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Let D2 ⊂ R2 be a closed unit 2-disk centered at the origin O ∈ R2, and F be a smooth vector field such
that O is a unique singular point of F and all other orbits of F are simple closed curves wrapping once
around O. Thus topologically O is a «center» singularity. Let θ : D2 \ {O} → (0,+∞) be the function
associating with each z 6= O its period with respect to F. In general, such a function can not be even
continuously defined at O.

Let also D+(F ) — be the group of diffeomorphisms of D2, which preserve orientation and leave
invariant each orbit of F.

It is proved that θ smoothly extends to all of D2 if and only if the 1-jet of F at O is a «rotation», that is,

j1F (O) = −y ∂
∂x

+ x
∂

∂y
. Then D+(F ) is homotopy equivalent to a circle.

Нехай D2 ⊂ R2 — замкнений одиничний 2-диск з центром у початку координат O ∈ R2 i F
— гладке векторне поле, для якого O є єдиною особливою точкою, а всi iншi орбiти поля F є
простими замкненими кривими, що охоплюють O. Таким чином, топологiчно O є особливiстю
типу «центр». Нехай θ : D2 \ {O} → (0,+∞) — функцiя, що ставить у вiдповiднiсть кожнiй
точцi z 6= O її перiод вiдносно F. Взагалi кажучи, ця функцiя не може бути продовжена навiть
до неперервної функцiї на всьому D2.

Нехай також D+(F ) — група дифеоморфiзмiв D2, що зберiгають орiєнтацiю i залишають
iнварiантною кожну орбiту поля F.

У статтi доведено, що θ продовжується до C∞-функцiї на всьому диску тодi i тiльки тодi,

коли 1-струмiнь F у точцi O є «поворотом», тобто j1F (O) = −y ∂
∂x

+ x
∂

∂y
. У цьому випадку

група D+(F ) гомотопiчно еквiвалентна до кола.

1. Introduction. Let D2 ⊂ R2 be a unit 2-disk centered at the origin O ∈ IntD2 and F be a C∞

vector field with the following properties:
(T1) F is tangent to ∂D2;
(T2) O is a unique singular point of F ;
(T3) all other orbits of F are closed.
Then it is easy to find a homeomorphism

h : D2 → D2 (1.1)

such that for each orbit o of F distinct from O its image h(o) is a circle of some radius c ∈ (0, 1]
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178 S. I. MAKSYMENKO

centered at origin, see Fig. 1.1. Therefore, we will call a vector field F on D2 satisfying (T1) –
(T3) a TC-vector field and its singular point O will be called a topological center.

Fig. 1.1

Fig. 1.2

TC-vector fields often arise as Hamiltonian vector fields of local extremums of functions
on surfaces. For instance, let f : D2 → [0, 1] be a C∞-function such that f−1(1) = ∂D2,
f−1(0) = O, and O is a unique critical point of f (being a global minimum of f), see Fig. 1.2:

Then its Hamiltonian vector field F (x, y) = −f ′y
∂

∂x
+ f ′x

∂

∂y
is TC and f is its C∞-strong first

integral in the following sense.

Definition 1.1 (c.f. [1]). A C∞-function f : D2 → R is a strong first integral for F , if O is a
unique critical point of f and the Lie derivative F (f) ≡ 0, i.e., f is constant along orbits of F .

Since F isC∞,we can also assume that a homeomorphism h in (1.1) diffeomorphically maps
D2 \O onto itself, though it may loose differentiability atO. In this case F has a continuous first
integral on D2 defined e.g. by f(z) = |h(z)|2. This function is C∞ on D2 \O provided that h is
such, but f is not necessarily smooth at O.

Denote by D+(F ) the group of C∞-orientation preserving diffeomorphisms h of D2 such
that h(o) = o for each orbit o of F. Let also D+(F, ∂) be a subgroup of D+(F ) consisting of
diffeomorphisms fixed of ∂D2. We endow D+(F ) and D+(F, ∂) with the weak W∞-topology.
The aim of the present paper is to describe the homotopy types of D+(F ) and D+(F, ∂).

Let θ : D2 \ O → (0,+∞) be the function associating to each z ∈ D2 \ O its period θ(z)
with respect to F.We will call θ the period function. Then it is easy to see that θ isC∞ onD2\O,
but in general it can not be even continuously extended to all of D2.

Example 1.1. Let F (x, y) = −y ∂
∂x

+ x
∂

∂y
. Then θ ≡ 2π, and therefore it is C∞ on all of

D2. It follows from [2, 3] that D+(F ) is homotopy equivalent to S1. The generator of π1D+(F )
is given by the following isotopy:

H : D+(F )× I → D+(F ), H(h, t)(z) = e2πith(z).
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SYMMETRIES OF CENTER SINGULARITIES OF PLANE VECTOR FIELDS 179

Example 1.2. Let Q1, . . . , Qn : R2 → R be definite (that is irreducible over R) quadratic
forms such that Qi/Qj 6= const for i 6= j,

f = Q1 . . . Qn,

and F (x, y) = −f ′y
∂

∂x
+ f ′x

∂

∂y
be the Hamiltonian vector field of f.

If n ≥ 2, then lim
z→O

θ(z) = +∞, whence θ can not be continuously extended to D2. Then

[4], D+(F ) is path-connected with respect to the W0-topology. On the other hand in all others
Wr topologies (r ≥ 1) the group π0D+(F ) is (the same for all r ≥ 1) a non-trivial finite cyclic
group of even order. Moreover, each path component of D+(F ) is contractible with respect to
the W∞-topology.

It turns out that these examples describe all the possibilities for θ. Actually the following
theorem holds true:

Theorem 1.1. Let F = F1
∂

∂x
+ F2

∂

∂y
be a TC-vector field on D2 and let θ : D2 \ O →

→ (0,+∞) be its period function. Then the following conditions are equivalent:
(a) θ smoothly extends to all of D2;
(b) the eigen values of the matrix

∇F =


∂F1

∂x

∂F1

∂y

∂F2

∂x

∂F2

∂y


at O are non-zero purely imaginary;

(c) there exists a C∞-function β : D2 → R and a diffeomorphism g : (D2, O) → (D2, O)
such that β(O) 6= 0 and

g∗F = β(x2 + y2)
(
−y ∂

∂x
+ x

∂

∂y

)
+ X̄

∂

∂x
+ Ȳ

∂

∂y
,

where X̄, Ȳ ∈ Flat(R2, O).
If either of these conditions fails, then lim

z→O
θ(z) = +∞.

The implication (a)⇒(b) follows from [5], and (b)⇒(c) from Takens [6].
A TC-vector field satisfying one of the conditions (a) – (c) of Theorem 1.1 will be called

PTC. This notation reflects periodicity of shift map of F, see Section 2.
The main result of this paper is contained in the following theorem.

Theorem 1.2. If F is a PTC-vector field on D2, then D+(F ) is homotopy equivalent to a
circle, and D+(F, ∂) is contractible with respect to W∞-topologies.

Thus for PTC-vector fields, the description of homotopy types of D+(F ) and D+(F, ∂) is
the same as in Example 1.1. This result is a particular case of Theorem 2.1.

Remark 1.1. Suppose F has a C∞-strong first integral f : D2 → [0, 1] being a surjective
function. Then for each c ∈ [0, 1] its inverse image f−1(c) is an orbit of F. It follows that each
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180 S. I. MAKSYMENKO

h ∈ D+(F ) preserves f, i.e., f◦h = f.Thus we can regardD+(F ) as the stabilizer S(f) of f with
respect to the right action of the group of orientation diffeomorphisms of D2 on C∞(D2,R).

There are numerous results concerning diffeomorphisms preserving functions. Most of them
deal with actions of compact Lie groups, see e.g. [7, 8]. From this point of view, Theorem 1.2
describes the (infinite-dimensional) group of all orientation preserving symmetries of f but for
a very specific case. This theorem will be used in other papers for a description of the homotopy
types of stabilizers and orbits of smooth functions on surfaces, which will extend results of [9]
on Morse functions.

Notice that due to Takens [6] (see (c) of Theorem 1.1), a PTC-vector field F is a “flat
perturbation” of the vector field of Example 1.1. We prove that F is parameter rigid (see
Claim 11.1) and using this fact give another proof that any C∞-strong first integral f : D2 → R
of F is a “flat perturbation” of a smooth function depending on x2 + y2, see [10].

Theorem 1.3. Let F be a PTC-vector field having a C∞-strong first integral f : D2 → R.
Then there exist C∞-functions g : R → R and µ : D2 → R and µ is flat at O and

f(x, y) = g(x2 + y2) + µ(x, y).

Existence of first integrals for such PTC-vector fields and the problem of recognizing of TC-
integrals with non-degenerate linear part are studied in [11 – 15]. See also [10] (Chapter 5, § 4)
for a review of the problem and references.

The case of a non-PTC-vector field, i.e., when lim
z→O

θ(z) = +∞, is considered in [16], where

it was shown that under additional assumptions on F the description of D+(F ) and D+(F, ∂) is
similar to Example 1.2.

