=ty (15)

Equation (14) is identical to the Lieb and Wu
solution [9] in the a = 0 limit.

It is possible to express the eigenvalue E of the
system as

f

N

P

N R
s

Fig. 2. Poles of the integrand in the complex plane. E? < ES
(@) and E2>E(2) (b), where E,=—4cosp for even n and
E, =4 cos B cos (/N ) for odd n.

E = -2(cosk, + cosk,) =—4cosxcos B, (16)

with x determined by

N x EﬁsinxcosBD0
03

tan =- O, an
2 o Y o
where 0 =+1 or —1 for odd or even value of n [n =
=Q/(21YN )]

For U > 0, E2 is always less than E2 ; hence x is
always real. For U < 0 with even n, E? is always
larger than EZ , so that x is complex. But for odd
n and small |U| values (U < 0), x might be real. Let
us consider Eq. (17) for negative U and odd n with
complex x = iK

{ tanh (N k/2)
U™ 4sinh k cosp (18)

To have a solution of this equation, 1,/]U| should
not be larger than the maximum value of its right-
hand side. Accordingly, the critical value U (N)|
can be found. The values of |U| which are smaller
than this |Ucr| have real x; others have complex x in
Eq. (17).

I P, =0. The new state

If P, is equal to zero, then either a new eigen-
value o? the system is found as

Table 1
Minimum energy for different values of U
U>0 U<0
E:—4cosxcosl3 E:—4COShKCOS[3
even n with x (real) determined by with k determined by
tan (N x/2) = U/4 sin x cos B tanh (N K/2) =|U|/4 sinh « cos B
U<vu U <U<0
cr cr
E = -4 cosh kK COSB, E = -4 cos x cos B’
odd n E =4 cosBcos(m/N) where K is determined by where x is determined by
tanh (N K/2) = 4 sinh K cos B/10] tan (N x/2) = 4 sinh x cos 31Ul
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Fig. 3. Energy versus flux for two electrons with N, =10. (a)
Solid curves 7—3 correspond to the Lieb-Wu solution and the
dashed curve corresponds to the new states found by us. For
U >0 (U = 10) this new state becomes the minimum energy of
the system. (b) The same as () to show the ®,/2 periodicity
more clearly. It is clearly seen that the Lieb-Wu solution (solid
curves 7-3) does not lead to the ®,/2 periodicity alone. (¢)
U =-10. As in (a), the solid curves /-3 are the lowest-lying
eigenvalues found by the Lieb-Wu solution. Similarly, the
dashed curve corresponds to the new state found by us. For
U < 0 the new eigenvalue does not become the minimum ener-
gy of the system. (d) The same as (¢) to show the periodicity
more clearly.

(19)

with K; =g and K, =0Q - g, or fr =0 for any
K, and K, . But all f's cannot be zefo; otherwise
|WO= 0. Summation of all f's, so that Py is equal
to zero while f's are individually not all zero only
if for two different values of ¢, 2 cos(g +a) +
+ 2 cos (Q — g + a) are coinciding.

For positive on-site interaction U, this eigen-
value becomes the minimum energy of the system
when n is odd. For U < 0 it does not become the
minimum eigenvalue of the system.

The ground-state energy values are summarized
in Table 1.

The dependence of the ground-state energy on
the flux is shown in Fig. 3.

E=-2cos(g+a)-2cos (Q—-g+a),
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A. Dependence of the amplitude of energy
oscillations on the number of sites

The dependence E(®) is shown schematically in
Fig. 4, where AE, and AE, are the amplitudes of
hc/e and hc/2e oscillations.

For U < U_, <0 in the large N, limit

218

AE, =AE, =AF = — ———— .
1 2 Ng (U2+ 16)1/2

(20)
Here there is a ®/2 periodicity, which resembles
the pairing of electrons as in a superconductor, but
the amplitude of the energy oscillations decreases
with inverse square of the number of lattice sites
(Fig. 5,a). If |U| - |U_J, then the amplitude of
oscillation corresponding to /c,/2e becomes smaller
and at U = U, it vanishes. Note, however, that for
very large values of N, , [U_| becomes quite small;
hence even for very small |UT the behavior of energy
with respect to flux is the same. The behavior of
ground-state energy is shown explicitly for various
values of U and N in Figs. 5,c—f. In the very large
N, limit, using Eqs. (16) and (17), we can show
that

Q1

for even and odd values of n. The last expression
can be obtained directly from Eq. (7) by changing
the summation over p to an integral.

