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Let D? C R? be a closed unit 2-disk centered at the origin O € R2, and F be a smooth vector field such
that O is a unique singular point of F' and all other orbits of F are simple closed curves wrapping once
around O. Thus topologically O is a «center» singularity. Let 0 : D?>\ {O} — (0,+0c0) be the function
associating with each z # O its period with respect to F. In general, such a function can not be even
continuously defined at O.

Let also DY (F) — be the group of diffeomorphisms of D?, which preserve orientation and leave
invariant each orbit of F.

It is proved that § smoothly extends to all of D? if and only if the 1-jet of F at O is a «rotation», that is,
JrF(0) = —y(% + xaéy Then D (F) is homotopy equivalent to a circle.
Hexaii D* C R? — zamkrnenuti oOuHu4HUil 2-0UCK 3 UeHMpom y novamky koopounam O € R? i F
— 2na0Ke 8eKMopHe noJae, 04 aKo2o O € eOuHo 0cobAUB0I0 MOUKOI0, a 8Ci iHuwi opbimu noas F e
NPOCMUMU 3AMKHEHUMU Kpusuml, ujo oxonaioioms O. Taxum wurnom, mononoziuno O € ocobaugicmio
muny «uyenmp». Hexaii 0 : D?\ {O} — (0,4+00) — ¢pynkuyis, wo cmasums y 6i0n0GIOHICIb KOXCHLL
mouuyi z # O il nepioo eioHocHo F. Baazaai kaxcyuu, ys @pyHKyisa He moxce 6ymu npoooexeHa Hasimy
00 HenepepeHoi hynkuii na scbomy D?.

Hexaii makox DT (F) — epyna ougeomopgizmie D*, wo 36epizaromv opienmauiio i 3aauuaroms
IHBAPIAHMHOIN0 KOXHY opOimy noasa F.

Y cmammi 008edeHo, uio 0 npooosxcyemubcea 00 C°-yHKYIl Ha 8Cbomy OUCKY MO0 | miabKu mooi,

0
+ z—. Y ypomy eunaoky

koau 1-cmpymine F'y mouui O e «nosopomom», moomo j1F(O) = Yo, e
T Y

epyna DY (F) 2omomoniuno exsisasenmua 00 Koad.

1. Introduction. Let D? C R? be a unit 2-disk centered at the origin O € IntD? and F be a C™
vector field with the following properties:

(T;) F is tangent to 9D?;

(T3) O is a unique singular point of F;

(T3) all other orbits of F' are closed.

Then it is easy to find a homeomorphism

h: D?* — D? (1.1)

such that for each orbit o of F distinct from O its image h(o) is a circle of some radius ¢ € (0, 1]
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178 S.I. MAKSYMENKO

centered at origin, see Fig. 1.1. Therefore, we will call a vector field F' on D? satisfying (T1) -
(T3) a TC-vector field and its singular point O will be called a topological center.

Fig. 12

TC-vector fields often arise as Hamiltonian vector fields of local extremums of functions
on surfaces. For instance, let f : D? — [0,1] be a C*-function such that f~(1) = 9D?,
f~1(0) = O, and O is a unique critical point of f (being a global minimum of f), see Fig. 1.2:

0
Then its Hamiltonian vector field F(z,y) = — le/% + f;a—y is TC and f is its C'*°-strong first

integral in the following sense.

Definition 1.1 (c.f. [1]). A C*®°-function f : D> — R is a strong first integral for F, if O is a
unique critical point of f and the Lie derivative F(f) = 0, i.e., f is constant along orbits of F.

Since F'is C'*°, we can also assume that a homeomorphism 4 in (1.1) diffeomorphically maps
D?\ O onto itself, though it may loose differentiability at O. In this case F' has a continuous first
integral on D? defined e.g. by f(z) = |h(2)|?. This function is C> on D? \ O provided that h is
such, but f is not necessarily smooth at O.

Denote by DT (F) the group of C*-orientation preserving diffecomorphisms h of D? such
that h(o) = o for each orbit o of F. Let also D+ (F,d) be a subgroup of Dt (F) consisting of
diffeomorphisms fixed of dD?. We endow D (F) and D*(F, d) with the weak W>-topology.
The aim of the present paper is to describe the homotopy types of DT (F) and DT (F, 9).

Let# : D>\ O — (0,+00) be the function associating to each z € D?\ O its period 6(z)
with respect to F. We will call § the period function. Then it is easy to see that 6 is C*° on D?\ O,
but in general it can not be even continuously extended to all of D?.

Example 1.1. Let F(x,y) = Yo

D?. It follows from [2, 3] that D* (F) is homotopy equivalent to S*. The generator of 71D (F)
is given by the following isotopy:

+ a:;y Then 6 = 27, and therefore it is C* on all of

H:DY"(F)xI — D(F), H(ht)(z) = *™h(z).

ISSN 1562-3076. Heainitini koausanns, 2010, m. 13, N2 2



SYMMETRIES OF CENTER SINGULARITIES OF PLANE VECTOR FIELDS 179

Example 1.2. Let Q1,...,Q, : R? — R be definite (that is irreducible over R) quadratic
forms such that Q);/Q; # const fori # j,

f=0Q1...Qn,

and F(z,y) = — f;; + f;aa be the Hamiltonian vector field of f.
€T Y
If n > 2, then liné (z) = +oo, whence 6 can not be continuously extended to D2. Then

[4], DT (F) is path-connected with respect to the W-topology. On the other hand in all others
W topologies (r > 1) the group moD ™ (F) is (the same for all » > 1) a non-trivial finite cyclic
group of even order. Moreover, each path component of D (F) is contractible with respect to
the W-topology.

It turns out that these examples describe all the possibilities for 6. Actually the following
theorem holds true:
0 0

Theorem 1.1. Let F = Fla— + Fga— be a TC-vector field on D? and let § : D>\ O —
x y

— (0,400) be its period function. Then the following conditions are equivalent:
(a) O smoothly extends to all of D?;
(b) the eigen values of the matrix

OF, OF,
oz Oy
VF =
OF; OF)
oz Oy

at O are non-zero purely imaginary;
(c) there exists a C™-function 3 : D*> — R and a diffeomorphism g : (D* 0) — (D? 0)
such that 3(0O) # 0 and

0
9. F = B(2* +y?) (—yx + iz

where X,Y € Flat(R?, 0).

If either of these conditions fails, then z11_1% 0(z) = +oo.

The implication (a)=-(b) follows from [5], and (b)=-(c) from Takens [6].

A TC-vector field satisfying one of the conditions (a)—(c) of Theorem 1.1 will be called
PTC. This notation reflects periodicity of shift map of F, see Section 2.

The main result of this paper is contained in the following theorem.

Theorem 1.2. If F is a PTC-vector field on D? then DY (F) is homotopy equivalent to a
circle, and D (F, 0) is contractible with respect to W>-topologies.

Thus for PTC-vector fields, the description of homotopy types of Dt (F) and D*(F,d) is
the same as in Example 1.1. This result is a particular case of Theorem 2.1.

Remark 1.1. Suppose F has a C*°-strong first integral f : D? — [0,1] being a surjective
function. Then for each ¢ € [0, 1] its inverse image f~!(c) is an orbit of F. It follows that each
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180 S.I. MAKSYMENKO

h € DV (F) preserves f,i.e., foh = f.Thus we can regard D" (F) as the stabilizer S(f) of f with
respect to the right action of the group of orientation diffecomorphisms of D? on C*°(D? R).

There are numerous results concerning diffeomorphisms preserving functions. Most of them
deal with actions of compact Lie groups, see e.g. [7 8]. From this point of view, Theorem 1.2
describes the (infinite-dimensional) group of all orientation preserving symmetries of f but for
a very specific case. This theorem will be used in other papers for a description of the homotopy
types of stabilizers and orbits of smooth functions on surfaces, which will extend results of [9]
on Morse functions.

