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The scattering of an external monochromatic electromagnetic wave by identical charged particles is considered, the
influence of the scattered radiation on particles motion being taken into account. The diffusion in velocity of particles
caused by their collisions and fields of the scattered radiation is investigated. The mean-square spread in the velocity of
particles is determined as a function on time, parameters of external electromagnetic wave and the system of the

charged particles.
PACS: 52.25.Gj; 52.50.Jm; 52.59.Rz

1. INTRODUCTION

The scattering of electromagnetic waves by the
charged particles is of interest for heating [1] and
diagnostics [2] of plasma, acceleration of the charged
particles [3], and for applications of short wavelength
electromagnetic radiation by relativistic beams of
electrons in external periodic fields [4]. The emitted
spontaneous radiation is incoherent for spatially
homogeneous system consisting of identical charged
particles that occur in an external electromagnetic field.
The influence of the scattering radiation on the charged
particle motion leads to the increase in the mean square
spread in the velocity of particles [5]. The most actual
increase in the mean square spread in the velocity of
particles is observed for sources of ultrashort wavelength
coherent radiation of the free-electron-lasers class, based
on the selfamplified spontaneous emission [6]. The
change of the mean square value of particle velocity is
found in neglect by its initial thermal motion [5].

In the given work the diffusion of particles in velocity
space in view of the initial velocity spread of particles is
considered. Besides the diffusion in the velocity of
particles caused both by fields of the scattered radiation
and Coulomb interaction of particles is considered. The
analytical expressions for the mean-square value of the
velocity caused by radiation effects are found for a small
interval of time when the distance passed by a particle due
to thermal motion is much less than the wavelength of
radiation, and for a great interval of time when this
distance is much greater than the wavelength.

2. FORMULATION OF THE PROBLEM

Let's consider the system consisting of N identical
charged particles, each with charge q and mass m,
occupying the volume V and occuring in the field of the
external monochromatic electromagnetic wave (EMW)
E,, =e¢.E, cos(cot—kz), where E; is the amplitude of

the wave, ® and k are its frequency and the wave number,
e, is the unit vector along X axis of the Cartesian system
of coordinates.

We assume that the particle motion is nonrelativistic
with the amplitude of the charge oscillation in the field of

the external wave (7| EqE/ mmz) that is small in

comparison with the wavelength A (A=2n/k):
a=qE,/mcw <<1. The position of each of the particles

will characterize the radius vector r¢ of the Cartesian
system of coordinates

e, (a/k)cosp—e A (t), (1)
where  @=wt-kzy(t), r( )=r05+v05(t-t0), Ay 1s  the
displacement on z trajectories of a particle relative to
equilibrium one, ro, Vo, are coordinate and velocity of a
particle at the initial moment of time t,.

The charges, moving in the external field, create their
own fields. Electric and magnetic fields produced by an
individual particle, moving in the trajectory (1), are found
from Lienard-Wiechert potentials [7]. They become [5]

(82) (52) ( sin (p’J
, H  =—qgkja—"| coso), + =1, (2)
R3 g 0 R*zs koRs

when a is a small parameter. Here (6z)=¢,R;,
R, =r —rs(o)(t), 0. =t —kyR, —kz,(t), ky = wfc.

The equations of longitudinal motion of the test
particle in the external electromagnetic field and the fields

created by other charges of the system studied are written
in the form

—pz qZ(E +— ysj=§F;(r). 3)

Let's consider the partlcle motion in the interval of
time greater than the period of the wave, but considerably
smaller then the time of relaxation due to its collective
interaction. The expression for the force of pair
interaction of particles, according to the equations (2) and
(3) becomes

X, —r(0

E

zs

FY = g2 [GQ( x,t o (x, 1 x )] “4)
x).
Gy =2 ( )As ’ ;(C oS, + J 6)
k2R R;
where —koR —kz, (), r,p), (s’ps)

p=mv, a, = a/x/_.

It is necessary to calculate the longitudinal diffusion
coefficient describing the change of the mean-square
velocity along the direction of external EMW propagation

[5]:
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where Av,=v,(t)-<v, >, x(o):(r(o),p(o)), fis the one-particle
distribution function, angular brackets denote ensemble
averaging.

Deriving the equation (6) we neglected the correlation
of particles at the initial moment of time.