Structure of the paper. In Section 2 we recall the notion of the shift map of a vector field
and formulate Theorem 2.1.

In Sections 3 – 5 linear parts of TC-vector fields and diffeomorphisms preserving their orbits
are studied.

The idea of proofs of Theorems 1.1 and 2.1 is to reduce F to a certain normal form and
then “blow up” the singularity at O by using polar coordinates. Therefore, in Section 6 we
give conditions when smooth functions, self-maps, and vector fields on D2 yield corresponding
smooth objects in polar coordinates and vice versa.

In Section 7 we recall the result of Takens [6] about normal forms of vector fields on R2 with
“rotation as 1-jet”. We also study the formulas for the flows of these vector fields with respect to
polar coordinates.

The rest of the paper is devoted to the proofs of Theorems 1.1, 2.1, and 1.3.

Notations. Let f = (f1, . . . , fm) : Rn → Rm be a C∞ map, K ⊂ Rn a compact subset, and
k ∈ {0} ∪ N. Then the k-norm of f on K is defined by

‖f‖kK = sup
x∈K

m∑
j=1

∑
|α|≤k

∂|α|fj

∂xα
,

where α = (α1, . . . , αn), αi ∈ {0} ∪ N, and |α| =
∑n

i=1 αi. For a fixed k the norms ‖ · ‖kK
generate the weak Wk-topology on C∞(Rn,Rm).
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SYMMETRIES OF CENTER SINGULARITIES OF PLANE VECTOR FIELDS 181

More generally, let A and B be smooth manifolds. Then for every r = 0, 1, . . . ,∞ we can
define the weak Wr- and the strong Sr-topologies on C∞(A,B), see e.g. [17]. We will assume
that the reader is familiar with them.

Let f ∈ C∞(A,B), a ∈ A, and k ∈ N ∪ {∞}. Then by jkf(z) we will denote the k-jet of f
at z.

A subset X ⊂ C∞(A,B) will be called Wr-open (Wr-closed, etc.) if it is open (closed) with
respect to the Wr-topology on C∞(A,B). Let also C and D be some other smooth manifolds,
Y ⊂ C∞(C,D) be a subset, and u : X → Y be a map. Then u will be called Ws,r-continuous
(Ws,r-open etc.) if it is continuous (open) from the Ws-topology of X to Wr-topology of Y,
(r, s = 0, 1, . . . ,∞).

Similarly, we can define Ss,r-continuity, Ss,r-openness of maps, and Sr-openness of subsets.

Definition 1.2. We will say that u : X → Y preserves smoothness if for any C∞-map H :
A× Rn → B such that Ht = H(·, t) ∈ X for all t ∈ Rn the mapping

u(H) : C × Rn → D, u(H)(c, t) = u(Ht)(c)

is C∞ as well.

For instance, if f : A → B and g : C → D are C∞-maps, then the mapping

u : C∞(B,C) → C∞(A,D), u(α) = g ◦ α ◦ f,

for α ∈ C∞(A,B) preserves smoothness.

2. Shift map. In this section we formulate Theorem 2.1 containing Theorem 1.2.
Let F be a C∞-vector field on D2. Denote by E(F ) the subset of C∞(D2, D2) consisting of

mappings h : D2 → D2 having the following properties:
(1) h(ω) = ω for every orbit ω of F . In particular, h(O) = O.
(2) h is a local diffeomorphism at O preserving orientation, that is the tangent map TOh :

TOD
2 → TOD

2 is a non-degenerate linear map, and the Jacobian |J(h,O)| > 0.
Let also E+(F, ∂) ⊂ E+(F ) be the subset consisting of all maps h fixed on ∂D2, i.e., h(x) = x
for all x ∈ ∂D2.

Notice that ∂D2 is an orbit of F. Since, in addition,D2 is compact, it follows that F generates
a global flow F : D2 × R → D2 on D2. Then we can define the following map

ϕ : C∞(D2,R) → C∞(D2, D2), ϕ(α)(x) = F(x, α(x)),

where α ∈ C∞(D2,R) and x ∈ D2. We will call ϕ the shift map along orbits of F, see [2].
Denote by Sh(F ) the image of ϕ in C∞(D2, D2).

Let V ⊂ D2 be a subset, α : V → R a function, and h : D2 → D2 a map. We will say that
α is a shift function for h provided that h(z) = F(z, α(z)) for all z ∈ V. In particular, θ is the
shift function for the identity map idD2 on D2 \O.

It is easy to see [2] (Corollary 21) that Sh(F ) ⊂ E+(F ). Endow Sh(F ), E+(F, ∂), E+(F ),
and E(F ) with the corresponding weak W∞-Whitney topologies.

The set ker(ϕ) = ϕ−1(idD2) will be called the kernel of the shift map. It consists of C∞-
functions µ : D2 → R such that F(z, µ(z)) = z for all z ∈ D2. It is shown in [2] (Corollary 6)
that

ϕ−1ϕ(α) = {α+ ker(ϕ)}
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182 S. I. MAKSYMENKO

for each α ∈ C∞(D2,R).
Since the set {O} of singular points of F is nowhere dense in D2, it follows from [2] (Th. 12

& Pr. 13) that the shift map ϕ of F is locally injective even with respect to the W0-topology of
C∞(D2,R) and there are the following two possibilities for ker(ϕ).

Periodic case. ker(ϕ) = {nµ}n∈Z for some C∞-strictly positive function µ : D2 → (0,+∞).
This function will be called the period function for ϕ.

Non-periodic case. ker(ϕ) = 0, so ϕ is an injective map. This is the case if F has at least
one non-closed orbit, or the linear part, i.e., the 1-jet j1F (z), vanishes at some singular point
z ∈ D2 of F [2] (Pr. 10).

Remark 2.1. In fact, it can be proved similarly to [2] (Pr. 10) that ker(ϕ) = 0 provided only
the eigen values of j1F (z) vanish.

Moreover, in this case for any sequence of periodic points {zi}i∈N converging to z (if such
a sequence exists) their periods tend to infinity. This remark will be used in the proof of Theo-
rem 1.1.

Evidently, if F is a PTC-vector field, that is, its period function θ : D2 \ O → (0,+∞)
smoothly extends to all of D2, then ϕ is periodic, and θ = µ.

Theorem 2.1. Let F be a PTC-vector field. Then
(1) Sh(F ) = E+(F ) and the map ϕ : C∞(D2,R) → E+(F ) is an infinite cyclic covering

map;
(2) the inclusions D+(F ) ⊂ E+(F ) and D+(F, ∂) ⊂ E+(F, ∂) are homotopy equivalences;
(3) D+(F ) and E+(F ) are homotopy equivalent to the circle;
(4) D+(F, ∂) and E+(F, ∂) are contractible.

The proof will be given in Section 9.

Shift map of non-singular vector fields on R2. We will also use the following statement.

Lemma 2.1. Let M be either the plane R2 or the half-plane H and G be a vector field on M
tangent to ∂M (in the case M = H) and having no singular points. Suppose that G generates
a flow G : M × R → M and let ψ : C∞(M,R) → C∞(M,M) be the shift map of M.
Then its image Sh(G) coincides with E(G), and the map ψ : C∞(M,R) → E(G) is a Sr,r-
homeomorphism for all r ≥ 0.

Both maps maps ψ and ψ−1 preserve smoothness.

Proof. Let h ∈ E(G). Then for each x ∈ M its image h(x) belongs to the orbit of x, whence
there exists a unique number σh(x) such that h(x) = G(x, σh(x)). The obtained shift function
σh : M → R for h is C∞ on all of M and the correspondence h 7→ σh is the inverse map ψ−1

of ψ.
Since G has no singular points, and IntM is homeomorphic to R2, it easily follows from the

Poincaré – Bendixson theorem [18] thatG has no closed orbits and each non-closed orbit ofG is
non-recurrent. Then it follows from [3] that ψ−1 is Sr,r-continuous for each r ≥ 0 and preserves
smoothness.

3. Linearization of vector fields. Let

F (x) = F1(x)
∂

∂x1
+ . . .+ Fn(x)

∂

∂xn
(3.1)
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be a smooth vector field on Rn such that F (O) = 0. Then

Fi(x) = ai1x1 + . . .+ ainxn + o(‖x‖2), i = 1, . . . , n,

for some aij ∈ R. Regarding F as a map F = (F1, . . . , Fn) : Rn → Rn we can write the 1-jet
j1F (O) of F at O as j1(F )(x) = Ax, where

A =

a11 . . . a1n

· · · . . . · · ·
an1 . . . ann

 , x =

x1

. . .
xn

 .

The matrix A as well as the corresponding linear map x 7→ Ax will be denoted by ∇F and
called linear part or linearization of F at O.

Let h : (Rn, O) → (Rn, O) be a germ of a diffeomorphism at O and H = J(h,O) be its
Jacobi matrix of h at O. Then h induces the following germ of a vector field:

h∗F = Th ◦ F ◦ h−1

at O, called the pushforward of F by h.
It easily follows that

∇h∗F = H · ∇F ·H−1. (3.2)

Lemma 3.1. Let F be a TC-vector field on D2. Then the eigen values of its linearization ∇F
at O are purely imaginary, i.e., λ1,2 = ±ib for some b ∈ R. Hence, by a change coordinates, ∇F
can be reduced to one of the following matrices:

1.
(

0 b
−b 0

)
, 2.

