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1. Setting of the Problem

The subject of investigation in the theory of wave propagation [1] is the behavior of solu-
tions of the second order differential equation (d.e.) with respect to degrees of the coefficient
at the first degree of the unknown function in the theory of a diffusion of waves. Therefore in
what follows we investigate asymptotic local and global A-stability of the d.e. of the type

v+ Aty = F(t,y.y), 1

where t € A, A = [tg,w]or A =|w,tg], |w| < 400, X : A = Ry, F : A xR?2 — R,

R =] o0, +0o[,R_ =] —00,0[[Ry =]0,+00[[RZ=RxR,\ € CL, F = Z Fory*()F +
s+k=2

F* f& € Ca,s+k =2;mm € {3,4,...}, |F*| < L(jy|+y/|)"".,L € Ca,L : A
Ry, a € Ry. The results given below are applied to the d.e. (1) with slowly variable coefficients
(their derivates are smalls with respect to the coefficients themselves as ¢ 1 w). Let us denote

_ ‘y(t,t05y07y6)‘ ’y/(tvtoayan/O”
S(t, A, a,b) = a + Y ,

where y = y(t; yo, y,) is a solution of the d.e. (1), a,b € R;

k+p—q s—p+q )
Bupltia ) = 0,5 3 S0 (P DSk aop ot LR
p=0 ¢=0

2= —1;

)

A=maxi{fs : A~ R; s =1,n},
ifA: A= Ry, Ay =cs+os(1),t Tw,es €R,s=T1,m,|ci| +...4+]|ca] > 0;

L*(t; a, b) = 2m+a71>\(a+b*i)(m+a)()\fi + )\i)eraL;
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G(t,a,b,x) = Z A=Y (t; a,b)| B i (t; a,0)|¢*T* L (t; a, b)zsHF

s+k=2
s#k+1

Y(t;a,b) Re By 1.5(t; a,b) > (t; a,b) — Bagy1(a,b)|z? !

+ ™ (a0, b) A (8 a, b) L (t; a, )™ mg = % M

4
Definition 1. The d.e. (1) has the property Sty ast T w if there are constants a, b € R such
that for any arbitrarily small ¢ € R there are T, € A, 0. €]0,¢[, such that any solution y =

y(t; Tz, yo, y(')) with an initial condition S(T., \,a,b) < 0. satisfies the inequality S(t,\,a,b) < €
forallt € [T.,w| (the local \-stability).

Definition 2. The d.e. (1) has the property AsSty ast T w if Definition I takes place and
S(T:, \,a,b) = o(1), t 1 w (the local asymptotic \-stability).

Definition 3. The d.e. (1) has the property GASty as t T w if there are constants a, b €
R such that for any arbitrarily small ¢ € Ry there is 6. €)0,¢| such that any solution y =

y(t;to, vo, y,) of the d.e. with an initial condition S(tg, A, a,b) < 0. satifies the inequality S(t, A, a,b) <

e forallt € A (the global \-stability).

Definition 4. The d.e. (1) has the property GaAsSty as t 1 w if Definition 3 takes place and
S(t, A\, a,b) = o(1), t T w (the global asymptotic \-stability).

Definition 5. The d.e. (1) has the property UnSty ast T w, if the Definition 1 doesn’t take

place.

2. Auxiliary Results

Let us give tranfotmations that help to obtain an estimate of the value S(¢, A, a, ).

Lemma 1. The transformation
y = —iNT05 (0 —7), o = Xz +7), )
reduces the d.e. (1) to the d.e. of the type
¥ = ®(t,z), 3)
where

O(t,z) = [MO’E’—(a—i—b—O,%)X)\_}x—O 25N AT + Z By i(t:a,0)z° " + 0*(t, ),
s+k=2

1
*(t,2) = A O F AT 0N (@ ) A+ ), (87 < L a,) o]0

Proof is obvious.
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Lemma 2. The substitution
x = pexp(if), p = |z|, 0 € R, 4)

reduces the d.e. (3) to the differential system (d.s.) of the type

p=—(a+b—0,5cos2ON\"1p+ Z Re {Bsyk(t; a,b)exp(if(s — k — 1))} PR 4 @,
s+k=2

N 5)
0 = 2\%% +0,25X'A7 sin20 + > Im [Bs,k(t; a,b) exp(if(s — k — 1))} p T 4 p7 1,
s+k=2
where &1 = Re [fb* exp(—zﬂ)}, ®y = Im [<I>* exp(—iﬂ)}, |Bs| < L*(t;a,b)p™t, s = 1,2
Proof is obvious.
Remark 1. The following estimate
A0 min (AGT025 \b=0.25Y ) < 61 ) q,b) < 22025 ()\a+0,25 i )\b70,25)p (6)

is implied by transformations (2), (4).