Notice that due to Takens [6] (see (c) of Theorem 1.1), a PTC-vector field F' is a “flat
perturbation” of the vector field of Example 1.1. We prove that F' is parameter rigid (see
Claim 11.1) and using this fact give another proof that any C*-strong first integral f : D?> — R
of F is a “flat perturbation” of a smooth function depending on z? + 2, see [10].

Theorem 1.3. Let F be a PTC-vector field having a C*-strong first integral f : D?> — R.
Then there exist C*°-functions g : R — R and p : D*> — R and p is flat at O and

flz,y) = g(2* + %) + u(z,y).

Existence of first integrals for such PTC-vector fields and the problem of recognizing of TC-
integrals with non-degenerate linear part are studied in [11-15]. See also [10] (Chapter 5, § 4)
for a review of the problem and references.

The case of a non-PTC-vector field, i.e., when lir% 0(z) = 400, is considered in [16], where

it was shown that under additional assumptions on F' the description of Dt (F) and DT (F, 9) is
similar to Example 1.2.

Structure of the paper. In Section 2 we recall the notion of the shift map of a vector field
and formulate Theorem 2.1.

In Sections 3 -5 linear parts of TC-vector fields and diffeomorphisms preserving their orbits
are studied.

The idea of proofs of Theorems 1.1 and 2.1 is to reduce F' to a certain normal form and
then “blow up” the singularity at O by using polar coordinates. Therefore, in Section 6 we
give conditions when smooth functions, self-maps, and vector fields on D? yield corresponding
smooth objects in polar coordinates and vice versa.

In Section 7 we recall the result of Takens [6] about normal forms of vector fields on R? with

“rotation as 1-jet” We also study the formulas for the flows of these vector fields with respect to
polar coordinates.

The rest of the paper is devoted to the proofs of Theorems 1.1, 2.1, and 1.3.

Notations. Let f = (f1,..., fmm) : R — R™ be a C*>° map, K C R™ a compact subset, and
k € {0} UN. Then the k-norm of f on K is defined by

Hlal
11k = supz ¥ 2k

] 1 \O¢|<k’

where @ = (aq,...,a,), @; € {0}UN, and |a] = 31" | «;. For a fixed k the norms || - [|%.
generate the weak W¥-topology on C*°(R",R™).

ISSN 1562-3076. Heainitini koausanns, 2010, m. 13, N2 2



SYMMETRIES OF CENTER SINGULARITIES OF PLANE VECTOR FIELDS 181

More generally, let A and B be smooth manifolds. Then for every » = 0,1,...,00 we can
define the weak W”- and the strong S"-topologies on C*°(A, B), see e.g. [17]. We will assume
that the reader is familiar with them.

Let f € C®(A,B),a € A, and k € NU {co}. Then by j* f(z) we will denote the k-jet of f
at z.

A subset X C C*°(A, B) will be called W"-open (W"-closed, etc.) if it is open (closed) with
respect to the W”-topology on C*°(A, B). Let also C' and D be some other smooth manifolds,
Y C C*(C,D) be a subset, and u : X — ) be a map. Then u will be called W*"-continuous
(W*"-open etc.) if it is continuous (open) from the W#-topology of X to W”-topology of ),
(r,s =0,1,...,00).

Similarly, we can define S*"-continuity, S*"-openness of maps, and S"-openness of subsets.

Definition 1.2. We will say that v : X — ) preserves smoothness if for any C*°-map H :
A xR"™ — Bsuchthat H, = H(-,t) € X forallt € R" the mapping

u(H) : C xR" - D, wu(H)(c,t) = u(H)(c)

is C*° as well.

For instance, if f : A — Bandg : C' — D are C"™°-maps, then the mapping
u:C®B,C) — C®(A,D), ula)=goaof,

for a € C*(A, B) preserves smoothness.

2. Shift map. In this section we formulate Theorem 2.1 containing Theorem 1.2.

Let F be a C™-vector field on D2. Denote by £(F) the subset of C°°(D?, D?) consisting of
mappings h : D? — D? having the following properties:

(1) h(w) = w for every orbit w of F. In particular, h(O) = O.

(2) h is a local diffeomorphism at O preserving orientation, that is the tangent map Tph :
ToD? — ToD? is a non-degenerate linear map, and the Jacobian |J(h, O)| > 0.
Let also £E7(F,0) C £1(F) be the subset consisting of all maps h fixed on 9D? i.e., h(x) = x
for all x € 9D?.

Notice that 9D? is an orbit of F. Since, in addition, D? is compact, it follows that F' generates
aglobal flow F : D? x R — D? on D?. Then we can define the following map

p: C%(D%R) — C%(D*,D?), y(a)(z) = F(z,a(x)),

where o € C®(D? R) and x € D? We will call ¢ the shift map along orbits of F, see [2].
Denote by Sh(F) the image of ¢ in C*(D?, D?).

Let V C D?be asubset, o : V — R a function, and h : D? — D? a map. We will say that
o is a shift function for h provided that h(z) = F(z,a(z)) for all z € V. In particular, 6 is the
shift function for the identity map id 2 on D?\ O.

It is easy to see [2] (Corollary 21) that Sh(F) C £ (F). Endow Sh(F), Et(F,d), ET(F),
and &£(F') with the corresponding weak W®°-Whitney topologies.

The set ker(p) = ¢~ 1(idp2) will be called the kernel of the shift map. It consists of C>-
functions p : D* — R such that F(z, u(z)) = z for all z € D2. It is shown in [2] (Corollary 6)
that

v lp(a) = {a+ker(p)}
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182 S.I. MAKSYMENKO

for each a € C*°(D% R).

Since the set {O} of singular points of F is nowhere dense in D?, it follows from [2] (Th. 12
& Pr. 13) that the shift map ¢ of F is locally injective even with respect to the WO-topology of
C>(D?,R) and there are the following two possibilities for ker(¢).

Periodic case. ker(¢) = {nu},cz for some C*-strictly positive function y : D? — (0, +c0).
This function will be called the period function for ¢.

Non-periodic case. ker(¢) = 0, so ¢ is an injective map. This is the case if F has at least
one non-closed orbit, or the linear part, i.e., the 1-jet j' F'(z), vanishes at some singular point
z € D?of F [2] (Pr. 10).

Remark 2.1. In fact, it can be proved similarly to [2] (Pr. 10) that ker(p) = 0 provided only
the eigen values of j'F(z) vanish.

Moreover, in this case for any sequence of periodic points {z;};en converging to z (if such
a sequence exists) their periods tend to infinity. This remark will be used in the proof of Theo-
rem 1.1.

Evidently, if I is a PTC-vector field, that is, its period function # : D?>\ O — (0,+0o0)
smoothly extends to all of D?, then ¢ is periodic, and 6 = p.

Theorem 2.1. Let F be a PTC-vector field. Then

(1) Sh(F) = EY(F) and the map ¢ : C®(D? R) — ET(F) is an infinite cyclic covering
map;

(2) the inclusions DT (F) C ET(F) and DT (F,0) C ET(F,0) are homotopy equivalences;

(3) DT (F) and ET (F) are homotopy equivalent to the circle;

(4) DY (F,0) and E1(F, d) are contractible.

The proof will be given in Section 9.
Shift map of non-singular vector fields on R?. We will also use the following statement.

Lemma 2.1. Let M be either the plane R? or the half-plane H and G be a vector field on M
tangent to OM (in the case M = H) and having no singular points. Suppose that G generates
aflow G : M xR — M andlet ) : C°(M,R) — C(M,M) be the shift map of M.
Then its image Sh(G) coincides with £(G), and the map ¢ : C*(M,R) — &(G) is a S™"-
homeomorphism for all r > 0.

Both maps maps 1 and 1)~" preserve smoothness.

Proof. Let h € £(G). Then for each z € M its image h(z) belongs to the orbit of =, whence
there exists a unique number oy, (x) such that h(z) = G(z,0p,(z)). The obtained shift function
on © M — R for his C* on all of M and the correspondence h + o, is the inverse map 1!
of .