(
0 b
0 0

)
, 3.

(
0 0
0 0

)
,

for some b > 0. Each of these matrices is realizable.

Proof. Suppose that Reλ1 6= 0. Then there exists an orbit o of F for whichO is a limit point.
Indeed, if Reλ2 6= 0, then existence of o follows from Hadamard – Perron’s theorem [19 –

21], which was reproved and extended by many authors, see [22, p. 2] for discussions and
references. Otherwise Reλ2 = 0, and such an orbit o exists by the center manifold theorem,
e.g. [23 – 25].

This gives a contradiction with the assumption that all orbits of F are closed.
It remains to present examples of a TC-vector field with linear parts of types 1 – 3. Let

p, q ∈ N, f(x, y) =
b

2
(x2p + y2q), and

F (x, y) = −bqy2q−1 ∂

∂x
+ bpx2p−1 ∂

∂y
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be the Hamiltonian vector field of f. Since O is an isolated local extremum of f , we see obtain
that F is a TC-vector field. Then

∇F =
(

0 b
−b 0

)
, p = q = 1,

∇F =
(

0 b
0 0

)
, p = 1, q = 2,

∇F =
(

0 0
0 0

)
, p, q ≥ 2.

The lemma is proved.

Lemma 3.2. Let h : (D2, O) → (D2, O) be a germ of orbit preserving diffeomorphisms of a
TC-vector field F, i.e., h(o) = o for each sufficiently small orbit of F, H = J(h,O) be the Jacobi
matrix of h at O, and µ1, µ2 be the eigen values of H. Then |µ1| = |µ2| = 1.

Proof. If |µ1| 6= 1, then by the center manifold theorem, e.g. [25], there exists a point z ∈
∈ D2 \O such that

O ∈
+∞
∪

n=−∞
hn(z). (3.3)

Let o be the orbit of z. By assumption, h(o) = o, whence (3.3) implies that z = O, which
contradicts the assumption.

4. “Collinear” linear maps. The aim of this section is to establish the following statement.

Proposition 4.1. Let V be a linear space over a field F, dimV = n ≥ 2, and A,B : V → V
be two linear maps such that

(i) B = HAH−1 for some linear isomorphism H : V → V ;
(ii) for each x ∈ V its images A(x) and B(x) are collinear, i.e., there exists µx ∈ F depending

on x such that B(x) = µxA(x).
Denote by spA the spectrum of A. Then the following statements hold true:
(A1) If rankA ≥ 2, then B = τA for some τ ∈ F. In particular,

AH = τHA.

(A2) Suppose rankA = 1 and spA = {λ, 0} for some λ 6= 0. Then there exists a basis in V
in which

A =


λ 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
0 0 · · · 0

 , B =


λ b2 · · · bn
0 0 · · · 0
. . . . . . . . . . . .
0 0 . . . 0

 , (4.1)

for some b2, . . . , bn ∈ F. Denote

G1 =


1 b2/λ b3/λ . . . bn/λ
0 1/λ 0 . . . 0
0 0 1/λ . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1/λ

 . (4.2)

ISSN 1562-3076. Нелiнiйнi коливання, 2010, т . 13, N◦ 2



SYMMETRIES OF CENTER SINGULARITIES OF PLANE VECTOR FIELDS 185

Then B = G1B = AG1, whence

A · (HG1) = (HG1) ·A,

i.e., A commutes with HG1.
(A3) Suppose rankA = 1 and spA = {0}. Then there exists a basis in V in which

A =


0 1 . . . 0
0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0

 , B =


0 . . . q b3 . . . bn

0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0

 , (4.3)

for some q, b3, . . . , bn ∈ F such that q 6= 0. Denote

G2 =


1 0 0 . . . 0
0 q b3 . . . bn
0 0 1/q . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1/q

 , (4.4)

Then B = G2B = AG2, whence

A(HG2) = (HG2)A,

i.e., A commutes with HG2.
For the proof we need two lemmas. Let V,W, be two linear spaces over a field F. Forw ∈ W,

denote by
〈w〉 := {tw : t ∈ F}

the one-dimensional subspace of W spanned by w.

Lemma 4.1. For any two non-zero linear operators A,B : V → W there exists x ∈ V such
that A(x) 6= 0 and B(x) 6= 0.

Proof. Suppose that for each x ∈ V at least one of the vectors Ax or Bx is zero. Then
kerA + kerB = V. Since A,B 6= 0, there exist x ∈ kerB \ kerA and y ∈ kerA \ kerB. In
particular, x, y are linearly independent,

A(x) 6= 0, B(y) 6= 0, A(y) = B(x) = 0. (4.5)

But A(x + y) = A(x), B(x + y) = B(y) and, by the assumption, at least one of these vectors
must be zero, which contradicts (4.5).

Lemma 4.2. LetA,B : V → W be two linear operators such that for each x ∈ V the vectors
A(x) and B(x) are collinear (possibly zero).

(a) If B(x) = τA(x) 6= 0 for some x ∈ V and τ ∈ F, then

A(kerB) ⊂ 〈A(x)〉, B(kerA) ⊂ 〈B(x)〉.
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(b) If B(x) = τA(x) 6= 0, B(y) = νA(y) 6= 0 for some x, y ∈ V and τ, ν ∈ F such that
A(x) and A(y) are linearly independent in W, then τ = ν. Moreover, in this case B = τA.

Proof. (a) Evidently, it suffices to show that ifB(z) = 0 for some z ∈ V , thenA(z) = κA(x)
for some κ ∈ F.

By the assumption, B(x+ z) = αA(x+ z) for some α ∈ F. Then

A(x) +A(z) = A(x+ z) = αB(x+ z) = αB(x) + αB(z) = ακA(x),

whence A(z) = (ακ− 1)A(x).
(b) By the assumption, B(x+ y) = βA(x+ y) for some β ∈ F. Then

A(x) +A(y) = A(x+ y) = βB(x+ y) = βB(x) + βB(y) = βτA(x) + βνA(y).

SinceA(x) andA(y) are linearly independent, we obtain that β 6= 0, and βτ = βν = 1,whence
τ = ν.

It remains to show that B(z) = τA(z) for any other z ∈ V.
If B(z) = 0, then we get from (a) that A(z) ∈ 〈A(x)〉 ∩ 〈A(y)〉 = {0}. By symmetry, we

obtain that A(z) = 0 if and only if B(z) = 0. In particular, B(z) = τA(z) = 0 for such z.
Suppose A(z) 6= 0. Then B(z) 6= 0 as well, and either A(x), A(z) or A(y), A(z) are linearly

independent. Then, as just proved, B(z) = τA(z).

Proof of Proposition 4.1. (A1) By Lemma 4.1 there exists x ∈ V such thatA(x) = τB(x) 6=
6= 0 for some τ ∈ F. Since rankA ≥ 2, there exist y ∈ V such that A(x) and A(y) are linearly
independent. Then, by (b) of Lemma 4.2, A = τB.

(A2), (A3) It is easy to verify that if A and B are given either by (4.1) or by (4.3), then
B = GiB = AGi, where Gi is given by the corresponding formula (4.2) or (4.4). Hence B =
= HAH−1 = G−1

i AGi and therefore (GiH)A = A(GiH).
We have to establish existence of representations (4.1) and (4.3).
Suppose rankA = 1. Then by the Jordan normal form theorem that there exists a basis

〈e1, . . . , en〉 in V in which A is given by the corresponding matrix (4.1) or (4.3). Thus in both
cases the image of A is spanned by the vector e1.

Notice that by (A1) rankB = 1 and by (i) spB = spA. Then it follows from (ii) that the
image of B is also spanned by e1. Hence B is given by the corresponding matrix (4.1) or (4.3).

It remains to show that we may assume in (4.3) that q 6= 0.
Indeed, by Lemma 4.1 there exists a vector e2 ∈ V such that B(e2) = qA(e2) 6= 0.
Put e1 = A(e2). Since rankA = 1, it follows that e1 generates the image of A, that is, for

each y ∈ V there is αy ∈ F such that A(y) = αye1. In particular, e1 is an eigen vector of A. But
spA = {0}, whence A(e1) = 0.

Moreover, by (b) of Lemma 4.2 we also have that rankB = 1 and from assumption (i) we
get spB = spA = {0}.HenceB(e1) = 0.Extend the vectors e1, e2 to the basis 〈e1, e2, f3, ..., fn〉
of V. Then for each i = 3, . . . , n there exists αi ∈ F such that A(fi) = αie1. Put ei = fi − αie2.
Then 〈e1, e2, e3, . . . , en〉 is also a basis for V and

A(ei) = A(fi)−A(αie2) = αie1 − αie1 = 0, i = 3, . . . , n.

Thus in the basis 〈e1, . . . , en〉 the matrix A is given by (4.3).
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Moreover, it follows from (ii) thatB(ei) = bie1 for i = 3, . . . , n. Thus in this basisB is given
by a matrix of the form (4.3) with q 6= 0.