3. Main Results

It should be noted that the behavior of the value S(t, A, a,b) depends on solutions of the
first d.e. of the d.s. (5), as implied by the estimate (6). To understand the behavior of these
solutions we shall note that there is a group of terms which don’t depend of 6. This allows to
obtain the from the differential system (5) a d.e. of the type

mo
p= ZRe Bgy1s(t;a,b)p* ™, (7)

s=1

the behavior of all solutions of which can by investigated by using the method [2].

Theorem 1. Let for the d.e. (1) there are a,b € R such that
t

T 2s

1) among the functions [—28/Re Bst15(T3 0, b)dr] ,
to

_1
2(k—s)

—Re Bst1,4(t;a,b) Re~! Biy1,k(t; a, b)} , S #k s,k =1,mqg,
there is ¢(t;a,b) : A — Ry such that there exists

A(t;a,b) = maxi{(a + )N + ¢/ (t;a,b)0  (t;a,b) — 0,5 N[N,
Re Byy1,5(ta,0)¢ (t;a,b); s = T,mo},
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and

mo
[—(a+NATT = ¢/ (t;a,b)07(t;a,b) 4+ 0,5\ N[Nz + Z Re By 1,5(t; a,b) > (t; a, b)2> T
s=1
mo

= A(t;aa b) Z[B23+1(a7 b) +02s+1(1)j| x28+1a B2s+1(a7 b) € Ra s = OamO;
s=0

mo

2) there is ¢y € Ry such that Z Basyi(a, b)c%“’drl e R_, and
s=0

¢71(t7 a, b)G[ta a, ba ¢(t7 a, b)CO] - 0(1), t T w
(sup o (t,a,0)G[t, a,b, 4(t, a,b)co] < — ZB2s+1(a, b)c(2)5+1> :
teA —~

3) A7025(XaF0.25 4 Nb=0.25) (¢ a,b) = o(1), t 1 w.
Then it has the property AsSty (GaAsSty) ast T w.

Proof. For the first d.e. of the d.s. (5) we make the transformation

p = ¢z (8)
which, under the condition 1), reduces it to a d.e. of the type
mo
5=0

where we have the estimate |G*[t; a, b, 0, ¢(t, a,b)z]| < G[t,a,b, d(t,a,b)x]foralld € R,t € A.
Then, under the condition 2), there is 7y € A such thatif z = ¢ for all ¢ € [Tp,w], then we
have the inequality 2/ < 0. It means that any solution x = x(¢; t§, 6o, zo) of the d.e. (9) with a
sufficiently small initial value z is bounded for all # € Rand ¢ € [t§,w[, t§; € [To,w].

Using condition 3) and substitution (8) we see that smallness of the value = corresponds to
smallness of the value S(¢, A, a, b).

Remark 2. It follows from condition 2) of Theorem 1 that the coefficients Re B; i (¢, a, ),
s # k+1,s,k = 1,m, of the first d.e. of the d.s. (5) must be small with respect to the coefficients
Re Bst15(t,a,b), s = 1, s¢, of this d.e. If this condition doesn’t hold, then the order of growth
of these coefficients can be decreased if the method of nonlinear frozen” transformations [3]
is applied to the d.e. (4).

Lemma 3. Transformations (2) and

x=z+H(tz2z) =z+ Zhskzsfk, z = pexp(if), (10)
s+k
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where p, 0 are polar coordinates reduce the d.e. (1) to the d.s. of the type
mo
P =—(a+b—0,5cos2N\"1p+ ZAgsH(t, a,b)p** T + ®3(t,a,b,0, p),
=t (11)
mo
0 = X"+ "Bs 1 (ta,b)p +0,25) A" sin 260 + ®5(t,a,b,0, p),

s=0
for which Aasy1(t,a,b), B}, (t,a,b) are known real functions of t only, s = 1,mq, ®}(t,0, p),
k = 1,2, are known real 2r-periodic in 0 functions, ®}(t,0,0) = 0, k = 1,2.