Since G has no singular points, and IntM is homeomorphic to R?, it easily follows from the
Poincaré — Bendixson theorem [18] that G has no closed orbits and each non-closed orbit of G is
non-recurrent. Then it follows from [3] that 1y ! is S""-continuous for each » > 0 and preserves
smoothness.

3. Linearization of vector fields. Let

0

F(z) = Fl(nv)i +...+ Fn(x)a—%

5o (3.1)
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SYMMETRIES OF CENTER SINGULARITIES OF PLANE VECTOR FIELDS 183

be a smooth vector field on R” such that F(O) = 0. Then
Fl(l') = aﬂxl—|—...+am:nn+o(\|:1:||2), 1=1,....n,

for some a;; € R. Regarding F'as amap F' = (F,...,F,) : R — R"” we can write the 1-jet
jLF(O) of F at O as j1(F)(z) = Ax, where

ail] ... Qip T
A=

Apl .. Qpnp In

The matrix A as well as the corresponding linear map x — Az will be denoted by VF' and
called linear part or linearization of F at O.

Leth : (R",0) — (R",O) be a germ of a diffeomorphism at O and H = J(h,O) be its
Jacobi matrix of i at O. Then & induces the following germ of a vector field:

hoF = ThoFoh™!

at O, called the pushforward of F by h.
It easily follows that

VhF = H-VF-H " (32)

Lemma 3.1. Let F be a TC-vector field on D?. Then the eigen values of its linearization VF
at O are purely imaginary, i.e., \1 » = =+ib for some b € R. Hence, by a change coordinates, V F
can be reduced to one of the following matrices:

0 b 0 b 0 0
LG 0) 2 (0 0) = (5 0)

for some b > 0. Each of these matrices is realizable.

Proof. Suppose that Re \; # 0. Then there exists an orbit o of F' for which O is a limit point.

Indeed, if Re A2 # 0, then existence of o follows from Hadamard — Perron’s theorem [19 -
21], which was reproved and extended by many authors, see [22, p. 2] for discussions and
references. Otherwise Re Ay = 0, and such an orbit o exists by the center manifold theorem,
e.g. [23-25].

This gives a contradiction with the assumption that all orbits of F' are closed.

It remains to present examples of a TC-vector field with linear parts of types 1-3. Let

b
pg €N, flz,y) = 5 (z* + y*7), and

4 0 4 0
F(z,y) = —bgy™™" o= + bpa™ 1@
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184 S.I. MAKSYMENKO

be the Hamiltonian vector field of f. Since O is an isolated local extremum of f, we see obtain
that F'is a TC-vector field. Then

0 b

VF(_b 0>, p=q=1
0 b

VF_ <0 0)7 p_lvq_Qa

0 0
> 2.

The lemma is proved.

Lemma3.2. Leth : (D? O) — (D? 0) be a germ of orbit preserving diffeomorphisms of a
TC-vector field F, i.e., h(o) = o for each sufficiently small orbit of F, H = J(h,O) be the Jacobi
matrix of h at O, and 1, p2 be the eigen values of H. Then || = |p2| = 1.

Proof. If |u1| # 1, then by the center manifold theorem, e.g. [25], there exists a point z €
€ D?\ O such that
Oc T (). (3.3)

n=—0oo

Let o be the orbit of z. By assumption, h(o) = o, whence (3.3) implies that z = O, which
contradicts the assumption.

4. “Collinear” linear maps. The aim of this section is to establish the following statement.

Proposition 4.1. Let V' be a linear space over a field F, dimV =n > 2,and A,B : V — V
be two linear maps such that

(i) B = HAH™! for some linear isomorphism H : V — V;

(ii) for each = € V its images A(x) and B(x) are collinear, i.e., there exists j1, € F depending
on x such that B(x) = u, A(z).

Denote by spA the spectrum of A. Then the following statements hold true:

(Ay) If rankA > 2, then B = 1A for some T € F. In particular,

AH = THA.

(A2) Suppose rank A = 1 and sp A = {\,0} for some A # 0. Then there exists a basis in V
in which

A0 ... 0 A by by,
e O 0 ... O . B- o 0 --- 0 ’ (4.1)
0 O 0 0 0 0
for some bs, ... b, € F. Denote
1 bo/XN b3/A ... by/A
0 1/A 0o ... 0
Gi=10 0 /A ... 0 . (4.2)
0 0 0 ... 1/X
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SYMMETRIES OF CENTER SINGULARITIES OF PLANE VECTOR FIELDS 185
Then B = G1B = AG1, whence
A-(HGy) = (HGy) - A,

i.e.,, A commutes with HG1.
(A3) Suppose rank A = 1 and sp A = {0}. Then there exists a basis in V in which

0 1 0 0... q b3 by,
e 0O 0 ... 0 . B- 0 0 0 ... 0 7 (4.3)
0 0 0 0 0 0 0
forsome q,bs, ... ,b, € Fsuchthat q # 0. Denote
1 0 0o ... O
0 q bg bn
Go=10 0 1/g ... 0 |, (4.4)
0o 0 0 ... 1/q

Then B = GoB = AGy, whence
A(HG3) = (HG9)A,

i.e.,, A commutes with HG>.
For the proof we need two lemmas. Let V, W, be two linear spaces over a field F. For w € W,
denote by

(w) == A{tw : t € F}
the one-dimensional subspace of W spanned by w.

Lemma 4.1. For any two non-zero linear operators A, B : V. — W there exists x € V such
that A(x) # 0 and B(z) # 0.

Proof. Suppose that for each x € V at least one of the vectors Az or Bz is zero. Then
ker A+ ker B = V. Since A, B # 0, there exist z € ker B \ ker A and y € ker A \ ker B. In
particular, z, y are linearly independent,

Ax) #0, Bly) #0, Aly) = B(z) = 0. (4.5)

But A(x +y) = A(z), B(z +y) = B(y) and, by the assumption, at least one of these vectors
must be zero, which contradicts (4.5).

Lemmad.2. Let A,B :V — W betwo linear operators such that for each x € V the vectors
A(z) and B(z) are collinear (possibly zero).
(a) If B(z) = TA(x) # 0 forsomex € V and 7 € F, then
A(ker B) C (A(x)), B(ker A) C (B(x)).
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186 S.I. MAKSYMENKO

(b) If B(z) = TA(z) # 0, B(y) = vA(y) # 0 for some z,y € V and 7,v € F such that
A(x) and A(y) are linearly independent in W, then T = v. Moreover, in this case B = TA.

Proof. (a) Evidently, it suffices to show that if B(z) = 0 for some z € V, then A(z) = kA(x)
for some k € F.
By the assumption, B(z + z) = aA(z + z) for some o € F. Then

A(z) + A(z) = A(z + 2) = aB(z + 2) = aB(z) + aB(z) = akA(x),

whence A(z) = (ak — 1)A(z).
(b) By the assumption, B(x + y) = SA(z + y) for some 3 € F. Then

A(x) + Aly) = Al +y) = BB(x +y) = BB(x) + fB(y) = BTA(x) + frA(y).

Since A(x) and A(y) are linearly independent, we obtain that 3 # 0, and 7 = fr = 1, whence
T = V.

It remains to show that B(z) = 7A(z) for any other z € V.

If B(z) = 0, then we get from (a) that A(z) € (A(x)) N (A(y)) = {0}. By symmetry, we
obtain that A(z) = 0if and only if B(z) = 0. In particular, B(z) = 7A(z) = 0 for such z.

Suppose A(z) # 0. Then B(z) # 0 as well, and either A(x), A(z) or A(y), A(z) are linearly
independent. Then, as just proved, B(z) = TA(z).

Proof of Proposition 4.1. (A1) By Lemma 4.1 there exists € V such that A(z) = 7B(x) #
# 0 for some 7 € F. Since rank A > 2, there exist y € V such that A(x) and A(y) are linearly
independent. Then, by (b) of Lemma 4.2, A = 7B.