The proof of Proposition 4.1 is completed.

5. Jacobi matrices of orbit preserving diffeomorphisms.
Theorem 5.1. Let F be a vector field of Rn given by (3.1). Suppose that the set ΣF of zeros

on F is nowhere dense near O. Let also h : (Rn, O) → (Rn, O) be a germ of diffeomorphisms at
O preserving foliation by orbits of F , i.e., there exists a neighbourhood V of O such that h(o∩V )
is contained in some (perhaps another) orbit o′ of F. Denote

A = ∇F, H = J(h,O).

If rankA ≥ 2 then there exists τ ∈ R such that

AH = τHA.

Suppose rankA = 1, so, in some local coordinates, A is given by one of the matrices (4.1)
or (4.3). Then

A · (HGi) = (HGi) ·A,

where Gi, i = 1, 2, is given by the corresponding matrices (4.2) or (4.4).

Proof. Consider the pushforward of F via h, i.e.,

G = h∗F = Th ◦ F ◦ h−1. (5.1)

Let G = (G1, . . . , Gn) be the coordinate functions of G. Then we can write

Gi(x) = bi1x1 + . . .+ binxn + o(‖x‖2), i = 1, . . . , n,

and thus j1(G)(x) = Bx, where

B =

b11 . . . b1n

. . . . . . . . .
bn1 . . . bnn

 .

As noted in (3.2),
B = HAH−1.

Since h maps every orbit of F into itself, it follows that F and G are collinear at each z such
that F (z) 6= 0. Hence,

Fi(z)Gj(z) = Fj(z)Gi(z), i, j = 1, . . . , n.

Therefore,

(
ai1x1 + . . .+ ainxn + o(‖x‖2)

)(
bj1x1 + . . .+ bjnxn + o(‖x‖2)

)
=

=
(
aj1x1 + . . .+ ajnxn + o(‖x‖2)

)(
bi1x1 + . . .+ binxn + o(‖x‖2)

)
,
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whence

(
ai1x1 + . . .+ ainxn

)(
bj1x1 + . . .+ bjnxn

)
=

=
(
aj1x1 + . . .+ ajnxn

)(
bi1x1 + . . .+ binxn

)
, i, j = 1, . . . , n.

This implies that A(v) and B(v) are collinear for each tangent vector v ∈ TORn. Now the
statement of Theorem 5.1 follows from Proposition 4.1.

Corollary 5.1. Let F be a TC-vector field, F : D2 × R → D2 be the flow of F , h : D2 → D2

be a germ of a diffeomorphism at O preserving orbits of F, i.e., h(o) = o for every orbit of F.
Denote by H = J(h,O) the Jacobi matrix of h at O. Suppose that A = ∇F 6= 0.

(1) If A =
(

0 b
−b 0

)
for some b 6= 0, then H coincides with one of the following matrices:

(
cos bω sin bω
− sin bω cos bω

)
,

(
cos bω sin bω
sin bω − cos bω

)
(5.2)

for some ω ∈ R. Hence, in the first case, j1h(O) = j1Fω(O), i.e., the linear parts of h and Fω at
O coincide.

(2) If A =
(

0 b
0 0

)
for some b 6= 0, then H coincides with one of the following matrices:

(
1 bω
0 1

)
,

(
−1 bω
0 −1

)
,

(
−1 bω
0 1

)
,

(
1 bω
0 −1

)
(5.3)

for a certain unique ω ∈ R. Again, in the first case, j1h(O) = j1Fω(O).

Proof. (1) Suppose A =
(

0 b
−b 0

)
for some b 6= 0. Then the Jacobi matrix of Ft at O is

given by

J(Ft, O) =
(

cos bt sin bt
− sin bt cos bt

)
.

Let H = J(h,O) =
(
α β
γ δ

)
. By Theorem 5.1, A = τHAH−1 for some τ 6= 0. Since A is

non-degenerate, we obtain det(A) = det(τHAH−1) = τ2 det(A), whence τ = ±1.
A direct calculation shows that γ = τβ and δ = −τα, so

H =
(

α β
−τβ −τα

)
= (α2 + β2)

(
cos bω sin bω
−τ sin bω −τ cos bω

)
for some ω ∈ R. We claim that α2 + β2 = 1. This will imply that H coincides with one of the
matrices (5.2).

Indeed, it is easy to verify that the eigen values of H are given by

µ1,2 =

(α2 + β2)e±iq, τ = 1,

±
√
α2 + β2, τ = −1.
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By Lemma 3.2, |µ1| = |µ2| = 1, whence α2 + β2 = 1.

(2) Suppose A =
(

0 b
0 0

)
, for some b 6= 0. Then the Jacobi matrix of Ft at O is given by

J(Ft, O) =
(

1 bt
0 1

)
.

On the other hand, by (A3) of Proposition 4.1, A commutes with the matrix K = HG, where

G =
(

1 0
0 1/q

)
is given by (4.4) for some q 6= 0.

Write K =
(
α β
γ δ

)
. Then the identity AK = KA easily implies that δ = α and γ = 0, so

K =
(
α β
0 α

)
, Hence,

H = KG−1 =
(
α β
0 α

)(
1 0
0 q

)
=
(
α βq
0 αq

)
.

Evidently, α and αq are eigen values of H. Then, by Lemma 3.2, |α| = |q| = 1, whence H
coincides with one of the matrices (5.3), where ω = βq/b.

Let F be a TC-vector field onD2.Denote by E+(F )1 the subset of E+(F ) consisting of maps

h such that j1h(O) = id, that is J(h, 0) =
(

1 0
0 1

)
.

Suppose that A = ∇F 6= 0. Then, by Corollary 5.1, for each h ∈ E+(F ) there exists ω ∈ R
such that J(h,O) = J(Fω, O). Hence,

F−ω ◦ h ∈ E+(F )1.

Proposition 5.1. Suppose that A = ∇F 6= 0. Then there exist a W1-neighbourhood N of the
identity map idD2 in E+(F ) and a continuous function ω : N → R (in W1-topology of N ) such
that j1h(O) = j1Fω(h)(O) for each h ∈ E+(F ) and ω(idD2) = 0. Hence we have a well-defined
map

H : E+(F ) ⊃ N → E+(F )1, H(h) = F−ω(h) ◦ h.

This function ω preserves smoothness.

Proof. (1) Assume that A =
(

0 b
−b 0

)
. Let p : R → SO(2) be the covering map given by

p(t) =
(

cos 2πt sin 2πt
− sin 2πt cos 2πt

)
for t ∈ R. Then by Corollary 5.1 for each h ∈ E+(F ) we have two

maps

E+(F )
j1:h 7→ J(h,O)−−−−−−−−−→ SO(2)

p←−−−− R.
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Since p is a local diffeomorphism, there exists a W1-neighbourhoodN of the identity mapN in
E+(F ) on which the composition

ω = p−1 ◦ j1 : N → R

is well-defined and satisfies ω(idD2) = 0.
If hτ is a family of maps in E+(F ) smoothly depending on τ ∈ Rn, then evidently so does

ω(hτ ). This implies that ω preserves smoothness.

(2) Suppose |A| = 0 but A 6= 0. Then by Lemma 3.1 we can assume that A =
(

0 b
0 0

)
,

whence by Corollary 5.1 for each h ∈ E+(F ) its Jacobi matrix at O has one of the following
forms:

either
(

1 bω
0 1

)
, or

(
−1 bω
0 −1

)
. (5.4)

LetN be a subset of E+(F ) consisting of h for which J(h,O) =
(

1 bω
0 1

)
. It follows from (5.4)

that N is W1-open in E+(F ).

Define p : R → GL(2,R) by p(t) =
(

1 bt
0 1

)
and let G = p(R) be the image of p. Then

p : R → G is a diffeomorphism. Now, similarly to the case (1), for each h ∈ N we have the
following two maps:

N j1:h 7→ J(h,O)−−−−−−−−−→ G
p←−−−− R.

Then the inverse map ω = p−1◦j1 : N → R is well-defined. Evidently, it preserves smoothness
and satisfies ω(idD2) = 0.

The proposition is proved.

6. Polar coordinates. Consider the plane R2 with coordinates (φ, r). Let H̊ = {r > 0} be
the open upper half-plane, H = {r ≥ 0} be its closure, and P : H → R2 be the map defined by

P (φ, r) = (r cosφ, r sinφ).

Thus (φ, r) are the polar coordinates in R2.

Identifying R2 with C we can also define P : H → C by

P (φ, r) = reiφ.

Let η : H → H be given by η(φ, r) = (φ + 2π, r). Then P = P ◦ η and thus η induces a
P -equivariant Z-action on H such that P is a factor map H → H/Z ≡ R2.

In this section we recall how to lift certain objects like functions, self-maps, and vector fields
defined on R2 to the corresponding objects on H via P.