Proof. First let us apply the transformation (2) to the d.e. (1). And next, the transforma-
tion (10) is applied to the obtained d.e. (1), where h,;, 7 + [ = 2,m, are defined such that the
d.e. in z in the autonomous case w1ll have the type 2z’ = = iA2z.

For the forms H;, = Z h, 2" 72, k = 2, m, we have the d.e.

r+l=k
_8Hk o Z8Hk OH;,
ot P oz
1 k—1 m m L
=i\ 2 | Fi(t, 2,2) + ZFS(t,z +) H;z+ Gj>
s=2 7j=2 7j=2
’“<F OH, —  OH >]
- k—j+1 k—j+1—F=
= 1o} 0
k—1
O0H; O0H;
+ Z(Hk*]#*laixj - Hk*j+187;)7 k= 27m7 (12)
=2
where Fy(t,2,2z) = Z Bmz’?l, k=2,m.
r+l=k

We can’t solve the d.e. (12) exactly. Therefore we use the method of ”frozen” ¢ and replace
this d.e. by an algebraic equation of the type

k—1 m

3Hk 78Hk 1 . - LN
Hi— 22k 425k = 0 Rt 2,2) + Fs<t,z+ZHj,z+ ‘ Hj)
s=2 7j=2 7j=2
k—1 k—1
_ 9H; OH,; OH,;
(P G = Frcsn 22| + 2 (B G2 - Ty )
p o
8H ach s5+2 a]{s 6ﬁk75+2
_ — . 1
tz Z(@x oz oz 02 ) k=2m (13)

If in the right-hand side of the d.e. (13) we shall denote by A*; the coefficient at 2"z!, then
for h,;, v +1 = k, k = 2, m, we shall obtain the d.e. of the type

(I—=r+Dhy =AY, r+1l=Fk k=2m. (14)
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It’s easy to understand that the d.e. (14) does not have a solution only if » = [ + 1. In this
case we define hyy1; = 0.

As the result of applying transformations (2), (10) to the d.e. (1), the d.s. (10) will have a
polynomial in p the coefficients of which depend only on ¢. This allows to select the d.e. of the

type

mo
p= ZA28+1(t7a7 b)p** (15)

s=1

the behavior of regular solutions of which can determine A-stability of the d.e. (1).

Since the substitution (10) has # under the signs of sin and cos, to get conditions for proper-
ties Sty, AsSty to hold for the d.e. (1), it is sufficient to investigate the properties of solutions
of the first d.e. (11) relatively to p for any variation of # € R.

Theorem 2. Let for the d.e. (1) there are a,b € R such that
1) for the d.s. (11) there exists a solution of the Cauchy problem;
2) among the functions

L 1

|:—2S/A25+1(7', a, b)dT] . [ A2_3+1(t7a7 b)AZk—‘rl(ta a, b)] 2= ) Sak = 1)m07 S 7é k)

there exists ¢(t,a,b) : A — R such that there is

A(t;a,b) = maxi{(a + )N + ¢/ (t;a,b)0 1 (t;a,b) — 0,5/ N[N 71,

A2S+1(t;a7b)¢2s(t; a, b)7 s = 17m0}

and
mo
— (a+DNAT = ¢ (t0,0)07 (t5.0,0) + 0,5 N ANz + > Agsra(ta, )67 (1 a,0)27 !
s=1
mo
= A(t7 a, b) Z|: §s+1(a7 b) + 025-&-1(1)} x28+17 A§s+1<a7 b) € R, s = 0,mp;
s=0
mo
3) there exists a constant ¢y € R such that Z Al q(a,b)e™ € R_and
s=0

