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Quantum features of two types of Dzyaloshinskii-Moriya
coupling in antiferromagnetic spin chain

A A, Zvyagin

B. Verkin Institute for Low Temperature Physics and Enginecring, National Academy of Sciences of Ukraine,
. 47, Lenin Ave., Kharkov, 310164, Ukraine

Submitted February 27, 1995, revised manuscript received April 11, 1995

A 1D spin quantum system (S = 1/2) with the Dzyaloshinskii-Moriya interaction is studied. It is shown that this
type of coupling in the antiferromagnetic chain with an odd structure with respect to the main axis accounts for a
staggered magnetic ordering in the ground state. For an even structure the Dzyaloshinskii-Moriya interaction causes a
helicoidal spin structure only. Correlation functions are calculated under different conditions.

1. Last years, low-dimensional quantum systems
attracted considerable attention of physicists. This
interest was intensified by the low-dimensional na-
ture of metal-oxides which manifest high temperature
superconductivity under special conditions [1].
Anderson claimed {2 ] that the nature of 2D quantum
systems is analogous in some sense one to 1.D. It is of
interest to examine properties of the 1.D spin quantum
chain with the Dzyaloshinskii-Moriya (DM) interac-
tion [3].

The reason of a theoretical study of a DM system is
the existence of quasi-1.D compounds of site spin 1/2
with such coupling (see, e.g., Ref. 4). Essential pro-
gress has been achieved in obtaining spin compounds
with organics in which the ratio of interchain to in-
trachain interactions reaches values of 1074, Those
compounds have Curie temperatures T of a few Kel-

~ vins and in the temperature interval T, <T </, I is

.

the exchange constant along the chain, the system
reveals 1D features. Such systems have no long-range
magnetic order, but intrachain interactions, e.g., of a
DM type, essentially define magnetic properties. The
ground state properiies of 1D spin models manifest
peculiarities of the low-temperature phase behavior of
real quasi-one-dimensional magnets.

Last year there appeared a number of theoretical
papers dealing with the DM 1D spin systems (see,
e.g., [5-9]. The most of these authors studied spin
systems with DM coupling of one kind — antifer-
romagnetic systems with an even antiferromagnetic
structure (with respect to the principal axis of the
magnet). The quasiclassical treatment of an odd
(with respect to principal axis) antiferromagnetic
structure with DM interaction was given [10]. But, as
we can see, the 1.0 quantum DM spin chains manifest
some interesting properties, e.g., the absence of weak
ferromagnetism {6,8]. The main purpose of this
paper is to study the 1D quantum DM spin 1/2 chain
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. with two different kinds of DM coupling and tounder-

stand the features of each of them. We are studying
magnetic characteristics of a spin S = 1/2 system
with the exchange and exchange-relativistic magnetic
anisotropy and the DM spin-spin short-range inter-
actions. The DM type coupling of the first form (for
an even antiferromagnetic structure) does not cause
nonzero magnetization in the ground state (the weak
ferromagnetism), while the other DM type interac-
tion (of an odd structure with respect to the main
axis) produces nonzero staggered miagnetic momen-
tum value for the zero temperature. Nonzero tem-
perature, as usual, destroys order in the 1.D system. If
the magnetic order parameter is zero, there is a he-
licoidal spin transverse structure determined by pair
spin correlation functions (that is something like the
off-diagonal order parameter, see Refs. 11,12). The
helicoid shift is determined by DM coupling con-
stants. An external magnetic field does not cause the
change of the shift value, but the order parameter
depends on the magnetic field. A magnetic field value
determines cither a magnetic ordering or a helicoidal
spin structure.

2. The Hamiltonian of the spin § = 1/2 chain has
the form

H= = (I 5SeSE, +HSD) M
Hi

where Jaﬂ are the exchange constants; a, f = x, y, z;
J;ﬂ =J,. = 0; H is the magnetic field value. One can
see that (Jxx + Jyy) is the exchange interaction con-
stant; J__ is the uniaxial magnetic anisotropy para-
meter; (/. — J}.,y) is the biaxial magnetic anisotropy
parameter; (ny —Jy)= 2D, and (ny +J0= 2D,

are DM exchange-relativistic coupling constants of
the first and second kinds, respectively [10].
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Using the Jordzm—Wigner transformation [13]

St =585+is¥
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3. Let us start with the simple case of a noninteract-
ing Fermi gas (XY modcel): J__ = 0. For the diago-
nalization of the quadratic form, sce Eq. (5), A =0,
we use the Bogolyvubov-Valatin transformation:
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Using the Fourier transformation |B, - B |2
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we have where
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(5 +4[I)k— /)_7/\,‘ ] /j] . 9
where
©) One can use any sign in Eq. (9), because that sign

determines the difference between the time evolution
of the modes 4, and bik only. We take the sign «+»
from here.

We can study the influence of DM couplings for two
different symmetry classes of the lattice scparately.
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(). Thecase D, =0,J, = Jyy was studied carlier

(see, e.g., Ref. 11). From that paper we know that the
DM coupling D, for the 1D case causes a transverse

helical spin structure for nonzero temperature case
with any magnetic field (along the Z axis) value.
Please note that, even for the interacting case A # 0,
there is a transverse spin structure forthe case A< 1,
if a magnetic field is less than the critical one (a spin-
flip transition value), and there is no transverse struc-
ture for the easy-axis ferromagnetic case A >1 and
for the spin-flip phase of the A <1 case {8 ]) for the
ground state, The shift £ of the helicoid is equal to

£ 2D,

JextJ w
and there is no spontaneous magnetization, caused by
the DM interaction, even for the ground state [6,8 ].
The transverse spin structure is determined by the
pair correlation functions (S77S77 ) [111.