Correspondence between flat functions. Let C∞Z (H,R) be the subset of C∞(H,R) consisti-
ng of all Z-invariant functions α̃ : H → R, i.e.,

α̃(φ+ 2π, r) = α̃(φ, r).
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Let also FlatZ(H, ∂H) ⊂ C∞Z (H,R) be the subset consisting of all function flat on ∂H and
Flat(R2, O) ⊂ C∞(R2,R) be the subset consisting of all function flat at the origin O.

Notice that for every α̃ ∈ C∞Z (H,R) there exists a unique C∞ function α : R2 \ {0} → R
such that α̃ = α ◦ P. But in general, α can not be even continuously extended to all of R2. For
instance, α is continuous if and only if α̃ is constant on the φ-axis ∂H = {r = 0}.

The following statement shows that α is actually C∞ and flat at O whenever α̃ is flat on
∂H. Smoothness and flatness of α was shown in [6] (Lemma 5.3), and in [26] (Theorem 5.1)
continuity of the correspondence α̃ 7→ α was treated.

Lemma 6.1 [6, 26]. There exists a W∞,∞-continuous and preserving smoothness map

fl : FlatZ(H, ∂H) → Flat(R2, O)

such that α̃ = fl(α̃) ◦ P for all α̃ ∈ FlatZ(H, ∂H). Thus every smooth, Z-invariant, flat on ∂H
function on H induces a C∞-function on R2 flat at O.

Correspondence between smooth maps. Let h : R2 → R2 be a continuous map such that
h−1(0) = 0. Then h lifts to a certain map h̃ : H̊ → H̊ which commutes with η and satisfies
h ◦ P = P ◦ h̃. Hence for each n ∈ Z the map h̃ ◦ η is also a lifting of h.

It is well-known that if h is at least of class C1, then h̃ extends to a continuous map h̃ : H →
→ H. Moreover, if h is C∞, then such is h̃.

Our aim is to estimate continuity of the correspondence h 7→ h̃.
Let Map∞(R2, 0) be the subset of C∞(R2,R2) consisting of maps h : R2 → R2 such that
(1) h(O) = O;
(2) h(R2 \O) ⊂ R2 \O;
(3) j1h(O) = τ · id for some τ > 0.
Let also Map∞(H, ∂H) be the subset of C∞(H,H) consisting of maps h̃ : H → H such that
(1) h̃ is fixed on ∂H;
(2) h̃(H̊) ⊂ H̊.
Finally, let Map∞Z (H, ∂H) be the subset of Map∞(H, ∂H) consisting of Z-equivariant maps,

i.e., the maps that commute with the Z-action on H. In other words, h̃ = (Φ̃, R̃) ∈ Map∞(H, ∂H)
belongs to Map∞Z (H, ∂H) if and only if

Φ̃(φ+ 2π, r) = Φ̃(φ, r) + 2π, R̃(φ+ 2π, r) = R̃(φ, r).

The following statement claims that every h ∈ Map∞(R2, 0) lifts to a unique h̃ ∈ Map∞Z (H, ∂H)
such that P ◦ h̃ = h ◦ P and the correspondence h 7→ h̃ is S∞,∞-continuous.

Proposition 6.1. There exists a unique mapping

lift : Map∞(R2, 0) → Map∞Z (H, ∂H)

such that P ◦ lift(h) = h ◦ P for h ∈ Map∞(R2, 0). This map preserves smoothness and is
Sk+1,k-continuous for each k ≥ 0.

Proof. Let h = (X,Y ) ∈ Map∞(R2, 0). We have to construct a C∞-map h̃ : H → H fixed
on ∂H and such that P ◦ h̃ = h ◦ P.

By assumption, j1h(O) = τ id for some τ > 0, i.e.,
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X(x, y) = τx+ xα1 + yα2,

Y (x, y) = τy + xβ1 + yβ2

(6.1)

for some C∞-functions αi, βi : R2 → R such that αi(O) = βi(O) = 0. These functions are not
unique and, for instance, they can be given by the following formulas, e.g. [17]:

α1(x, y) =

1∫
0

∂X

∂x
(tx, y)dt− τ, α2(x, y) =

1∫
0

∂X

∂x
(0, ty)dt,

β1(x, y) =

1∫
0

∂Y

∂x
(tx, y)dt, β2(x, y) =

1∫
0

∂Y

∂x
(0, ty)dt− τ.

(6.2)

Hence,
X ◦ P (φ, r) = r cosφ+ rA(φ, r),

Y ◦ P (φ, r) = r sinφ+ rB(φ, r),

where
A(φ, r) = cosφ · α1 ◦ P (φ, r) + sinφ · α2 ◦ P (φ, r),

B(φ, r) = cosφ · β1 ◦ P (φ, r) + sinφ · β2 ◦ P (φ, r).
(6.3)

It follows that A and B are C∞, Z-invariant, and vanish on ∂H, i.e., A(φ, 0) = B(φ, 0) = 0 for
all φ ∈ R.

Since P : H̊ → R2 \ {O} is a covering map, there exists a C∞ map

g̃ = (Φ̃, R̃) : H̊ → H̊

such that P ◦ g̃ = h ◦ P. In other words,

R̃(φ, r) cos Φ̃(φ, r) = X ◦ P (φ, r),

R̃(φ, r) sin Φ̃(φ, r) = Y ◦ P (φ, r)

for r > 0. This map is not unique, it commutes with η, and can be replaced with g̃ ◦ ηn for any
n ∈ Z.

Then for each φ0 ∈ R we get that

R̃ cos(Φ̃− φ0) = X ◦ P · cosφ0 + Y ◦ P · sinφ0 =
= r cos(φ− φ0) + rA1(φ, r),

R̃ sin(Φ̃− φ0) = Y ◦ P · cosφ0 −X ◦ P · sinφ0 =
= r sin(φ− φ0) + rB1(φ, r),

where
A1 = A cosφ0 +B sinφ0, B1 = B cosφ0 −A sinφ0. (6.4)
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Again, A1, B1 : H → R are C∞, Z-invariant, and vanish for r = 0.
Consider the following two functions:

Φ̃φ0(φ, r) = φ0 + arctg
sin(φ− φ0) + rB1(φ, r)
cos(φ− φ0) + rA1(φ, r)

,

R̃φ0(φ, r) =
r cos(φ− φ0) + rA1(φ, r)

cos(Φ̃φ0(φ, r)− φ0)
.

(6.5)

Evidently, there exist a, b > 0 such that Φ̃φ0 and R̃φ0 are well-defined and C∞ on the nei-
ghbourhood

Vφ0 = [φ0 − a, φ0 + a]× [0, b]

of (φ0, 0) in H.
Moreover, the map h̃φ0 = (Φ̃φ0 , R̃φ0) : Vφ0 → H is a lifting of h in the sense that P ◦ h̃φ0 =

= h ◦ P : P−1(Vφ0) → R2.

Also notice that h̃φ0(φ, 0) = (φ, 0), i.e., h̃φ0 is fixed on ∂H ∩ Vφ0 . Therefore, for distinct
φ0, φ1 ∈ R the lifting h̃φ0 and h̃φ1 coincide on Vφ0 ∩ Vφ1 ∩ ∂H whenever this intersection is
non-empty. Hence h̃φ0 = h̃φ1 on all of Vφ0 ∩ Vφ1 .

This implies that the partial maps h̃φ0 , φ0 ∈ R, define a unique C∞-lifting h̃ of h fixed on
∂H.

Finally, it follows from (6.5) and Z-invariantness of A1 and B1 that h̃ is Z-equivariant. Thus
h̃ ∈ Map∞Z (H, ∂H) and we define

lift(h) = h̃.

It remains to verify Sk+1,k-continuity of the lift.
Consider the following sequence of correspondences:

h
(6.2)7−→ (αij , βij)i,j=1,2

(6.3)7−→ (A,B)
(6.4)7−→ (A1, B1)

(6.5)7−→ h̃φ0 .

The first one expresses αi and βi via the first partial derivatives of the coordinate functions of
h. All others are just compositions of smooth maps. It follows that for each integer k ≥ 0 there
exists a constant C = C(φ0, k) > 0 depending only on φ0 and k such that

‖h̃′φ0
− h̃φ0‖kVφ0

≤ C‖h′ − h‖k+1
P (Vφ0

), (6.6)

for every h′ ∈ Map∞(R2, 0) and its lifting h′φ0
.

Claim 6.1. Let K ⊂ H be a compact subset and k ≥ 0 and L = P (K). Then there exists
C > 0 depending on K and k such that

‖h̃′ − h̃‖kK < C‖h′ − h‖k+1
L

for each h′ ∈ E+
Z (G). Hence the lift is Wk+1,k-continuous.

Proof. Put K̃ = [0, 2π] × [0,+∞)
⋂ +∞

∪
n=−∞

ηn(K), see Fig. 6.1 Since h̃ is Z-invariant, we

have that
‖h̃′ − h̃‖kK = ‖h̃′ − h̃‖k

K̃

for any h̃′ ∈ Map∞Z (H, ∂H).
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Fig. 6.1

Therefore, it suffices to consider the case where K ⊂ [0, 2π]× [0,+∞).
Then there exist finitely many values φ1, . . . , φm ∈ [0, 2π] such that

K ∩ ∂H ⊂
m
∪

i=1
Vφi

.