AL(t, a,b)6 (¢, 0, )@t a,b, 0, 6(t, 0, b)eo)] = o(1), ¢ T w, forall§ € R

mo
sup ’A (t,a,b)®7"(t,a,b,0) — ZAQSHCQSH’ < —ZAQSHC%H'I,
teA0ER =0
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O (t,a,b,0) = — [(a+b—0,5cos> ONATT + ¢/ (t,a,b)¢ " (t, a, b)]co

mo
+ Z A2s+1(t7 a, b)¢2s(t7 a, b)03$+1
s=1

+ ¢7(t,a,b) [t a,0,0, (¢, a, b)co]>;

4) ATOBNH025 L \07025) (8 a,b) = o(1), har(t, a,b)¢* (¢, a,0) = O(1), t 1w, s+k =
2,m.
Then it has the property AsSty (GaAAsSty) ast T w.

Proof. For the first d.e. of the d.e. (11) we apply the substitution z = ¢(¢,a,b)v. And to
the obtained d.e. for v we apply Theorem 1.

For the sake of clarity of the obtained results, let us consider the d.e. (1) in a special case.
Let, for the d.e. (1),

—+00

w = +o00, m = 3, / APt = 400, (16)

and there are a,b € R such that there exist finite limits

lim AFD@H)=05(+) 0 < s <k k=23 (17)

t—+o0

Then the substitution (2) transforms it into d.e. (3) for which

Bao(t,a,b) = Boa(t, a,b) = 0,57\ (A fag — iA™"% f11 + fo2) ,
Bui(t,a,b) = =X (X7 fag — fo2)
Bso(t,a,b) = Boa(t,a,b) = 0,52 (IA71 f39 — A7 for —id™5 fia + fog)

Boi(t,a,b) = Bua(t, a,b) = —0,5)2F0) (3iA715 f30 — A1 for + 44705 f15 — 3f03) -
Let us apply the transformation

k
v=z+H H=Hy+Hs, Hi =) hpss(ta,b)2" "2 k=23, (18)
s=0

to d.e. (3) where the forms Hs, H3 are defined so that, in the autonomous case, the d.e. for z
has the form 2/ = iA\%?z. Under this condition, the forms H,, H3 satisfy a d.e. of the form

2
0Hy .1 OHy _OH> o e
=z Hy — z—= -_—= By_ T =
5 +z/\2< 2= +7z 5 +s§_0 95,52 T 0,
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Hae— 52223 Bs_, s —55s
ot + A ( 3 (92 +z ) + Z 3— 23

+ [Bozhi1 + Biihoa — iA*°(2h3y — hi1hoo)]2?

+ [Baoh11 + Biihi1 — Birhao + 2Bozhoz + Biihii + 2Bozhos

— A5 (2h11hoa + haoh1 — [k [?) — 2|hos|*]2%Z

+ [2Baoho2 + Birhao + 2Bo2h11 — 2Bo2hag + Baohi1 + 2B11hos
— A% (h}y + 2haohos — haohi1 — 2h11ho2)|2Z

+ [Bi1hoz + 2Boghao — Boghi1 + 2Baghoz — iA"? (hi1hoz — 2haoho2)]Z® = 0.

Applying the method of the “frozen” ¢ to the obtained d.e. we find the coefficients h,;,
r+1=2231e.,

hoo(t,a,b) = — 0,5\ 0705 <A71f2o — N0 fyq + f02>7

1_
hi1(t,a,b) = — \*T0=05 (A_1f20 - f02), hoa(t, a,b) = §h20(t7a, b),
hao(t, a,b) = — 0,25iA2@F) =05 (A5 fa0  A=1for — A" f1o + fo)

5 >\2(a+b V(AT fag — a0 fiy + fo2) (4N fao — 3iATO0 fi + 2f02)
hgl(t, a, b) = O, (19)
hia(t,a,b) = — 0,25i\2(@F0)=05 (3iA1P fa0 — A1 far + A T00 f1o — 3 f50)

1 _ _ o _ —
— 6)\2(““’) YN a0 + A0 i1+ fo) (BAT fao 4+ BIATYE f11 — 12)

hos(t, a,b) = 0,25i\2 @0 =05 (X715 fo0 1A=L for — 4N f15 — fo3)
1
- E)\z(ﬁb)*l (A fao + N0 1y + foz)2 :