0 05 1
/D,

Fig. 4. Energy oscillations for two electrons. AE; — amplitude

of hc/e periodicity, AE, — amplitude of 4c2e periodicity.
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Fig. 5. (a) Minimal energy versus flux for N_ =10 and 20 (U = -10). Comparison of oscillations for N =10 and 20 shows the 1/Ni
behavior of the amplitude. (5) Minimal energy versus flux for N, =10and 15 (U =10). As the number of sites increases (larger Na),

AE /AE, approaches 1. (¢—f) Ground-state energy for different values of N, and negative U. Compared to the oscillations in () for

N, =10 amplitude AE2 becomes smaller in (¢). This occurs because U comes closer to U, if larger values of U were used, even smaller
AE, values would be obtained. (d), (e), and (f) demonstrates the behavior of the system with N_=100. This time even with U = -1,
AE, is still almost equal to AE O because for larger values of N, U, becomes larger and approaches zero. For U = -0.1 a decrease in

AE, is observed. (g—7) Ground-state energy for different values of N, and for positive U. For smaller values of U (U - 0) AE, becomes

smaller. But just as in the U < 0 case, for larger values of N_, even for very small values of U, there is still a ® /2 periodicity. It

should be noted that in all cases, as Nﬂ - oo, all oscillations vanish, AE1 5 - 0.

For U > 0, in the limit N, >> 1

2

2
22 H 10UN, 0OH

AE1=WE—7 oNog @@

a% aDE

22

o H o UN, OH

p +UNaDD

Hence, for U x N, - o, AE, = AE, = Vi (2T[2/N622).
Both AE, and AE, behave like 1/Ng , and
AE,/AE, -~ 1 (Fig. 5b). But for U - 0,
UxN, - 0; AE; =21 /N? and AE, = 0. The plots
of energy versus flux behavior of the system for
positive U are shown explicitly in Figs. 5,g—7.
With the new state found in our work, an
hc/2e periodicity of the ground-state energy ap-
pears even for positive U. This branch vanishes
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gradually as U - 0. It is not possible to find this
periodicity with the Lieb-Wu solution.

B. Comparison with other theories

The energy oscillations with the hc/2e peri-
odicity were calculated in the strongly correlated
electron models, including the Hubbard model, in a
number of papers [11—17]. In some papers [18—21]
the Hubbard model was examined by using the Lieb
and Wu solution [9]. The oscillations with the
hc/2e periodicity for negative U can be found by
starting directly from the original solution pre-
sented by Lieb and Wu, since the new state found
in our work does not become the minimum energy
state. But for positive U, new states should be
included to obtain the correct hc,/2e periodicity.
The Lieb and Wu solution does not lead to the
he /2e periodicity for positive U.
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1) Why Lieb-Wu is incomplete:
let us consider the Lieb-Wu equations (with no
magnetic flux ®)
sin k, —sin k, +iU /2

N k)=
exp (iNky) - sin kz—iU/Z’

sin k, (24)
sin k, —sin ky +iU /2

A By = .
exp (iNky) = ky = sin k, —iU/2

(25)

Dividing the first equation by the second, with
ky +ky,=Q and k; — k, = 2k, we obtain

[2sin K cos (Q/2 + ) + iU/ZD2
Bsin K cos (0,2 +a) —iU,/28

exp (2iN K) =

(26)
The energy equation is
E = -2(cos k, +cos k,) = =4 cos(Q,2) cosK ,
(27)
and the new eigenvalue found by us is
E = —4cos (Q/2) cos (/N ) . (28)

Therefore, k should be equal to /N, in Eq. (27).
According to Eq. (26) it is obvious that this is
possible only if U = 0. The Lieb-Wu solution does
not give this result for all U except U = 0.