Denote K0 = K ∩
m
∪

i=1
Vφi

, and K1 = K \ V .
Put L = P (K), L0 = P (K0), L1 = P (K1). Then by (6.6) there exists C0 > 0 such that

‖h̃′ − h̃‖kK0
≤ C0‖h′ − h‖k+1

L0
. (6.7)

Moreover, since P homeomorphically maps K1 onto L1, there exists C1 > 0 such that

‖h̃′ − h̃‖kK1
≤ C1‖h′ − h‖kL1

. (6.8)

Put C = max{C0, C1}. Then

‖h̃′ − h̃‖kK ≤ C‖h′ − h‖k+1
L .

Claim 6.1 is proved.
To prove Sk+1,k-continuity of the lift, take any countable locally finite cover K = {Ki}i∈N

of the strip S = [0, 2π] × [0,+∞) by compact subsets. Denote Kj
i = ηj(Ki) and Li = P (Ki).

Then
K̃ = {Kj

i }i∈N,j∈Z

is a locally finite cover of H and L = {Li}i∈N is a locally finite cover of R2.
For each i ∈ N take any εi > 0 and let

Ñ = {h̃′ ∈ E+
Z (G) : ‖h̃′ − h̃‖k

Kj
i

< εi}.

Then Ñ is a base Sk-neighbourhood of h̃ in E+
Z (G).

It now follows from Claim 6.1 that for each i ∈ N there exists δi > 0 such that if ‖h′ −
−h‖k+1

Li
< δi for h′ ∈ E+(F ), then ‖h̃′ − h̃‖k

Kj
i

< εi for any j ∈ Z.
Notice that

N = {h′ ∈ E+(F ) : ‖h′ − h‖k+1
Li

< δi}

is a Sk+1-neighbourhood of h in E+(F ), and lift(N ) ⊂ Ñ . This implies Sk+1,k-continuity of the
lift.

Proposition 6.1 is proved.
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Lifting of vector fields. Let F = Fx
∂

∂x
+ Fy

∂

∂y
be a vector field on R2. Since P is a local

diffeomorphism of H onto R2 \ {O}, F induces a certain vector field G = Gφ
∂
∂φ + Gr

∂
∂r on H̊

such that TP ◦G = F ◦ P, i.e., the following diagram is commutative:

T H̊ TP−−−−→ T (R2 \O)

G

x xF

H̊ P−−−−→ R2 \O

It easily follows, see e.g. [26], that the coordinate functions on F and G are related by the
following identity: (

Gφ

Gr

)
=

(
−1
r

sinφ
1
r

cosφ

cosφ sinφ

)(
Fx ◦ P
Fy ◦ P

)
. (6.9)

We will say that G is the expression of F in polar coordinates or the lifting of F .

7. Vector fields on R2 with a “rotation as 1-jet”.

Normal forms. We recall here the results of F. Takens [6] about normal forms of singularities
of vector fields on R2 with a “rotation as 1-jet” .

Let F = F1
∂

∂x
+ F2

∂

∂y
be a vector field on D2 and

∇F =


∂F1

∂x

∂F1

∂y

∂F2

∂x

∂F2

∂y

 . (7.1)

Denote by λ1 and λ2 the eigen values of ∇F at O.

Theorem 7.1 [6]. Suppose that λ1, λ2 are non-zero purely imaginary, i.e., λ1,2 = ±iν for
some ν > 0. Then there exists a diffeomorphism g : (D2, O) → (D2, O) such that either

g∗G(x, y) = β(x2 + y2)
(
−(y + Ȳ )

∂

∂x
+ (x+ X̄)

∂

∂y

)
, (7.2)

where β is a C∞-function, β(0, 0) 6= 0, X̄, Ȳ ∈ Flat(R2, O), or

g∗G(x, y) = β(x, y)
[
−2πy

∂

∂x
+ 2πx

∂

∂y
+

+
(
δ(x2 + y2)k + α(x2 + y2)2k

)(
x
∂

∂x
+ y

∂

∂y

)]
, (7.3)

where f is a C∞ function, β(0, 0) = 1, δ = ±1, k ∈ N, and α ∈ R.
Vector fields (7.2) and (7.3) are not C∞-equivalent.
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For instance, the vector field

F (x, y) = −νy ∂
∂x

+ νx
∂

∂y
+ . . . terms of high order . . . .

satisfies assumptions of this theorem.
C∞-equivalence classes of such vector fields were also studied in [27].

Expressions in polar coordinates. Our aim is to show that a vector field of type (7.3) does
not admit a strong first integral, see Corollary 7.1. We need for this the expressions of (7.2)
and (7.3) in polar coordinates, see also [10].

Lemma 7.1. Let

F1(x, y) = −(y + Ȳ )
∂

∂x
+ (x+ X̄)

∂

∂y
, (7.4)

where X̄, Ȳ ∈ Flat(R2, O). Then its expression in polar coordinates is the following vector field:

G1(φ, r) = (1 + Φ̄)
∂

∂φ
+ R̄

∂

∂r
, (7.5)

where Φ̄, R̄ ∈ FlatZ(H, ∂H).

Lemma 7.2. Let

F2(x, y) = −2πy
∂

∂x
+ 2πx

∂

∂y
+

+
(
δ(x2 + y2)k + α(x2 + y2)2k

)(
x
∂

∂x
+ y

∂

∂y

)
,

where δ = ±1, k ∈ N, and α ∈ R. Then its expression in polar coordinates is the following
vector field:

G2(φ, r) = 2π
∂

∂φ
+ r2k+1(δ + αr2k)

∂

∂r
. (7.6)

These lemmas are direct consequences of (6.9) and we leave proofs of them to the reader.
It follows that G1 and G2 are C∞ on all of H, tangent to ∂H, and have no singular points.

Corollary 7.1. The origin O is a limit point of each orbit of F2 passing sufficiently close to O.
Hence, every function f : R2 → R, which is constant along orbits of F, must be constant near O.

Proof. Denote α(φ, r) = δ + αr2k. Then α is non-zero on some neighbourhood of ∂H,
whence the vector field

G =
1
α
G2 =

2π
α

∂

∂φ
+ r2k+1 ∂

∂r

is C∞ and has the same orbit structure as G2. It is now evident that if r > 0 is sufficiently small,
then for each φ ∈ R, the orbit õ of the point z̃ = (φ, r) tends to ∂H when t → −∞. Therefore,
the orbit o = P (õ) of the point P (z̃) = reiφ tends to O, see Fig. 7.1.
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Fig. 7.1

Flat perturbations. Let G be a vector field on H given by (7.5),

G(φ, r) = (1 + Φ̄)
∂

∂φ
+ R̄

∂

∂r
,

where Φ̄, R̄ ∈ Flat(H, ∂H). Then it is easy to see that G is tangent to ∂H and has no singular
points on some neighbourhood of ∂H.

For simplicity assume that G generates a global flow

G = (Φ,R) : H× R → H.

Lemma 7.3. Suppose that h̃ = (Φ̃, R̃) ∈ E+(G) has a shift function σ̃ with respect to G. Then

Φ̃(φ, r) = φ+ σ̃(φ, r) + ξφ(φ, r), (7.7)

R̃(φ, r) = r + ξr(φ, r), (7.8)

where ξφ, ξr ∈ Flat(H, ∂H).
The coordinate functions of G have the following form:

Φ(φ, r, t) = φ+ t+ µφ(φ, r, t), (7.9)

R(φ, r, t) = r + µr(φ, r, t), (7.10)

where µφ, µr : H× R → R are C∞-functions flat on ∂H× R.
If, in addition, Φ̄, R̄ : H → R are Z-invariant and h̃ ∈ E+

Z (G), then σ̃, ξφ, ξr ∈ C∞Z (H,R).

Proof of (7.7). Notice that G defines the following autonomous system of ODE:

∂φ

∂t
= 1 + Φ̄,

∂r

∂t
= R̄.

Let h̃ = (Φ̃, R̃) ∈ E+(G) and z = (φ, r) ∈ H. If r is sufficiently small, then the shift function
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for h̃ near z with respect to G can be calculated by the following formula:

σ̃(φ, r) =

eΦ(φ,r)∫
φ

ds

1 + Φ̄(s, r)
=

eΦ(s,r)∫
φ

ds+

eΦ(φ,r)∫
φ

Φ̄(s, r) ds
1 + Φ̄(s, r)︸ ︷︷ ︸
ξφ(φ,r)

=

= Φ̃(φ, r)− φ+ ξφ(φ, r). (7.11)

Evidently, ξφ is C∞. Moreover, since Φ̄ is flat on ∂H, it follows that such is ξφ. This proves (7.7).

Proof of (7.9) and (7.10). Applying the previous arguments to Gt and its shift function t, we
obtain Φ(φ, r, t) = φ+ t+ µφ(φ, r, t), where

µφ(φ, r, t) =

Φ(φ,r,t)∫
φ

Φ̄(s, r) ds
1 + Φ̄(s, r)

.