(A2), (As) It is easy to verify that if A and B are given either by (4.1) or by (4.3), then
B = G;B = AG;, where G is given by the corresponding formula (4.2) or (4.4). Hence B =
= HAH™! = G; ' AG; and therefore (G;H)A = A(G;H).

We have to establish existence of representations (4.1) and (4.3).

Suppose rank A = 1. Then by the Jordan normal form theorem that there exists a basis
(e1,...,en) in V in which A is given by the corresponding matrix (4.1) or (4.3). Thus in both
cases the image of A is spanned by the vector e;.

Notice that by (A1) rank B = 1 and by (i) sp B = sp A. Then it follows from (ii) that the
image of B is also spanned by e;. Hence B is given by the corresponding matrix (4.1) or (4.3).

It remains to show that we may assume in (4.3) that ¢ # 0.

Indeed, by Lemma 4.1 there exists a vector es € V such that B(es) = gA(ez) # 0.

Put ey = A(eq). Since rank A = 1, it follows that e; generates the image of A, that is, for
each y € V thereis o, € Fsuch that A(y) = «aye;. In particular, e, is an eigen vector of A. But
sp A = {0}, whence A(e;) = 0.

Moreover, by (b) of Lemma 4.2 we also have that rank B = 1 and from assumption (i) we
getsp B = sp A = {0}. Hence B(e;) = 0. Extend the vectors ey, e to the basis (e1, e2, f3, ..., fn)
of V. Then for each i = 3,...,n there exists «; € F such that A(f;) = aje1. Pute; = fi — ajes.
Then (eq, ez, €3, ..., ¢e,) is also a basis for V and

Alei) = A(fi) — Alaies) = aier —azer =0, i =3,...,n.
Thus in the basis (e, ..., e,) the matrix A is given by (4.3).
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Moreover, it follows from (ii) that B(e;) = b;e; fori = 3,...,n. Thus in this basis B is given
by a matrix of the form (4.3) with ¢ # 0.
The proof of Proposition 4.1 is completed.

5. Jacobi matrices of orbit preserving diffeomorphisms.

Theorem 5.1. Let F be a vector field of R" given by (3.1). Suppose that the set i of zeros
on F is nowhere dense near O. Let also h : (R™,0) — (R"™, O) be a germ of diffeomorphisms at
O preserving foliation by orbits of F, i.e., there exists a neighbourhood V of O such that h(oN'V)
is contained in some (perhaps another) orbit o' of F. Denote

A=VF, H=Jh,O0).
IfrankA > 2 then there exists T € R such that
AH = THA.

Suppose rank A = 1, so, in some local coordinates, A is given by one of the matrices (4.1)
or (4.3). Then

A-(HG;) = (HG;) - A,
where G;, i = 1,2, is given by the corresponding matrices (4.2) or (4.4).

Proof. Consider the pushforward of F' via h, i.e.,
G =hF=ThoFoh! (5.1)
Let G = (Gy,...,Gy) be the coordinate functions of G. Then we can write
Gi(z) = bpyxy + ...+ bipxn +o(z|?), i=1,...,n,

and thus j!(G)(z) = Bx, where

b11 bin
B = ..
bnl bnn
As noted in (3.2),
B =HAH .

Since h maps every orbit of F' into itself, it follows that F' and G are collinear at each z such
that F'(z) # 0. Hence,

Fi(2)Gj(z) = Fj(2) Gi(2), i,j=1,...,n.

Therefore,

(aﬂxl 4+ ...t aippTn + o(HxHQ)) (bjlxl +.. Fbjpx, + o(||:v||2)) =

= (ajlxl +...+tajnx, + 0(HJ:||2)) (bilxl + .o+ bipxn + 0(”9:”2)),
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whence

(ailxl + ...+ amxn) (bjl.’L'l + ...+ bjnxn) =
= (ajlxl +...+ ajnxn) (bﬂxl +...+ bmxn), 1,7 =1,...,n.
This implies that A(v) and B(v) are collinear for each tangent vector v € ToR". Now the

statement of Theorem 5.1 follows from Proposition 4.1.

Corollary 5.1. Let F be a TC-vector field, F : D?> x R — D? be the flow of F, h : D?> — D?
be a germ of a diffeomorphism at O preserving orbits of F, i.e,, h(o) = o for every orbit of F.
Denote by H = J(h, O) the Jacobi matrix of h at O. Suppose that A = VF # 0.

() IfA = <—0b 8) for some b # 0, then H coincides with one of the following matrices:
cosbw  sinbw cosbw  sinbw (5.2)
—sinbw cosbw )’ sinbw — cosbw '

for some w € R. Hence, in the first case, j'h(0) = j'F,(0), i.e., the linear parts of h and F, at
O coincide.
0

2)IfA = < 0 8) for some b # 0, then H coincides with one of the following matrices:

CY R (Y () e

for a certain unique w € R. Again, in the first case, j'1h(0) = jF,(0).

Proof. (1) Suppose A = (—Ob 8) for some b # 0. Then the Jacobi matrix of F, at O is
given by
cosbt sinbt
J(F, 0) = ( sinbt  cos bt> '

Let H = J(h,0) = (i g) . By Theorem 5.1, A = THAH ! for some 7 # 0. Since A is

non-degenerate, we obtain det(A) = det(THAH ') = 72det(A), whence 7 = +1.
A direct calculation shows that v = 78 and § = —7q, so

H = < @ s > _ (a2+52)< cos bw sin bw >

—70 —T« —7sinbw —T cosbw

for some w € R. We claim that o + 3% = 1. This will imply that H coincides with one of the
matrices (5.2).
Indeed, it is easy to verify that the eigen values of H are given by

(@®+ pHetd, 1 =1,
a2+ 62, 17=-1
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By Lemma 3.2, |u1| = |p2| = 1, whence o? + 32 = 1.
(2) Suppose A = <8 3) , for some b # 0. Then the Jacobi matrix of F; at O is given by

J(F,,0) = (é bf) |

On the other hand, by (A3) of Proposition 4.1, A commutes with the matrix X = HG, where

1 0
G = <0 1/q>
is given by (4.4) for some ¢q # 0.

Write K = <: ?) Then the identity AK = K A easily implies that § = aand v = 0, so

K = (a ﬁ),Hence,
0 «

B 1 (o B\ (1 0\ [« Bq
G668

Evidently, @ and aq are eigen values of H. Then, by Lemma 3.2, |a| = |¢| = 1, whence H
coincides with one of the matrices (5.3), where w = (¢/b.

Let F be a TC-vector field on D?. Denote by £+ (F); the subset of £* (F) consisting of maps
h such that j'h(O) = id, thatis J(h,0) = <(1) ?) .

Suppose that A = VF # 0. Then, by Corollary 5.1, for each h € £1(F) there existsw € R
such that J(h,0) = J(Fy, O). Hence,

F_,oh € ET(F).

Proposition 5.1. Suppose that A = VF # 0. Then there exist a W'-neighbourhood N of the
identity map idp2 in £ (F) and a continuous function w : N' — R (in W'-topology of N') such
that j*h(O) = j'F ) (O) for each h € ET(F) and w(idp2) = 0. Hence we have a well-defined
map

H:ENF)DN — EX(F)1, H(h)=F_,poh.
This function w preserves smoothness.

0 b

Proof. (1) Assume that A = (—b 0

) .Letp : R — SO(2) be the covering map given by

cos 2wt sin 2wt
p(t) = (

+
Csin%7t  cos 27rt> for t € R. Then by Corollary 5.1 for each h € £7(F) we have two

jt:h— J(h,0)
B —— Y

EH(F) S0(2) —2— R.
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Since p is a local diffeomorphism, there exists a W!-neighbourhood A of the identity map A in
ET(F) on which the composition

w=plojl: N =R

is well-defined and satisfies w(idp2) = 0.
If I is a family of maps in £ (F') smoothly depending on 7 € R™, then evidently so does
w(hz). This implies that w preserves smoothness.

