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Using the path integration iechnique, developed by Brusov and Popov earlier [1], we calculatc the collective mode
spectrum at zero momentum of excitations for polar phase of superfluid “He. We found six modes with energy E =
= (1.20-1.75{)Aqg which damp strongly and three Goldstone modes with zero energy al zero momentum of exci-

tations. -
1. Introduction
000
The polar phase with order parameter ~ [0 00
: 001

and gap in the single-particle spectrum A2 =
= Ag cos? 0 is the only phase in superfluid 3He that

has a line of gap nodes. It is very interesting, by
making use of this fact, to calculate the collective mo-
de spectrum in this phase and compare it with the
spectrum of isotropic B phase or with one of the axial
A phase or the planar 2D phase with points of gap
nodes. It is clear that because of the disappearence of
the gap along the equator and the possibility of decay
of the collective excitations into initial fermions, the
energies of all high-frequency modes (with £ # 0 at
k = 0) should be complex. The imaginary part of this
energy determines the damping of these collective
modes.

The plan of this paper is as follows. In Section 2 we
describe very briefly the method of calculations based
on the hydrodynamic action functional. In Section 3
we obtain the equations for the collective mode spect-
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where & =cp(k — kp); n,=k; /kp ; H is magnetic
field; p is magnetic moment of quasi-particle;
Z = const; B = T~!; Vis the volume of the system,
g, (a=1,2,3) are two-by-two Pauli matrices, and

w = (1 + 2n)xT are the Fermi frequencies. The ne-
gative constant g is proportional to the scattering am-
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rum and calculate it numerically. In the Conclusion
we discuss the obtained results and compare them
with ones cbtained by kinetic equation method.

2. The method of calculation

The physical properties of the superfluid phases of
He are cetermined by the hydrodynamic action
functional S, obtained by the functional integration

over the «fast» and «slow» Fermi-fields:

1
Si=g 2 P p)
g p.i.a

+ %ln det [/C/(c* L )/ MO, c(o))] .

Here ¢, (p) is the Fourier transform of Bose-fields
¢;4(X, 7) describing Cooper pairs of the quasi-fermi-
ons on the Fermi iurface with condensate values "1(3)’
and the operator M is given by

(ny; = ny)
VBV
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plitude of two quasi-fermions near the Fermi sphere
under the assumption that the amplitude is equal to
g(kl - k2 , k3 - k4), where kl and k2 are the momen-

ta of the incident fermions and k3 and k4 are those of
the outgoing ones. At T - 0, the functional Sh must be
expanded in terms of fluctuations of the fields ¢; (p)
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above the condensate values c¢{0)(p). In this tempera-  equation det Q = 0, where Q is the matrix of the qua-

ture region the Bose spectrum of the system is deter-  dratic form.

mined in first order approximation by the quadratic .
part of the functional §, obtained by the shift 3. The collective mode spectrum
0
"i%(P) ~ () 72" o(P) where for polar phase To calculate the quadratlc part of S, one, needs to
c(m)(p) = c(BV)! 3,09;30,3 and is obtained from put M( et O, (0)) c! M( ¢t )=G+2 and to
keep the first two terms (n = 1, 2) of the expansion

In det [M(c*, o)/ M(c* @) = Spln (1 + G@) = - 3 5‘; Sp (GR)2" .

In case of the polar phase
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here A = BAgcosf, Ay = 2¢Z.
Finding G
a— 2 ~ (i +§)6plp Aépo
M —Aépo (iw + E)&plp

and calculating — 2 Sp (Gu)z” we get the quadratic form of S, :
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here M, = w? + &2 + A2,

Taking the limit T - 0 we transform from summing to integrating in the vicinity of the Fermi surface by the
rule

(;SW)"2--1:}(270‘%;‘fdwl dt dQ ,
Py

where dQQ, is the integral with respect to the angle variables.

After calculation of the coefficients of the quadratic form, one has

—xz)[J(l—4A2/q2)-2] (u +u2 +v +u +u +vfz) +
+(1 —xz) ¢ -2) (ufs vl +ud vl + il + ufz) +
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2 2, 2\ (.2 2
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HereJ = b %In

2 2 2 2 2
) + v32) + 2x J(v33 + Uy, + usz)}.

2 _ 2, 2 - _ 2_ 2 2 2
b°=1+4A%/¢" ,u,=Rec, v, =Imc;,, ¢" =’ + cp(kn))”.

From this quadratic form we obtain the following set of equations for collective mode spectrum using the

equation det Q = 0:
1

f(l — YW (L= 4AY @) = 21dx =0, (uyy, ttyy,v)1 ¥y 3 V0 0,)) s

0
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f I~ 48/ P dx =0, (4331 V31 1 V3)) s

0

Putting & = 0 and solving these equations we get the
root E = Ay(1.20—1.75i) for the second equation and

E = 0 for the third one. We didn’t find the roots for
the first and the fourth equations.

4. Conclusions

Let us discuss the obtained results briefly. First of
all we would like to note that we got six branches of

' the E = Ay(1.20-1.75{) mode which correspond to

the variables Uiz Vo3 Uy s Uyy s Ugy s Uy, and three

branches of Goldstone mode E = 0, which corres-
ponds to the variables Uys , Vg s Usy -

It turns out that the high frequency mode E =
= 1.20 A, has a large enough imaginary part, of the

same order as the real one. This couples to the fact
that, in the polar phase, the gap disappears at the
equator line which is opposite to the case of the axial
and planar phases, where the gap has point nodes,
and the imaginary parts of the mode energies are
small as compared with the real parts. In this con-
nection, we recall that the energies of all high fre-
quency modes in the isotropic B phase have real
energies at zero momenta of the collective excitations.
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We could compare our results to those of Ref. 2.
There, the authors solved the same problem by using
the kinetic equation method. They got the same en-
ergy E = 1.20 A, for high frequency mode but they

did not obtain the imaginary part of this mode. This is
the usual shortcoming of kinetic equation method as
compared with the path integration one.

The authors of Ref. 2. showed that this energy
E=120A, increases with T reaching 2A(T) as

T - T_and this mode becomes high damping at least
at T~ T_. For this temperature region this conclu-

sion is clear from physical reasons without calcula-
tions. They also found a few Goldstone modes. They
didn’t find solutions for some equations and found
them only at T = T, , where these modes have ener-

giesE=2A,.
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