In the original paper of Lieb and Wu [9] it is
explicitly stated that the momenta kj should be
unequal, which means that both I, - I, and I, + 1,
cannot be equal to zero (I, and I, are integers in the
original paper of Lieb and Wu [9]). This is also the
case in our procedures. In terms of our approach,
K = 0 should be excluded from the solution set. But
in some papers [14] k, is assumed to be equal to k,
so that K =0 and a ®/2 periodicity is obtained by
accident.

3. Contraction model

A. Physical background

In the investigation of unusual electronic pro-
perties of metal-oxide compounds it was proposed
[7,8,22] that the new features in the electronic band
conduction in oxide metals should be included. The
first one is the possibility that «intrinsic-holes
rather than intrinsic-electron carriers may play a
role. The second one is that, provided intrinsic holes
are at work, one-particle picture of the electronic
transport is not fully adequate, because the interac-
tion between holes (repulsive or attractive) must be
included, and because the fact that the hopping of
holes in itself cannot be considered as constant in
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amplitude and is strongly dependent upon site occu-
pation.

Normally, two oxygen atoms have a strong ten-
dency to make covalent bonding, which results in
the formation of an oxygen molecule, O, . Howe-
ver, in a proper chemical surrounding, this may not
happen if the nearest neighbor atoms are not too
close to each other. In this case the other scenario,
which is reminiscent of metallic oxygen, applies.
We can assume that this is just what happens in the
metal-oxide superconductors. In the CuO, plane of
the latter, due to large ionic radii of oxygen, the
oxygen orbitals overlap each other almost as
strongly as the near site oxygen and copper orbitals
do. The O, molecules therefore are not formed, and
the electrons derived from the p® shell are the
conducting. The charge carriers are holes in the pS
shell, which propagate from one oxygen anion to
the next nearest one by hopping. Because of the
contraction of the p orbital of oxygen as a result of
occupation by a hole, hole hopping between near-
est-neighbor sites (i, j) is dependent on the oppo-
site-spin hole occupation number. In the second
quantization representation it was suggested to con-
sider the hopping matrix element t;; as an operator
which depends on the occupation number operators
n; and n; at the atomic sites R; and R; . There are
three independent matrix elements, 7, , ¢, , and ¢,
(Refs. 23 and 26), which in the case of two oxygen
anions correspond to the following, charge transfer
reactions:

O+ O 2= 4 O
ty Ol.+O]. _>Ol. +O].
. 2— 2—
ty: O+ Oj - O™ + O]. , (29)
ty; Oi+O]T_>OZ._+O].,
which result in
ti].=t0(1— 1_0)(1—n o+
+1, %z o= n; o F nj7_0(1 -n; )D+ t2nl " -
(30)

The occupation dependence of the hopping can be
represented in another form:

ti]- =—f+ Vni,—onj,—o + W(n ot -,_0) , (31)
where from Eq. (30) we obtain
t=—ty, V=t =2t +t,, W=t —t, (32)

Hence, the 1D version of the interacting holes in an
anion network can be represented by the following
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Hamiltonian, which includes the on-site interaction
term U:

- _ + .
H= z CioCi1,g EXP (za) +Hee. + U z nin; +
jo J
.
*2 GoCirto B ~os1,-0 * Wt o+ Mg o)
7,0

x exp (ia) + H.c. (33)

The effect of the coupling term W has been consid-
ered in great detail in the paper of Hirsch and
Marsiglio [7], as well as by Kulik et al. [8,25].

B. Bound state of two electrons

As before, we use the wave function for two
electrons, one with spin up and the other with spin
down,

W= z flx, , xo)cr cf o0 (34)
s it x4

In momentum space the eigenvalue equation

H|WO= E|WOgives

- USE) = WS,(E) -WS,() O ()0

TS (B) + WS,E)  ~1+ WS (B2 F,@F
(35)

where

1
N, > (£K1—K+a + 8K2+1<+a)n fK1—K,K2+K =F,(0),
3 (36)
n=0,1, and

n
1 (£K1—p+a + 8[<2+p+('1)
N, 2
N
a’ E+ (£K1_p+a

=S (F),
+€1<2+p+a) AE) s (37)

n=0,1,2; ¢ =2cos k. Hence, either the determi-
nant of the first matrix is equal to zero or both
terms of the vector are zero.