(2) Suppose |A|] = 0 but A # 0. Then by Lemma 3.1 we can assume that A = (8 g) ,

whence by Corollary 5.1 for each h € £1(F) its Jacobi matrix at O has one of the following

forms:
. 1 bw -1 bw
either <0 1 > , ( 0 _1> . (5.4)

Let A be a subset of £1(F) consisting of h for which J(h, O) = <(1) b;}
that A/ is W!'-open in £+ (F).
Define p : R — GL(2,R) by p(t) = ((1) blt) and let G = p(R) be the image of p. Then

p : R — @G is a diffeomorphism. Now, similarly to the case (1), for each h € N we have the
following two maps:

) . It follows from (5.4)

S IRREN
N jlih— J(h,0) G P R

oj! : N'— Ris well-defined. Evidently, it preserves smoothness

Then the inverse map w = p~*
and satisfies w(idpz) = 0.
The proposition is proved.
6. Polar coordinates. Consider the plane R? with coordinates (¢, r). Let H = {r > 0} be
the open upper half-plane, H = {r > 0} be its closure, and P : H — R? be the map defined by

P(¢,r) = (rcoso,rsin¢).

Thus (¢, r) are the polar coordinates in R2.
Identifying R? with C we can also define P : H — C by

P(¢,r) = re'.

Letn : H — H be given by n(¢,r) = (¢ + 2m,r). Then P = P on and thus 7 induces a
P-equivariant Z-action on H such that P is a factor map H — H/Z = R2.

In this section we recall how to lift certain objects like functions, self-maps, and vector fields
defined on R? to the corresponding objects on H via P.

Correspondence between flat functions. Let C3°(H, R) be the subset of C°°(H], R) consisti-
ng of all Z-invariant functions o : H — R, i.e.,

a(o+2m,r) = a(p,r).
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Let also Flatz(H,0H) C C3°(H,R) be the subset consisting of all function flat on OH and
Flat(R?,0) C C*(R?,R) be the subset consisting of all function flat at the origin O.

Notice that for every & € C5°(H, R) there exists a unique C* function « : R?\ {0} — R
such that & = « o P. But in general, o can not be even continuously extended to all of R2. For
instance, « is continuous if and only if & is constant on the ¢-axis OH = {r = 0}.

The following statement shows that « is actually C*° and flat at O whenever « is flat on
OH. Smoothness and flatness of o was shown in [6] (Lemma 5.3), and in [26] (Theorem 5.1)
continuity of the correspondence a — « was treated.

Lemma 6.1 [6, 26]. There exists a W°*°-continuous and preserving smoothness map
fl : Flaty(H, OH) — Flat(R?, 0)

such that & = fl(a) o P for all a € Flaty(H, 0H). Thus every smooth, Z-invariant, flat on OH
function on H induces a C*°-function on R? flat at O.

Correspondence between smooth maps. Let I, : ]R2 — IR? be a continuous map such that
h=1(0) = 0. Then h lifts to a certain map h : H — H which commutes with 7 and satisfies
ho P = P o h. Hence for each n € Z the map ho n is also a lifting of h.

It is well-known that if / is at least of class C1, then h extends to a continuous map h:H—
— H. Moreover, if h is C*°, then such is h. ~

Our aim is to estimate continuity of the correspondence h — h.

Let Map™(R2, 0) be the subset of C°°(R?, R?) consisting of maps h : R? — R? such that

(1) h(0) = O;

(2) h(R?\ O) Cc R?\ O;

(3) j*h(O) = 7 - id for some 7 > 0.

Let also Map™ (H, 0H) be the subset of C°°(H, H) consisting of maps h : H — H such that

(1) hi is fixed on OHj

(2) h(H) C H.

Finally, let Map7° (H, 9H) be the subset of Map™ (H, 9H) consisting of Z-equivariant maps,
i.e., the maps that commute with the Z-action on H. In other words, h = (<I> R) € Map™(H, oH)
belongs to Map3° (H, 0H) if and only if

O(p+2m,7) = B(¢,r) + 21, R(d+2m,7) = R(,7).
The following statement claims that every h € Map™ (R2,0) lifts to a unique & € Map3® (H, 9H)
such that P o h = ho P and the correspondence h +— R is $°*°-continuous.

Proposition 6.1. There exists a unique mapping
lift : Map™(RR?,0) — Map3° (H, OH)
such that P o lift(h) = ho P for h € Map™(R?,0). This map preserves smoothness and is

Sk+Lk_continuous for each k > 0.

Proof, Let h = (X,Y) € Map™®(R2,0). We have to construct a C>-map h : H — H fixed

on OH and such that Poh = ho P.
By assumption, j'h(0) = 7id for some 7 > 0, i.e.,
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X(z,y) = 7o+z00+ Yoo,
Y(z,y) = 7ty+ab+ybl

for some C*°-functions oy, 3; : R? — R such that o;(O) = 3;(O) = 0. These functions are not
unique and, for instance, they can be given by the following formulas, e.g. [17]:

(6.1)

1 1
0X 0X
Oél(x,y) = /&E(tfﬂ,y)dt - T, Otz(flf,y) = /&U(Ovty)dta
01 01 (62)
oY oY
ﬂl(wvy) = O/E)x(m’wdt’ BQ(xay) = b/ax<07ty>dt =T
Hence,
XoP(p,r) = rcos¢+rA(e,r),
YoP(¢p,r) = rsing+rB(¢,r),
where
A(¢7T) = COS¢'&1OP(¢,T)+SiH¢'a20P(¢,T‘), (63)

B(¢,r) = cos¢-ProP(p,r)+sing-fyo P(e,r).

It follows that A and B are C'*°, Z-invariant, and vanish on 0H, i.e., A(¢,0) = B(¢,0) = 0 for
all p € R.
Since P : H — R2\ {O} is a covering map, there exists a C> map

Gg=(®,R) :H—-H
such that P o g = h o P. In other words,
R(¢,r) cos®(¢,7) = XoP(g,r),
R(¢,r) sin®(p,r) = YoP(¢,r)

for » > 0. This map is not unique, it commutes with 7, and can be replaced with g o " for any
n € Z.
Then for each ¢y € R we get that

ﬁcos(%—qﬁo) = XoP-cosgg+YoP singg =
= rcos(¢ — ¢o) +1rA1(9,7),

Rsin(®—¢g) = YoP-cosgyg—XoP-singy =
= rsin(¢ — ¢o) + 7B1(¢, 1),

where
Aj = Acos¢g+ Bsingg, Bi = Bcospy— Asingyg. (6.4)
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Again, Ay, By : H — R are C*°, Z-invariant, and vanish for » = 0.
Consider the following two functions:

B B sin(¢ — ¢o) + rB1(o,r)
(1)450 (¢7 T) = ¢o +arctg COS(¢ - ¢0) + 7nAl(¢7 T) ’

reos(¢ — go) + rAi(9,r)
cos(®go(¢,7) = o)

Evidently, there exist a,b > 0 such that (AIS% and ]A?:% are well-defined and C* on the nei-
ghbourhood

(6.5)

Ryo(gyr) =

Vo = [¢0 — a, do +a] x [0, 1]

of (¢p,0) in H. N L ~
Moreover, the map hy, = (®4,, Ry,) : Vg, — His alifting of h in the sense that P o hy, =
=hoP: P (V) — R2
Also notice that h¢0(¢, 0) = (¢,0), ie. 7L¢O is fixed on OH N V;,. Therefore, for distinct
¢o0,¢1 € R the lifting h¢0 and h¢1 coincide on Vg, NV, N OH whenever this intersection is
non-empty. Hence h¢,0 = h¢1 on all of Vi, NV,

This implies that the partial maps h¢>07 ¢o € R, define a unique C*°-lifting I of h fixed on
OH.
__ Finally, it follows from (6.5) and Z-invariantness of A; and B; that h is Z-equivariant. Thus
h € Map7’ (H, 0H) and we define

lift(h) = h.
It remains to verify S¥*1*-continuity of the lift.