(ii). One can see that the case D| = 0 differs dras-

tically from the former one. The dispersion law (9)
has a gap, caused by the DM coupling D, (even for the

uniaxial case, oy = Jyy , the gap has nonzero value).

That is why the behavior of the spin structure has
features of the effectively biaxial case. That result is
in contrast with the statement of Ref. 9, that the DM
coupling does not change the class of the system’s
behavior, determined by the anisotropy constants.
That statement is valid for the case (i) (studied only
in Ref. 9), but not for the case of nonzero D, coupling

constant.
Using the results of Ref. 14 one can calculate long-
distance pair correlators. The physical result is the
_following: for A< 1 the DM coupling D, causes spon-

taneoys staggered magnetization (the weak antifer-
romagnetism) for the ground state (let0 <y < 1):

1/2 2,1/4 A
(1-49
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A =2a%r Vsin? W, A< -y,
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where

1/2
&= (l+y) '

h
cos\l’=m,
= -1+ A2 :
X, = Tz : (14)

For A > 1, the spontaneous staggered magneiization
is equal to zero, but the helical spin transverse struc-
fure takes place:

Xy Y oX
<SnSn+l + SnSn+1>

X oX -y
(8,8 b'”S',VIH>

P+l T

. as

g (‘Pn + (pn.+l) =

where ¢, (p,, ) is the most probable site n (n+1)

spin angle value with the axis X. One can see from
Egs. (5}, (9) that the phase shift § of the helicoid is
equal to

. 2

e ™ ‘[yy

=tgy (16)

for any temperature and external field value A. It is
easy to se¢ from Eq. (16) that for the uniaxial case
J o =7, the phase shift £ is equal to £ 7/2.

4, Let us study the interacting case A = 0. One can
see that the Hamiltonian (§) is thc general lattice
farm of the Thirring model Hamiltonian {16 ]. We can
write the Bethe ansatz equation for our system [17 ]

- Nyl Shﬁj; nl + ¢+

M
+2 ) arcig [ctg u lh((ﬁj -B/21,  aD
=
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wherej=1, ..., M, M is the number of down spins;
ctgu = —A; Ij are integer or half-integer numbers,

depending on M value. The energy of the state is

M
E=1Y [lylchp, +H. (18)
k=1 -

Solving Egs. (17) we can obtain the energy depend-
ence on the DM constants. One can get the solution by
using the results of Refs. 16,17.

For estimation of a long-range behavior of the spin
chain we shall use the bosonization method [18,19].
For the thermodynamic limiting case s = 0 (s is the
lattice constant), Ns = L (L is the chain length) one
can obtain. (for —1 <A <0, the «easy-plane» liquid-
like case for simplicity, without the «cosine» mass
term [20])

~ -1 i ) 2A .
H=2L Izk[(pl,kpl,—k +p2‘*kp2’k) + y(e W“z,-k a4 +h.c.) + 7pl,kpp2‘_k] +

+ 2L o (N = N2+, (7 +9)2) = 2 aL7 g, [k~ k|,

instead of Eq. (5), where indices «1» and «2» describe
operators with the positive and negative group veloci-
ty near the Fermi points kp; vy = I(x + 24), v, =

= I(w — 2A); N and J are the topological excita-

tions [21]; N, is determined by the magnetic field .

value h; kF=nN0/L. The operators Plak and
Pla—k have the Bose-like commutation rules {18 ].

Using the method of Ref. 18 one can diagonalize the
Bose part of the Hamiltonian (19) near the Fermi
points for y = 0. The dispersion law is

e(k) = Ik — ky| sec’a , (20)
tha=-2A/xn .

From Egs. (19), (20) one can obviously derive
long-range pair spin transverse correlation func-
tions [19}:

~4sHSTY(x)S¥Y(0)) « eP¥/5(s/x)0fmxls) , QD

where 0 is the zero-mass exponent:

2 [n+2A]”2

22
7w —2A @2

f(x) is an undetermined function, f(x) = exp (—x) for

my, # 0; m is the «dressed» mass (the excitation gap),

m o« my ,

w=(1-6"",
‘and my is the bare mass:
my=1Iy .

The DM interaction D, changes the value of the

initial mass (gap) of the excitation, and a fermion-
fermion interaction for A 0 renormalizes the mass
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term. That is why one can use the conclusions of the
A = 0 case on the role of the DM coupling D; and D, .

For the uniaxial case Jxx = Jyy » D, = 0, one can see

the transverse helical spin structure, the phase shift is
determined by the 2D, /(J, + J,,) constant. This

conclusion coincides with the exact solutions {6,8 ]
and the conformal field theory [7], where the DM
interaction D, causes a twist of boundary conditions.

For the case D| = 0, D, = 0, one can see that there

is an excitation gap (even for the uniaxial case
I = Jyy) and the behavior of correlations changes

from the power law case into the exponential one.
That difference determines a longe-range staggered
magnetic ordering (the weak antiferromagnetism) in
the XY spin plane.

The choice between the weak antiferromagnetic
order and the helicoidal spin structure which is deter-
mined by the pair correlators depends for the ground
state of an easy-plane magnet on the magnetic field
value,

In conclusion, we have studied the 1D quantum

spin 1/2 chain with the DM interaction. The DM cou-
pling for an even (with respect to the main axis of the
magnet) magnetic structure does not cause weak fer-
romagnetism even in the ground state. The DM inter-
action of odd-type accounts for a staggered magnetic
order in the ground state even for the uniaxial antifer-
romagnetic chain for the external magnetic field in-
terval defined by the magnetic anisotropy. Nonzero
temperature destroys a weak staggered magnetic
order. In another cases one deals with a helicoidal
magnetic structure; its phase shifts are determined by
DM and exchange constants.
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