For two electrons V does not show up. The effect
of V in the weak-coupling regime was considered
previously [8].

In the case |y = F| = 0 the energy eigenvalue of
the system becomes

E=-2cos(q+0a)—-2cos (Q-qg+a)=

=—4cos (Q/2 - q) cos B . (38)

It is possible to have both F,, and F, equal to zero,
while all f’s are not individually equal to zero only
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if for two different values of ¢, 2cos (g + a) +
+ 2cos (Q - g + a) are coinciding.

For the other case, i.e., when determinant of the
first matrix in Eq. (35) is equal to zero, the tran-
scendental equation is found as follows:

W-1?

Urww-gE o) (39)
The plot of S(E) is presented in Fig. 6. Equation
(39) can be solved numerically, which is done to
test our results. If we set W =0 in the last equa-
tion, we immediately obtain the result of the 1D
Hubbard model discussed in Sec 2. With similar
calculations as in the previous sections, the mini-
mum energy corresponding to Eq. (39) is found as

E =—(cos k, +cos k,) = —4cos x cos B, (40)

where x is determined by

o
Njx O 4W-1)2sinxcosp O

tan =-0 0 -
2 HT = AW(W - 2) cos x cos B3

Here 0 = +1 or —1 for odd or even values of n. In the
hatched region in Fig. 7 for odd values of n the
expression

E = —4cos (/N ) cos B (42)

gives the minimum energy value. The curve in Fig. 7
corresponds to U =-W(W -2)E, , where E, =
= —4cos B for even n and E, = —4cos 3 cos (TN )
for odd n. The resulting values of the ground-state

10

So(E); 1/F(E)
o
|
|
Ji
\
A\
e
|
T

-10 | !

-10 -5 0 5 10
E

Fig. 6. Plot of the transcendental equation for the contraction

model. The intersection points of S,(E) (solid line) with
1/F(E) (dashed line) give the energy -eigenvalues. Here
Na =10, ¢'=(D0/2, n=9, U=-2,and W =1.5.
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Minimum energy for different values of U

Table 11

U > -W(W - 2)E,
hatched part in Fig. 7

U< -W(W-2)E,

nonhatched part in Fig. 7

E =-4cos x cos B
with x (real) determined by

E = -4 cosh K cos B
with K (real) determined by

even n
o ENXS U - 4W(W - 2) cos x cos B NXK U -4W(W -2) coshk cos B
02 g AW - 1) sin x cos B 2 - 4(W - 1)% sinhk cos B
U<vuU U>u
cr cr
E = -4 coshk cos, E = -4 cosx cos B,

where Kk is determined by where x is determined by

odd n E =-4cosP cos (T[/Na) N )
NaK__ 4(W - 1)? sinh K cos B tan x:_ 4W —1)" sin x cos B
2 " 2 U-4W(W-2) cos x cos B

U-4W(W-2) cosh K cos B

energy for different values of U and W are summa-
rized in Table TI.

Here U is found in a similar way to that of the
Hubbard model. The energy-versus-flux dependence
for two electrons in the contraction model is shown
in Fig. 8.

The amplitudes of the energy oscillations in the
N, >> 1 limit are found as follows:

(i) For the nonhatched region below the curve
(the bound states) and U < v, (U<U_,<
< -W(W -2)E)):

AE1:AE2:AE:

@r/N2)(W - 1)

1/2
PWAW=2) 42 W2 -4 WH)[16(W=1)+U2]] /

(43)

Hence there is a ®,/2 periodicity. The branch
corresponding to the expression in Eq. (42) for odd
n does not become the minimum energy; it is shown
as a dashed line in Fig. 8,c. As U - U,, from
below, the branch which is marked as 2 in Fig. 8,c
fades away from being the minimum energy. Even-
tually, at U =U_ there is no more ®,/2 pe-
riodicity. For very large N (N, - «), U_ -
- 4W(W =2). It is interesting that in this very
large N, limit E; — —4, so that the curve in Fig. 7
corresponds to U =4W(W -2)~U_ . Hence,
for very large N, , any U which satisfies
U < 4W(W - 2) is less than U, ; therefore, almost
always there is a ®)/2 periodicity in the non-
hatched region in Fig. 7.