Consider the following sequence of correspondences:

(6.2) (6.3)

6.4
h — (aljaﬁlj) i,j=1,2 —— (A,B) '(_2

6.5) ~
(A1, By) &2 TRy

The first one expresses «; and J; via the first partial derivatives of the coordinate functions of
h. All others are just compositions of smooth maps. It follows that for each integer £ > 0 there
exists a constant C' = C(¢o, k) > 0 depending only on ¢( and & such that

1y = g I, < ClIB = R, 5. (6.6)

for every ' € Map™(R?,0) and its lifting b/, .
Claim 6.1. Let K C H be a compact subset and k > 0 and L = P(K). Then there exists
C > 0depending on K and k such that

IW =Rl < ClIW = Rl
foreach W' € &} (G). Hence the lift is W*tbE-continuous.

Proof, Put K = [0,27] x [0, +00) ijo n"(K), see Fig. 6.1 Since h is Z-invariant, we
have that o
IR = Rlf = 1A =Rl
for any i’ € Map®(H, §H).

ISSN 1562-3076. Heainitini koausanns, 2010, m. 13, N2 2



194 S.I. MAKSYMENKO

Fig. 6.1

Therefore, it suffices to consider the case where K C [0, 27] x [0, +00).
Then there exist finitely many values ¢4, . .., ¢,, € [0, 27] such that

KnoH ¢ U V.
1=

Denote Kg = K N '@1 Vg,and Ky = K\ V.
Put L = P(K), Lo = P(Ky), L1 = P(K1). Then by (6.6) there exists Cy > 0 such that

IR = Rk, < Colln' = nl5E. (6.7)
Moreover, since P homeomorphically maps K; onto L, there exists C; > 0 such that

IB = Rllf, < Cullb’ = ), (6:8)
Put C' = max{Cy, C1}. Then

1" =l < CIW = h|I§H.

Claim 6.1 is proved.
To prove S*¥*+1*_continuity of the lift, take any countable locally finite cover K = {K;}ien
of the strip S = [0,27] x [0, +00) by compact subsets. Denote K = 7’(K;) and L; = P(K;).
Then
K = {K}}ien jez
is a locally finite cover of H and £ = {L;};cn is a locally finite cover of R?.
For each ¢ € N take any ¢; > 0 and let

N ={0 €& @) : | —E||’;(g < &}

Then AV is a base S¥-neighbourhood of & in EF(G).
It now follows from Claim 6.1 that for each i € N there exists §; > 0 such that if |4’ —
—hH’zjl < ¢;for b’ € ET(F), then |h/ — hH’;{j < g;forany j € Z.
Notice that Z
N ={n e &X(F) |0 -n|f™ <6}

is a S¥*1-neighbourhood of & in £ (F), and lift(N") c N. This implies S*1#-continuity of the
lift.
Proposition 6.1 is proved.
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Lifting of vector fields. Let ' = ana + Fy(;? be a vector field on R2. Since P is a local
L Y

diffeomorphism of H onto R? \ {O}, F induces a certain vector field G = G¢a% + GT% on H
such that TP o G = F o P, i.e., the following diagram is commutative:

™ 2 TR\ 0)

GT TF
H -2 RrR2\0

It easily follows, see e.g. [26], that the coordinate functions on F' and G are related by the

following identity:
G\ _ —lsingﬁ 1cos¢> FpoP
a )= r r Fop) (6.9)
T cos ¢ sin ¢ y©

We will say that G is the expression of F in polar coordinates or the lifting of F.
7. Vector fields on R? with a “rotation as 1-jet”

Normal forms. We recall here the results of E Takens [6] about normal forms of singularities
of vector fields on R? with a “rotation as 1-jet”.

Let F = F1ﬁ + Fg2 be a vector field on D? and
or oy
oR ok
or Oy
VF = . (71)
oF, oF,
or 0Oy

Denote by A; and A9 the eigen values of VF at O.

Theorem 7.1 [6]. Suppose that \i, \a are non-zero purely imaginary, i.e., \12 = =*iv for
some v > 0. Then there exists a diffeomorphism g : (D* 0) — (D?, O) such that either

0.G(a,y) = B + ) (<y @ X>§y> , (12)

where (3 is a C*®-function, 3(0,0) # 0, X,Y € Flat(R?,O), or

0 0
LG(z,y) = B(z,y) | -2my— + 272 —
9:G(z,y) = B(z,y) [ Yo + ﬂxay+

+ (5(932 + )" + aa® + y2)2’“) <fc§$ + yaayﬂ , (73)

where f is a C* function, 3(0,0) = 1,0 = +1, k € N, and a € R.
Vector fields (72) and (73) are not C*°-equivalent.
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For instance, the vector field

d 0
F(z,y) = . + yma—y + ...terms of high order... .

satisfies assumptions of this theorem.
C>°-equivalence classes of such vector fields were also studied in [27].

Expressions in polar coordinates. Our aim is to show that a vector field of type (73) does
not admit a strong first integral, see Corollary 7.1. We need for this the expressions of (72)
and (73) in polar coordinates, see also [10].

Lemma 7.1. Let

—. 0 o 0

Fi(x,y) = —(y + Y)% + (74)

where X,Y € Flat(R?, O). Then its expression in polar coordinates is the following vector field:

GNQT):(1+¢)97+R—— (75)

where ®, R € Flaty(H, 0H).

Lemma 7.2. Let

0 0
Fy(x,y) = —27ry% + 2wx@+

+ (6(9@2 + ) * +a(2x? + y2)2k> <x88a: +y (‘fy) ,
where 6 = +£1, k € N, and a € R. Then its expression in polar coordinates is the following
vector field:
Ga(op,r) = 27r2 + 2L+ ar%)g.
0¢ or
These lemmas are direct consequences of (6.9) and we leave proofs of them to the reader.
It follows that G; and G are C*° on all of H, tangent to 0H, and have no singular points.

(76)

Corollary 7.1. The origin O is a limit point of each orbit of F; passing sufficiently close to O.
Hence, every function f : R? — R, which is constant along orbits of F, must be constant near O.

Proof. Denote a(¢,r) = 6 + ar?*. Then « is non-zero on some neighbourhood of 9H,

whence the vector field
o 1 o 27'(' 8 2k+1 a
G = EGQ = E% r E
is C*° and has the same orbit structure as G. It is now evident that if » > 0 is sufficiently small,
then for each ¢ € R, the orbit 0 of the point Z = (¢, r) tends to OH when ¢ — —oo. Therefore,
the orbit 0 = P(0) of the point P(Z) = re'® tends to O, see Fig. 71.
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Fig. 71

Flat perturbations. Let G be a vector field on H given by (75),
0
G(pr) = (1+®) = + R,

where ®, R € Flat(H, OH). Then it is easy to see that G is tangent to OH and has no singular
points on some neighbourhood of OH.
For simplicity assume that G generates a global flow

G=(®R): HxR — M.
Lemma 7.3. Suppose that h = (9, R) € £Y(Q) has a shift function & with respect to G. Then
B(9,7) = ¢ +3(7) +Eo(:7), (77)
R(¢,r) = 7 +&(6,7), (78)

where £y, &, € Flat(H, 0H).
The coordinate functions of G have the following form:

D(p,1t) = ¢+t + pg(o,r,t), (79)
R(¢,7,t) = 7+ pr(¢,7,1), (710)

where fi4, 1, : H X R — R are C*°-functions flat on OH x R.
If. in addition, ®, R : H — R are Z-invariant and h € ES(G), then G, &y, & € CP(H,R).

Proof of (7.7). Notice that G defines the following autonomous system of ODE:

09 _ or 4

Leth = (®,R) € £7(G) and z = (¢,r) € H. If r is sufficiently small, then the shift function
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for h near z with respect to G can be calculated by the following formula:

B(¢,r) i B(s,r) B(4,r) B(s.r)d
~ S s,r)as
son= [ tmaem = [ #* [ Traen -
) ¢ ¢
Ep(o,r)
= B(¢,7) — ¢+ &g, 7). (711)

Evidently, &4 is C*. Moreover, since @ is flat on 9H, it follows that such is &,. This proves (77).