Moreover,

µr(φ, r, t) = R(φ, r, t)− r =

t∫
0

R̄(Φ(φ, r, s),R(φ, r, s))ds.

We claim that µφ and µr are flat on ∂H× R, i.e., at each point (φ, 0, t).
Indeed, since Φ̄ is flat on ∂H, it is easy to see that, for any a, b, c ≥ 0,

∂a+b+cµφ

∂φa ∂rb ∂tc
=
∑

i

αi(φ, r, t) +
∑

j

Φ(φ,r,t)∫
φ

βj(s, r)ds, (7.12)

∂a+b+cµr

∂φa ∂rb ∂tc
=
∑

k

γk(φ, r, t) +
∑

l

t∫
0

δl(s, r)ds, (7.13)

where each sum is finite and αi, βj , γk, δl are linear combinations with smooth coefficients of
partial derivatives of Φ̄ and R̄ up to order a+ b+ c. This implies that (7.12) and (7.13) vanish for
r = 0, since Φ̄ and R̄ are flat on ∂H. Hence µφ and µr, are flat on ∂H.

Proof of (7.8). Since µr is flat at each point (φ, 0, r), it follows that

ξr(φ, r) = R̃(φ, r)− r = R(φ, r, σ̃(φ, r))− r = µr(φ, r, σ̃(φ, r))

is flat at (φ, 0).

Verification of Z-invariance. Suppose that h̃ ∈ E+
Z (G), so

Φ̃(φ+ 2π, r) = Φ̃(φ, r) + 2π, R̃(φ+ 2π, r) = R̃(φ, r).
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Then it is easy to show, see [26] (Lemma 6.1), that the functions

Φ̃− φ = σ̃ + ξφ, R̃− r = ξr

are Z-invariant.
If, in addition, Φ̄, R̄ are Z-invariant, then Φ̄(s + 2π, r) = Φ̄(s, r) and it follows from (7.11)

that

ξφ(φ+ 2π, r) =

eΦ(φ+2π,r)∫
φ+2π

Φ̄(s, r) ds
1 + Φ̄(s, r)

=

eΦ(φ,r)+2π∫
φ+2π

Φ̄(s, r) ds
1 + Φ̄(s, r)

=

=
∣∣∣∣ substitute
s = s′ + 2π

∣∣∣∣ =

eΦ(φ,r)∫
φ

Φ̄(s′ + 2π, r) ds′

1 + Φ̄(s′ + 2π, r)
=

=

eΦ(φ,r)∫
φ

Φ̄(s′, r) ds′

1 + Φ̄(s′, r)
= ξφ(φ, r),

whence σ̃ is also Z-invariant.
Lemma 7.3 is proved.

8. Proof of Theorem 1.1. (a)⇒(b) Notice that property (b) depends neither on a parti-
cular choice of local coordinates at O nor on a reparametrization of F. More precisely, let
h : (D2, O) → (D2, O) be a germ of the diffeomorphism at O and β : D2 → R \ {0} be
an everywhere non-zero C∞-function. Denote G = h∗(βF ). Let also A = J(h,O) be the
Jacobi matrix of h at O, and let λ1, λ2 be the eigen values of the matrix ∇F (O). Then by (3.2)

∇G(O) = β(O) · A · ∇F (O) ·A−1.

Hence the eigen values of ∇G(O) are β(O)λ1 and β(O)λ2. Therefore F satisfies (b) iff so
does G.

Suppose now that the period function θ : D2 → (0,+∞) is smooth on all of D2. Then
F(z, θ(z)) ≡ z for all z ∈ D2, i.e., θ ∈ ker(ϕ) 6= {0}. Thus ϕ is periodic, whence the 1-jet of F
at O is non-zero (see paragraph before Remark 2.1).

Consider the vector field G = θF . Let also G : D2 × R → D2 be the flow of G. Then
by [5] G(z, 1) ≡ z for all z ∈ D2, i.e., G1 = idD2 . Hence G induces the following smooth
circle-action D2:

Γ : D2 × S1 → D2, Γ(z, e2πit) = G(z, t),

where S1 is regarded as the group R/Z. Then on the tangent space TOD
2 we obtain a linear

circle action induced by TOGt. This action is non-trivial since j1G = θ(O) · j1F 6= 0. Thus we
obtain a monomorphism S1 → GL(2,R) = Aut(TOD

2).
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Since every circle subgroup in GL(2,R) is conjugate to SO(2), there exists a linear automor-
phism h : R2 → R2 such that

h ◦Gt ◦ h−1(x, y) =
(

cos 2πt sin 2πt
− sin 2πt cos 2πt

)
·
(
x
y

)
+ ot(

√
x2 + y2),

whence

h∗G(x, y) = −y ∂
∂x

+−x ∂
∂y

+ . . . terms of high order . . . .

Notice that∇h∗G(O) =
(

0 −1
1 0

)
and its eigen values are±i. As noted above the eigen values

of ∇F (O) are ±i/θ(O).
(b)⇒(c) In this case F satisfies assumptions of Section 7 and therefore can be reduced to

one of Takens’ normal forms, either (7.2) or (7.3). But by Corollary 7.1, in the case (7.3), F has
non-closed orbits nearO, which contradicts the assumption. Thus, by using a reparametrization
and a change of coordinated, F can be reduced to the form (7.2).

(c)⇒(a) Let η(φ, r) = (φ + 2π, r). This map is a lifting of the identity map idD2 . Since
each regular orbit o of F is a simple closed curve wrapping around the origin, it follows that
P−1(o) is diffeomorphic to R1, and, in particular, it is an orbit of G. Since P ◦ η = P , we obtain
η−1P−1(o) = P−1(o), i.e., η preserves orbits of G. Hence η ∈ E+

Z (G). Then its shift function is
given by (7.11),

θ̄(φ, r) =

φ+2π∫
φ

ds

1 + Φ̄(s, r)
= 2π + ξ̃(φ, r),

for some ξ̃ ∈ FlatZ(H, ∂H). By Lemma 6.1, ξ̃ = ξ ◦ P for some ξ ∈ Flat(R2, O). Therefore
θ = 2π + ξ is a C∞-period function for the shift map ϕ.

Finally, suppose that condition (c) violates. Then it follows from Lemma 3.1 that in some

local coordinates at O the linear part of F is equal to the matrix A =
(

0 e
0 0

)
for some e 6= 0.

But the eigen values of A are zero, whence by Remark 2.1 lim
z→O

θ(z) = +∞.

Theorem 1.1 is proved.

9. Proof of Theorem 2.1. Suppose that the period function θ : D2 → (0,+∞) for F is
smooth on all of D2. Then for each α ∈ C∞(D2,R) we have that

ϕ−1 ◦ ϕ(α) = {α+ nθ}n∈Z. (9.1)

(1) We will show that Sh(F ) = E+(F ), and that the mapping

ϕ : C∞(D2,R) → Sh(F ) = E+(F )

is W∞,∞-open. This will imply by [3] that ϕ is either a homeomorphism onto E+(F ) or a Z-
covering map. But, due to (9.1), ϕ is not injective, whence it is a Z-covering map.

Moreover, by results of [3], for the proof of W∞,∞-openness of ϕ it suffices to construct a
local inverse of ϕ defined only on some (arbitrary small) W∞-neighbourhoodN of the identity
map idD2 in E+(F ).
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Also notice that by [5] the image Sh(F ) of the shift map ϕ and the openness property
of ϕ are invariant with respect to reparametrizations, that is, multiplications of F by smooth
everywhere non-zero functions. Hence due to (d) of Theorem 1.1 we can assume that F is given
by the following formula:

F (x, y) = −(y + Ȳ )
∂

∂x
+ (x+ X̄)

∂

∂y
, (9.2)

with X̄, Ȳ ∈ Flat(R2, O).
Then F lifts to the vector field

G(φ, r) = (1 + Φ̄)
∂

∂φ
+ R̄

∂

∂r
,

with Φ̄, R̄ ∈ Flat(H, ∂H).
We need the following statement which will be proved in Section 10. Recall that we denoted

by E+(F )1 the subset of E+(F ) consisting of maps h such that j1h(O) = id.

Proposition 9.1. There exists a W∞,∞-continuous map

σ : E+(F )1 → C∞(D2,R)

which is a section of ϕ, i.e.,

h(z) = F(z, σ(h)(z)), h ∈ E+(F )1, z ∈ D2,

satisfies σ(idD2) = 0 and preserves smoothness.

Assuming this statement is proved let us show that Sh(F ) = E+(F ).
We have that Sh(F ) ⊂ E+(F ). Conversely, let h ∈ E+(F ). Then by Corollary 5.1 there

exists ω ∈ R such that h1 = F−ω ◦ h ∈ E+(F )1. Then it is easy to see that the function
α = ω + σ(h1) is a shift function for h. Hence Sh(F ) = E+(F ).