(ii) For the shaded region above the curve in
Fig. 7 the expression in Eq. (42) becomes the mini-
mum energy of the system. This branch is shown as
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the dashed line in Fig. 8,a. The corresponding
amplitudes are

AE, = 212 /N?)(1 - A2, (44)
AE, = 212 /NHA? (45)
where

1B (U - 4W(W - 2))N,,

. 46
2 ﬁ(w— 1)2 +Na[U—4W(W—2)]ﬁ - (46

For (U-4W(W-2))N, - , AE,=AE,= Y4210 /N?).
But for (U-4W(W-2))N, - 0, AE, = 212/N? , and
AE, = 0.

Fig. 7. Phase space for bound states of two electrons. The
hatched region corresponds to the free propagating states and
the nonhatched region corresponds to the bound states of two
electrons within the contraction model. The solid line corre-
sponds to the equation U = -W(W - 2)E, , where E, = —4 cos B

for even n and E, = -4 cos B cos (T/N ) for odd n.
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Fig. 8. Energy versus flux for two electrons in the contraction
mechanism. Note the resemblance of this figure to Fig. 3. Here
instead of U >0 there is U >-W(W -2)E, ; similarly for
U < 0 there is the U < -4W(W - 2) criterion. In (a) the solid
curves correspond to the expression (40) and the dashed curve
crresponds to the expression (42). Just like for U > 0 in the
Hubbard model, in the contraction model for
U >-W(W - 2)E, the dashed curve becomes the minimal en-
ergy of the model. (b) The same as (a) to show the behavior of
the system more clearly. In (@) and (b) N, =10, U =-2,
W=15. In (¢) U<-W(W-2)E,, just as in the Hubbard
model for U < 0, the solution corresponding to Eq. (42) does
not take place as the minimum energy of the model. The solid
curves /-3 correspond to Eq. (40) and the dashed curve corre-
sponds to Eq. (42). (d) is the same as (¢) to show the behavior
more clearly. In (¢) and (d) N,=10, U =2, and W=-1.

All results found here and in the previous section
for the Hubbard model are in close correlation. In
the Hubbard model and the contraction model two
different types of solutions were found. For the
Hubbard model a new type of solution gives the
®,/2 periodicity for U > 0, which is absent in the
Lieb-Wu solution, while in the contraction model
this type of solution gives the ®,/2 periodicity for
U>-W(W=-2)E,. In the Hubbard model for
U < 0 E can be larger or smaller than E,, , depend-
ing on whether U is larger or smaller than a critical
value U, . Similarly for the contraction model for
U<-W(W-=2)E, , E can be larger or smaller
than E,, depending on whether U is larger or
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smaller than U_, . For Hubbard model U, becomes
zero for very large N, , for contraction model it
becomes 4W(W - 2). In all these inequalities one
can get Hubbard model type relations setting
W =0 in contraction model relations.

4. Conclusions

In the one-dimensional Hubbard model and the
contraction model for two electrons, the periodicity
of ground-state energy with respect to flux is
hc/2e. Our study shows that the solution for a
one-dimensional Hubbard model by Lieb and Wu
[9] in 1968 is not complete, at least for two elec-
trons. For positive on-site interaction new states
found by us correspond to the ground-state energy.
Hence, they play an important role for correct
behavior of the ground-state energy of the system.
Generalizing the current results to more than two
electrons will be the task of a future work. It is very
likely that for more than two electrons new states,
which cannot be determined by the Lieb and Wu
results, will be found. The model for the ground-
state energy of contraction has a hc/2e periodicity
also. But it is not easy to speak about superconduc-
tivity very clearly. For some range of the values of
U and W it is likely that this model results in
superconductivity. To show that this model serves
as a model for superconductivity, other probing
methods should be used.
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