Proof of (7.9) and (7.10). Applying the previous arguments to G; and its shift function ¢, we
obtain ®(¢,r,t) = ¢+t + pe(e,r,t), where

s,r)ds
po (o, 7 t) = / T4 (s )
[

Moreover,
t
o (6,1,0) = RG,1 )~ = [ R(@(0,1,5). R(6v7.5))ds
0

We claim that i and p, are flat on 9H x R, i.e., at each point (¢,0,1).
Indeed, since @ is flat on OH, it is easy to see that, for any a,b,c > 0,

aa+b+c ®(¢,rt)

5 o7 91 =2l WHZ / r)ds, (712)

aa—i—b-i—c

967 o ot Z% (é.7:1) +Z/5z 57) (713)

where each sum is finite and o, 535, Vi, 0; are linear combinations with smooth coefficients of
partial derivatives of ® and R up to order a + b+ c. This implies that (712) and (713) vanish for
r = 0, since ® and R are flat on OH. Hence j14 and i, are flat on OH.

Proof of (7.8). Since y, is flat at each point (¢, 0, r), it follows that

§T(¢7 7“) = §(¢7T) -r= R(¢7T7&(¢7T)) -r= NT((b?Tv&((b?T))

is flat at (¢, 0).
Verification of Z-invariance. Suppose that h € E5(G), s0

(¢ +2m,7) = B¢, r) + 21, R(¢p+2m,r) = R(o,7).
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Then it is easy to show, see [26] (Lemma 6.1), that the functions

P-¢p=5+&, R-r=¢&
are Z-invariant.

If, in addition, ®, R are Z-invariant, then ®(s + 27,7) = ®(s,) and it follows from (711)
that

O(p+2m,r) B(s.r)d B(p,r)+2m B(s.r)d
s,r)ds s,r)ds
S0+ 2m7) / 1+ ®(s,7) / 1+ ®(s,7)
¢+2m d+2m
B(¢p,r) _
substitute

B / O(s' +2m,r)ds’
B 1+ ®(s' + 2m,7)

s =s+27

whence ¢ is also Z-invariant.
Lemma 7.3 is proved.

8. Proof of Theorem 1.1. (a)=-(b) Notice that property (b) depends neither on a parti-
cular choice of local coordinates at O nor on a reparametrization of F. More precisely, let
h : (D? 0) — (D? 0) be a germ of the diffcomorphism at O and 3 : D?> — R\ {0} be
an everywhere non-zero C*°-function. Denote G = h.(BF). Let also A = J(h,O) be the
Jacobi matrix of i at O, and let A;, A2 be the eigen values of the matrix VF'(O). Then by (3.2)

VG(0) = B(O) - A-VF(0) AL,

Hence the eigen values of VG(O) are 5(O)A; and 5(O)Aq. Therefore F' satisfies (b) iff so
does G.

Suppose now that the period function # : D? — (0,+oc0) is smooth on all of D?. Then
F(z,0(z)) = zforall z € D? ie., 0 € ker(¢) # {0}. Thus ¢ is periodic, whence the 1-jet of F
at O is non-zero (see paragraph before Remark 2.1).

Consider the vector field G = #F. Let also G : D? x R — D? be the flow of G. Then
by [5] G(z,1) = z for all z € D?,i.e., G; = idp2. Hence G induces the following smooth
circle-action D?:

I:D*xS'" — D? [(z,e*™) = G(z,1),
where S! is regarded as the group R/Z. Then on the tangent space TpD? we obtain a linear

circle action induced by TpG;. This action is non-trivial since j'G = 0(O) - j'F # 0. Thus we
obtain a monomorphism S* — GL(2,R) = Aut(TpD?).
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Since every circle subgroup in GL(2, R) is conjugate to SO(2), there exists a linear automor-
phism 4 : R? — R? such that

hoGyo h_l(ac,y) _ < cos 27t sm27rt> _ <m) +0t(\/m),

—sin 27t cos 27t Y

whence

0 0
h«G(x,y) = Y5, + —xa—y + ... terms of high order ... .
0

Notice that Vh.G(O) = ( 1 _0 and its eigen values are +i. As noted above the eigen values

of VF(O) are +i/6(0).

(b)=-(c) In this case F' satisfies assumptions of Section 7 and therefore can be reduced to
one of Takens’ normal forms, either (72) or (7.3). But by Corollary 71, in the case (7.3), F' has
non-closed orbits near O, which contradicts the assumption. Thus, by using a reparametrization
and a change of coordinated, F' can be reduced to the form (72).

(c)=(a) Let n(¢,r) = (¢ + 2m,r). This map is a lifting of the identity map idp2. Since
each regular orbit o of F' is a simple closed curve wrapping around the origin, it follows that
Pfl(o) is diffeomorphic to R, and, in particular, it is an orbit of G. Since P on = P, we obtain
n~tP~1(0) = P7Y(0), i.e., n preserves orbits of G. Hence € & (G). Then its shift function is
given by (711),

P27 J
_ S ~
0(o,r) = / HT(S,T) =21 +&(9,7),
o]

for some £ € Flaty(H,dH). By Lemma 6.1, £ = £ o P for some ¢ € Flat(R2, O). Therefore
0 = 2m + ¢ is a C*°-period function for the shift map .

Finally, suppose that condition (c) violates. Then it follows from Lemma 3.1 that in some

local coordinates at O the linear part of F' is equal to the matrix A = (8 g) for some e # 0.

But the eigen values of A are zero, whence by Remark 2.1 lim 6(z) = +oo.

ZzZ—

Theorem 1.1 is proved.

9. Proof of Theorem 2.1. Suppose that the period function § : D? — (0,+o00) for F is
smooth on all of D2. Then for each o € C*°(D? R) we have that

e lop(a) = {a+nb}nez. 9.1)
1) We will show that Sh(F) = £ (F), and that the mappin
(1) pping
@ : C°(D*R) — Sh(F) = £ET(F)

is Wo>-gpen. This will imply by [3] that ¢ is either a homeomorphism onto £ (F) or a Z-
covering map. But, due to (9.1), ¢ is not injective, whence it is a Z-covering map.

Moreover, by results of [3], for the proof of W >°-openness of ¢ it suffices to construct a
local inverse of ¢ defined only on some (arbitrary small) W°-neighbourhood N of the identity
map idpe in E1(F).
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Also notice that by [5] the image Sh(F') of the shift map ¢ and the openness property
of  are invariant with respect to reparametrizations, that is, multiplications of F' by smooth
everywhere non-zero functions. Hence due to (d) of Theorem 1.1 we can assume that F is given
by the following formula:

_ .0 _. 0
Fle.y) =~ + V)5 + @+ X5 92)
with X, Y € Flat(R?, 0).
Then F lifts to the vector field
-0 _ 0
G(p,r) = (1+<I>)8—¢ +RE’

with ®, R € Flat(H, OH).
We need the following statement which will be proved in Section 10. Recall that we denoted
by £ (F); the subset of £ (F) consisting of maps h such that j'h(0) = id.

Proposition 9.1. There exists a W *°-continuous map
o: EY(F) — C®(D* R)
which is a section of v, i.e.,
h(z) = F(z,0(h)(2)), h € EN(F), ze€ D%

satisfies o(idp2) = 0 and preserves smoothness.

Assuming this statement is proved let us show that Sh(F) = E1(F).

We have that Sh(F) C ET(F). Conversely, let h € £1(F). Then by Corollary 5.1 there
exists w € R such that hy = F_, oh € ET(F);. Then it is easy to see that the function
a = w + o(hy) is a shift function for h. Hence Sh(F) = E1(F).

Now by Proposition 5.1 there exists a W!'-neighbourhood A of h in £ (F) on which the
composition

coH : N — C®(D*R), ocoH(h)=w(h) +o(F_ymoh)

is a W°>°-continuous local inverse of ¢ preserving smoothness.