It is easy to see that, under the condition (17), the coefficients of the transformation (18)
have the property: there exist finite limits 1tlier he, = Yy, s+ k = 2,3, where hy, — h}, =
—+00

wep = 0(1),t — +oo,s+k = 2,3.
It means that there exists zp € R4 such that

OH OH OHOH 0OHOH|
Al | 02 | 02 9z 02 0z 02 ’

i.e., the transformation (18) exists and it is nonsingular.
Then the d.e. (15) has the form

P = A5 As(t,a,b)p,
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where
_ _ | Y _
As(t,a,b) = 0,502@F=05(\L £y £ 3f03) — EAQ( L5 £ (A fap — fo2),

moreover under the condition (17) there exists the finite limit tEeroo A% = AY. Therefore under
the condition A < 0, the function ¢(t, a, b) from Theorem 2 has the form
t —0,5
P(t,a,b) = Y(t) = (1 — 249 / /\0’5dr> .
to

From the condition (16) it follows that ¢(t) = o(1),t — +oc.
The function @7 (¢, a,b,0, p) from d.s. (11) has the form

1
®i(t,a,b,0, p) = Re[exp(i)¥(t, a,b, 0, p)] — AINSp? + (a +b— B cos? 0) NA"1p,

where

14+ — +

_ _ _ N\ —1
OH OH OHOH OHOMH
U(t.a.b 0. p) = OHOH O O
(t,a,5.0,p) < 9: oz 0z 0z o7 az>

z=pexp(i6)
. OH OH
X {[\II (t,a,b,z+ H) — at} <1+8z>
_[W(t,a,b,z+H)—%H] %H} )
t z z=pexp(ib)

3
U*(t,a,b,2) = [iIA" = (a+b—0,25)AA o — 0,25MA "2+ > Bu(tia, b)a’z".
s+k=2
Let us assume that
t -1
A(t,a,b) = A(t) = —AINOS <2Ag / A0Sdr — 1)

to
t
1
= maxi{ [(a FBH)N — 0, 5|X|} Al AgAOf’(l - 2Ag/)\0’5dr> ,
to

t
AGAO5 (1 — 248 / )\0’5dr)_1}.
to
Then under the condition of existence of the finite limit
¢
lim MA~1S / \Pdr = By > 0,

t—+00
to
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making the transformation p = ¢(t)x we obtain a differential inequality for z in the form

B B
< [‘(a—i—b)Ag—i—Oj’Ag’—l—l x—x3—|—\Il**(t,a,b,x)}. (20)
3 3

Note that if, for example, A = Bt?, B = const > 0, then By = VB > 0. If, for example,
A = Blnt, then By = 0.

The positive constant ¢y can be found from the inequality
B | Bol

2
cg>1—(a+b)—5+0,5—5.
A3 A3

For condition 4) of Theorem 2 to hold, we must require that U**(¢, a, b, ¢y) = o(1),t — +oo
in (20). The latter condition is fullfilled if

t
(wWh_gs)? A" /)\0’5dr =0(1), wy_j A" =0(1), t & +o0, s=0,1,2, k=0,2,3,

to

t —0,5c
)\(a+b70,571)(m+a)71()\70,5_|_)\O,5)m+a (/ )\O’SdT> L = 0(1)’ t — +00.

to

If we consider the behavior of the so-called tail, i.e., the terms powers of which in = equal
4,...,9 and which are contained in the function U**, then their coefficients with the factor
A~1(t) disappear for t — oo and z fixed. For example, at z* we have

Baog® (t)A™

3 -15
=0, A0S (AT fo — AT fig 4 foo) 0P (1 — 249 / >\0,5d7>
to

t

X (1 —2AY / A°’5dr) (A9)~IA705

to

t —-0,5
= z‘(Ag)_lhg()(l — 2Ag/)\0’5d7> = o(1), t — o0,

to
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Bsg¢®(t)A !