Now by Proposition 5.1 there exists a W1-neighbourhood N of h in E+(F ) on which the
composition

σ ◦H : N → C∞(D2,R), σ ◦H(h) = ω(h) + σ(F−ω(h) ◦ h)

is a W∞,∞-continuous local inverse of ϕ preserving smoothness.
(3) Since C∞(D2,R) is a contractible Frechét manifold and ϕ is a Z-covering map, it follows

that E+(F ) is homotopy equivalent to S1.
(4) Let us show that E+(F, ∂) is contractible. Denote by A the subset of C∞(D2,R) consi-

sting of functions vanishing on ∂D2.

Claim 9.1. ϕ yields a W∞,∞-homeomorphism ofA onto E+(F, ∂),whence E+(F, ∂) is contracti-
ble.

Proof. Evidently, ϕ(A) ⊂ E+(F, ∂).Conversely, let h ∈ E+(F, ∂) and α be any shift function
of h, so h(z) = F(z, α(z)). Then ϕ−1(h) = {α + nθ}n∈Z, where θ is the period function of ϕ.
Recall that θ(z) = Per(z) for all z 6= 0. Since h is fixed on ∂D2, it follows that α|∂D2 = nθ|∂D2
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for a unique n ∈ Z. Hence α′ = α − nθ is a unique shift function of h which vanishes on ∂D2,
i.e., belongs to A.

This implies that ϕ yields a bijection of A onto E+(F, ∂). Since in addition ϕ is a local
homeomorphism, it follows that it maps A homeomorphically onto E+(F, ∂).

(2) Consider the following subset of C∞(D2,R) :

Γ = {α ∈ C∞(D2,R) : F (α) > −1}.

Then, by [2], Γ = ϕ−1(D+(F )), and the restriction ϕ|Γ : Γ → D+(F ) is a Z-covering as well.
Evidently Γ is convex, and therefore contractible. Hence D+(F ) is homotopy equivalent to S1.

Moreover, ϕmaps the convex set Γ∩A homeomorphically onto E+(F, ∂).Whence E+(F, ∂)
is contractible as well.

This completes Theorem 2.1 modulo Proposition 9.1.

10. Proof of Proposition 9.1. Let h ∈ E+(F )1. First we will explain how to construct σ and
then show its continuity.

Notice that E+(F )1 ⊂ Map∞(R2, 0). Then by Proposition 6.1 there exists a lifting h̃ =
= lift(h) ∈ Map∞Z (H, ∂H). Let h̃ = (Φ̃, R̃) be the coordinate functions of h̃.

Claim 10.1. lift(E+(F )) ⊂ E+
Z (G). In particular, h̃ ∈ E+

Z (G).

Proof. Let õ be the orbit of G. We have to show that h̃(õ) ⊂ õ.
Notice that o = P (õ) is the orbit of F, and õ = P−1(o), that is, the inverse image of o is

connected. Moreover, h(o) = o, whence

P ◦ h̃(õ) = h ◦ P (õ) = h(o) = o.

Therefore, h̃(õ) ⊂ P−1(o) = õ.

Now by Lemma 2.1 there exists a unique C∞-shift function σ̃ of h̃ with respect to G.
Moreover, by Lemma 7.3 σ̃ is Z-invariant. We have to show that σ̃ = σ ◦ P for some C∞-
function σ : D2 → R. Then σ will be a shift function for h.

Again, by Lemma 7.3,
σ̃ = Φ̃(φ, r)− φ+ ξ̃(φ, r),

where ξ̃ ∈ FlatZ(H, ∂H), i.e., it is Z-invariant and flat on ∂H. Then by Lemma 6.1 there exists a
C∞-function ξ ∈ Flat(R2, O) such that ξ̃ = ξ ◦ P. Therefore, we have to show that there exists
a C∞-function ν ∈ C∞(D2,R) such that

Φ̃(φ, r)− φ = γ ◦ P (φ, r). (10.1)

Lemma 10.1. Regard h as a smooth function h : D2 → C. Then there exists a smooth
function γ : D2 → C satisfying (10.1) and such that h(z) = zγ(z) and γ(0) = 1.

Moreover, the correspondence h 7→ γ is a S∞,∞-continuous and preserving smoothness map
E+(F ) → C∞(D2,C).

Proof. Notice that γ(z) = h(z)/z is a smooth map, γ : D2 \O → C\{O}.We have to prove
that it smoothly extends to a map D2 → C.
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We will only show that
hh̄ = zz̄ + ζ(z), (10.2)

where ζ : D2 → C is a smooth map being flat at O. Then smoothness of γ at O will follow by
the arguments similar to the proof of [2] (Lemma 31).

Let z = reiφ = P (φ, r) and h̃ = (Φ̃, R̃) = lift(h). Then

hh̄(z) = R̃2(φ, r)
(7.8)

==== (r + ξr(φ, r))2 = r2 + ζ̃(φ, r) = zz̄ + ζ̃(φ, r),

for some ζ̃ ∈ FlatZ(H, ∂H). By Lemma 6.1 ζ̃ = ζ ◦ P for some ζ ∈ Flat(R2, O), whence
hh̄(z) = zz̄ + ζ(z). This establishes (10.2) and smoothness of γ. Continuity of the division
h 7→ γ is implied by compactness of D2 and the following lemma being a very particular case
of results of [28].

Lemma 10.2 [28]. Let Z : C∞(C,C) → C∞(C,C) be the “multiplication by z” map, i.e.,

Z(γ)(z) = z γ(z), γ ∈ C∞(C,C), z ∈ C.

Denote by imZ the image of Z in C∞(C,C). Then Z is injective and the inverse map Z−1 :
imZ → C∞(C,C) is S∞,∞ continuous.

Let us prove (10.1). Since γ 6= 0 on D2 and D2 is simply connected, there exists a unique
smooth function Γ : D2 → R such that Γ(O) = 0, and γ(z) = |γ(z)|eiΓ(z).

Let z = reiφ ∈ D2. Then h ◦ P (φ, r) = P ◦ h̃(φ, r) implies that

R̃ei
eΦ(φ,r) = h(reiφ) = γ(reiφ) reiφ = |γ(z)|rei(Γ(reiφ)+φ).

Hence
Φ̃(φ, r)− φ = Γ(reiφ) + 2πn

for some n ∈ Z. In order to find n, put r = 0, then

2πn = Φ̃(φ, 0)− φ− Γ(O) = φ− φ+ 0 = 0,

whence n = 0.
Lemma 10.1 is proved.
Hence σ = γ + ξ is a C∞-shift function for h.
It remains to note that the correspondences h 7→ γ and h 7→ ξ are W∞,∞-continuous and

preserving smoothness by Lemmas 6.1 and 10.1.
Theorem 2.1 is proved.

11. Proof of Theorem 1.3. We have to find a C∞-function g : R → R such that

j∞f(x, y) = j∞g(x2 + y2),

where j∞ means a∞-jet at O.
Recall that a vector field F is parameter rigid if, for any other vector field F ′ such that every

orbit o′ of F ′ is included in some orbit of F, there exists a C∞-function ν : D2 → R such that
F ′ = νF, see [29, 30].
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Claim 11.1. F is parameter rigid.
Proof. We have that Sh(F ) = E+(F ) and that local sections of ψ preserve smoothness.

These two assumptions imply parameter rigidity of F by results of [30].

Choose local coordinates atO in whichF is given by (7.4). Let alsoF ′(x, y) = −f ′y
∂

∂x
+f ′x

∂

∂y
be the Hamiltonian vector field of f. Then by parameter rigidity of F there exists aC∞-function
ν : D2 → R such that

f ′x(x, y) = (x+ X̄) ν(x, y), f ′y(x, y) = (y + Ȳ ) ν(x, y). (11.1)

Hence
x · j∞f ′y = y · j∞f ′x. (11.2)

Lemma 11.2. Let p be a non-zero homogeneous polynomial of degree n in two variables
satisfying the following identity:

xp′y = yp′x. (11.3)

Then n = 2k is even and p(x, y) = a(x2 + y2)k for some a ∈ R.

Proof. Since p is homogeneous of degree n, it satisfies the Euler identity np = xp′x + yp′y.
Hence

nxp = x2p′x + xyp′y = x2p′x + y2p′x = (x2 + y2) p′x.

Therefore, either n = 0 and p is a constant, or p(x, y) = (x2+y2)q(x, y) for some homogeneous
polynomial of degree n− 1. We claim that q satisfies xq′y = yq′x. Indeed,

p′y = 2yq + (x2 + y2)q′y, p′x = 2xq + (x2 + y2)q′x.

Then we get from (11.3) that (x2 + y2)xq′y = (x2 + y2)yq′x, and, therefore, xq′y = yq′x.
By the same arguments, q is divided by x2 + y2 as well. Now lemma follows by induction on

the degree n.
Lemma 11.2 is proved.
Let j∞f(x, y) =

∑∞
i=0 pi(x, y) be the Taylor series of f, where pi(x, y) is a homogeneous

polynomial of degree i. Then every pi satisfies (11.3) whence j∞f(x, y) =
∑∞

i=0 ai(x2 +y2)i for
some ai ∈ R. By a theorem of E. Borel there exists a C∞-function g : R → R such that

j∞g(t) =
∞∑
i=0

ait
i,

whence j∞f(x, y) = j∞g(x2 + y2), which completes our statement.
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