(3) Since C>°(D?,R) is a contractible Frechét manifold and ¢ is a Z-covering map, it follows
that £ (F) is homotopy equivalent to S*.

(4) Let us show that £1(F, 9) is contractible. Denote by A the subset of C>°(D? R) consi-
sting of functions vanishing on 9D?.

Claim 9.1. o yields a W >°-homeomorphism of A onto E* (F, d), whence ET(F, d) is contracti-
ble.

Proof. Evidently, p(A) C £1(F,d). Conversely,let h € £T(F,d) and a be any shift function
of h, so h(z) = F(z,a(z)). Then o1 (h) = {a + nf},ez, where 0 is the period function of ¢.
Recall that §(z) = Per(z) for all z # 0. Since h is fixed on 9D?, it follows that a|yp2 = n8|yp2
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for a unique n € Z. Hence o’ = o — n# is a unique shift function of h which vanishes on 9D?,
i.e., belongs to A.

This implies that ¢ yields a bijection of A onto £*(F,d). Since in addition ¢ is a local
homeomorphism, it follows that it maps .4 homeomorphically onto £1(F, 9).

(2) Consider the following subset of C*°(D? R) :
I ={a € C®°D%R) : Fla) > —1}.

Then, by [2], T = ¢ }(D*(F)), and the restriction p|p : I' — DT (F) is a Z-covering as well.
Evidently T is convex, and therefore contractible. Hence D (F') is homotopy equivalent to S*.
Moreover, ¢ maps the convex set I'N.4 homeomorphically onto £1(F, ). Whence £1(F, 0)
is contractible as well.
This completes Theorem 2.1 modulo Proposition 9.1.

10. Proof of Proposition 9.1. Let h € £1(F);. First we will explain how to construct o and
then show its continuity. N

Notice that £¥(F); € Map™(R?,0). Then by Proposition 6.1 there exists a lifting h =
= lift(h) € Map3°(H, OH). Let h = (@, R) be the coordinate functions of h.

Claim 10.1. ift(E(F)) C & (G). In particular, h € £ (G).

Proof. Let & be the orbit of G. We have to show that 1(5) C 6.
Notice that o = P(0) is the orbit of F, and 6 = P~!(0), that is, the inverse image of o is
connected. Moreover, h(o) = o, whence

Poh(3) = hoP() = h(o) = o.

Therefore, h(6) € P~1(0) = .

Now by Lemma 2.1 there exists a unique C*°-shift function o of h with respect to G.
Moreover, by Lemma 73 ¢ is Z-invariant. We have to show that ¢ = ¢ o P for some C°°-
function o : D? — R. Then ¢ will be a shift function for h.

Again, by Lemma 73,

o= &)(Qb,T) - d) + g(¢7 7"),
where £ € Flatz(H, 0H), i.e., it is Z-invariant and flat on OH. Then by Lemma 6.1 there exists a

C®-function ¢ € Flat(R?, O) such that £ = ¢ o P. Therefore, we have to show that there exists
a C°°-function v € C*(D? R) such that

(p, 1) — ¢ = yo P, 7). (10.1)

Lemma 10.1. Regard h as a smooth function h : D?> — C. Then there exists a smooth
function vy : D* — C satisfying (10.1) and such that h(z) = z7(z) and v(0) = 1.

Moreover, the correspondence h — vy is a S°°°-continuous and preserving smoothness map
EX(F) — C™(D?,C).

Proof. Notice that v(z) = h(z)/z is asmooth map,~ : D?\O — C\ {O}. We have to prove
that it smoothly extends to a map D? — C.
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We will only show that
hh = 2z + ((2), (10.2)

where ¢ : D? — C is a smooth map being flat at O. Then smoothness of v at O will follow by
the arguments similar to the proof of [2] (Lemma 31).
Let 2 = re’® = P(¢,r) and h = (®, R) = lift(h). Then

(7.8)

(r+&(0,1))2 = 12+ {(¢,1) = 22+ ((,7),

for some ¢ € Flatz(H,dH). By Lemma 6.1 { = ¢ o P for some ¢ € Flat(R2,0), whence
hh(z) = zZ + ((z). This establishes (10.2) and smoothness of ~. Continuity of the division

h — = is implied by compactness of D? and the following lemma being a very particular case
of results of [28].

Lemma 10.2 [28]. Let Z : C*°(C,C) — C*°(C,C) be the “multiplication by z” map, i.e.,

hh(z) = R*(¢,r)

Z(v)(z) = z79(2), ~ € C®(C,C), zecC.

Denote by im Z the image of Z in C*°(C,C). Then Z is injective and the inverse map Z~' :
imZ — C*(C,C) is S continuous.

Let us prove (10.1). Since v # 0 on D? and D? is simply connected, there exists a unique
smooth function I' : D> — R such that I'(O) = 0, and y(z) = |y(z)]eT?).
Let z = re'® € D2 Then ho P(¢,r) = P o h(¢,r) implies that

RO = h(re'®) = o(re®) e’ = 7(z) e e 4),

Hence
(i)((ﬁ,T‘) —¢ = F(rem) + 2mn

for some n € Z. In order to find n, put r = 0, then
2mn = ®(¢,0) — ¢ —T(0) = ¢ — ¢+ 0 = 0,

whence n = 0.

Lemma 10.1 is proved.

Hence 0 = v + £ is a C'*™°-shift function for h.

It remains to note that the correspondences b — ~ and h — & are W°*°-continuous and
preserving smoothness by Lemmas 6.1 and 10.1.

Theorem 2.1 is proved.

11. Proof of Theorem 1.3. We have to find a C'*°-function g : R — R such that

i®f(z,y) = i%g9(z* + y°),

where j°° means a co-jet at O.

Recall that a vector field F is parameter rigid if, for any other vector field F’ such that every
orbit o’ of F” is included in some orbit of F, there exists a C*°-function v : D? — R such that
F' = vF, see [29, 30].
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Claim 11.1. F is parameter rigid.
Proof. We have that Sh(F) = £1(F) and that local sections of v preserve smoothness.
These two assumptions imply parameter rigidity of F' by results of [30].

Choose local coordinates at O in which F'is given by (74). Let also F'(x,y) = — fz’,aax—k f;aay

be the Hamiltonian vector field of f. Then by parameter rigidity of F' there exists a C°°-function
v : D? — R such that

folzy) = (@ + X)v(z,y), fylzy) = (y+Y)v(z,y). (11.1)

Hence
x-j%fy =y i fe (11.2)
Lemma 11.2. Let p be a non-zero homogeneous polynomial of degree n in two variables
satisfying the following identity:
TPy, = yp (11.3)
Then n = 2k is even and p(z,y) = a(x? + 3°)* for some a € R.
Proof. Since p is homogeneous of degree n, it satisfies the Euler identity np = xp/ + ypfy.
Hence
nep = 2°pl + wypy = a?pl +y°p, = (2% +y%) pl.
Therefore, either n = 0 and pis a constant, or p(z,y) = (22 +y?)q(x,y) for some homogeneous
polynomial of degree n — 1. We claim that g satisfies z¢;, = yq;,. Indeed,

Py =2yq+ (@® +y7)d,, Pl = 22q+ (2® +y°)d,.

Then we get from (11.3) that (2* 4 y?)zq,, = (2 + y*)yq,, and, therefore, z¢), = yd.

By the same arguments, g is divided by 22 + 2 as well. Now lemma follows by induction on
the degree n.

Lemma 11.2 is proved.

Let j°f(z,y) = > 2y pi(z,y) be the Taylor series of f, where p;(z,y) is a homogeneous
polynomial of degree i. Then every p; satisfies (11.3) whence j°° f(z,y) = >, ai(2? +y?) for
some a; € R. By a theorem of E. Borel there exists a C*°-function g : R — R such that

o
i®g(t) =) ait',
=0

whence j*° f(z,y) = j*°g(z? + y?), which completes our statement.
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