— 0, 5/\2(a+b)—0,5(i/\—1,5f30 ATy — i)\_o’5f12 i fog))\o,s (1

t t
-1,5
— 249 / )\075d7) x (1 — 2A9 / A0»5d7> (A9)~TAT0P

to to

t —-0,5
= 2i(AY)"hsg (1 — 2Ag//\0’5dr> =o(1), t = 400,

to

—hy

t
(wh_gs)? A" /)\0’5dr =0(1), wh 1 A" =0(1), t = 400, s =0,1,2, k=0,2,3,
to

t —0,5

to

We formulate the obtained results as the following theorem.
Theorem 3. Let the d.e. (1) be such that
+00 t
1) w= 400, m =3, / NPt = 400, the limit . E_rgl NA~LD / A5 dr < 400 exists,

to
and it’s possiple to find a,b € R such that there exist finite limits

t_1}+m )\(kil)(a+b)7075(s+l)fs,kfm 0<s< k, - 2’3’

and

. atb)— _ 1 oparn— _
lim [A2@+H)=05(\=1f) 4 3f3) — 6)\2( L5 1 (A o — fo2)] € R,

t——+o0

2—s,s

¢
(R )2>\1/>\0’5d7 =o(1), By 4 A" =o0(1), t = 400, s =0,1,2, k=0,2,3
to
(hsk, s + k = 2,3, are defined by formulas (19)),

t —0,5c
)\(a+b70,5)(m+a71)71(/\70,5+)\0,5)m+a (/ )\0,5d7_> L = 0(1)7 t— +00;

to

t —0,5
2) ATOB(NIH0S 4 \b=0.5) ( / onf’dT) = o(1), t — +o0.

to
Then it has the property AsSty ast — +oo.
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Theorem 4. Let for the d.e. (1) there exist a,b € R such that
1) for the d.s. (11) there is a solution of the Cauchy problem;

2) among the functions
t
_1 1

|:—28/A23+1(7’, a, b)dT] = [ AQSI_H(t,a, b) Aog11(t, a, b)] 26-1 sk =1,mg, s # k,

to

thereis ¢(t,a,b) : A — R such that there exists
A(t;a,b) = maxi{(a FONATL 4 & (5 a,b) 6 (a,b) + 0, 5N AL,
Agei(t:a,b)6 (ta,b); s = Tomo |
and

~lla+BNAT + ¢/ (ta,b)o (i, b) + 0, 5N A -

mo
+ Z Agsi1(t; a,b) % (t; a,b) 2%+

s=1
mo
= A(60,0) Y [Asepala,) + opea ()] 22,
s=0

/Adt = +o0, A3, 1(a,b) € R, s =0, my;

3) there exists a constant ¢y €0, 1] such that forallt € A, 0 € R, z €]0, ¢gl,

mo
ZA§S+1(G,Z))ZQS+1 > Oa
s=0
mo
ALt a,b)®i*[t, a,b, 0, 2)] ZA25+1 22 < ZA;S_H(CL, b)z2
s=0

O (t,a,b,0,2) = — [(a+bNAT" + ¢/ ()¢~ (£, a,b) + 0,5V A"z
mo
+ ) Agepa(t,a,b)¢* (¢, a, )2

+ gbil(t) a, b)(bT [ty a, b7 9) ¢(t7 a, b)Z]a
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4) for any aq €]0, co| there is a constant [(cy) € Ry such that

A, Gegfze[ao,co} zexp(if) + S—;Q hai(t, a,b)¢*T*1(t, a, b) explif(s — k)]2°TF| > I(a),
mo
sup AN (t,a,b)|®F[t,a,b,0,2]] <  inf Z Aggi1(a,b)2*5TL
teA, OER, zE€[wo,c0] ZG[O&o,Co] s=0

5) )\0,25(}\a+0,25 4 )\b_o’25)_1¢_1(t;a,b) — 0(1)'
Then it has the property UnSty ast T w.

Proof. Let us use the left-hand side of inequality (6). In the first d.e. of d.s. (11) we use the

substitution z = ¢(t, a,b)v. Then we apply Chetaev’s theorem [4, p. 199] to the obtained d.e.
in v.
To clarity the obtained results we sive, for example, the following theorem.

Theorem 5. Let for the d.e. (1) the condition 1) of Theorem 3 be fulfilled and

t 0,5
AVS(ATTOD 4 \0=05) 7 (/ )\0’5d7> = o(1), t = +oc.

to

Then it has the property UnSty ast — +o0.

Proof. is reduced to a check of conditions of Theorem 4.
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