3. DIFFUSION COEFFICIENT

Substituting expressions for the pair interaction force
of charges (4) in the formula (6) the expression for
diffusion coefficient takes the form

D=Dy+Dy, (7
4 ® T
- %_J. def(VS).O[J!Z (TV,V — V5 )dZ" 4 (X:Q, R’ (8)
82

JQ:@I(W,O), JR:J(+)+J(,); (9)

4 6 6
s=4 Re(g+ikj(giik)1(w,l//+)s (10)
tone)= [, o

where w=r—r'-v (- ) Ve =v v, vl =),
R(=R,(().

For calculation of integral I(w,g) it is expedient to
replace integration for rys by integration for p=r;(t,X.s)-r.
In these variables function . depends on the angle
between vectors p and w but does not depend on p at
greater values of the latter. In its turn . is proportional to
p, and hence, subintegral expression I(w,y.) is an
oscillating function of p. Therefore the second term J.,
introduces the main contribution to Jz. We shall assume,
that the linear sizes of area R occupied by particles are
supposed to be greater than the wavelength (R>>1), being
greater than the distance the charge passes owing to the
thermal motion during the considered process (R>>vr1).
Besides we study the diffusion in velocity of particles
which are near to the center of the considered system.
Integrating for p in Eq. (10a) and denoting

I )(W)EI(W ), we find

I w)=

It is possible to obtain the equation for I(w,0) tending
k to zero in expression for I(w, y) and neglecting
constants in the obtained equation: 7(w,0)= 27w

) sinkyw

+iexplikyw) [exp(—ikw, )-(11)

. {(21{0

The differentiation on z' in Egs. (7) and (8) may be
replaced that of —z because w depends on a difference of r
and r'. In the right-hand- side of the Egs. (9) and (10) we
take into account the dependence of radius-vector of the
test particle on initial velocity and time. Substituting the
coordinate of the test particle r= ry+v(t-ty) in expression
for w and replacing differentiation with respect to z by
that of v, in Egs. (9) and (10), we find

27 u’ —u?
Jo = 3 (12)

ag 2
Jp=—2"Re +ik | I \(uz'), 13
K 2 (z"@uz J ()( ) (13)

where u=v-vg, 7=t-t'.
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The diffusion coefficient due to Coulomb interaction
of particles is obtained by substituting expression (12) in
the Eq. (8). The divergence on the bottom limit of
integration for 1’ in Eq. (8) can be corrected by taking into
account, that the minimal distance between two particles
isn’t equal to zero and is finite being equal to ryp.
Substituting expression (12) in (8), after integration with
respect to 1T’ in this equation, taking into account, that
I'min<<R for times ‘l:>>r,mn we obtain (cf 8]

u?
Dy = 2n—jA fv)dv,, (14
m —00
where A=In(tmax/Tmin)> Imax=min(ut, R).

Let's find the diffusion coefficient due to the fields of
scattered electromagnetic radiation. In general case
expression for Dy is clumsy. Therefore we find the
asymptotic Dy describing the initial stage of diffusion
1<<1. and the opposite limiting case t>>t., where
TMVT.

At the initial stage of diffusion at t<<t,, expanding the
right-hand-side of expression (13) into series on the small
parameter kut’ up to the terms proportional to this
parameter, and then substituting the obtained expression
in the Eq. (8), we find

4
DR:n%ag[§n0k0R1:+ j AL (vs)dvs}. (15)

This expression consists of two parts. The first term in
the right-hand-side of expression (15) is connected with
the interaction of charges through the scattered incoherent
electromagnetic radiation. The second term is connected
with quasi-static fields of charges-radiators. It can be
easily seen that the second term in brackets in (15) is the
same as in Eq. (14).

In the limiting case t™>>1, the top limit of integration
for the time in the right-hand-side of the Eq. (8) may tend
to infinity. Retaining the terms proportional to the linear
size of the system, which are dominant in this subintegral
expression, we obtain:

D,=r a4kR><

q4 “1 u’ : u ! 1
Wj 5(1—u3j +(7J ;f(Vs)st

—®

(16)

Notice, that at t>>1, the expression for D takes the
form (14).

4. DISCUSSION

Thus the diffusion coefficient for velocity of particles
at scattering of a monochromatic EMW by the identical
charged particles is found in this work. The principal
analytical tool used in this study was the analytical
descriptive model of motion of the point identical charged
particles in their scattered radiation field.

It should be noted, that the diffusion coefficient for
velocity due to Coulomb interaction of particles (14)
agrees with that, which follows from the collisions term
derived in [9].

As regards to the diffusion coefficient connected with
the influence of incoherent scattered radiation on particle
motion the following should be noted. This diffusion
coefficient is proportional to the linear size of area



occupied by particles. The diffusion coefficient is
proportional to t for the small T (t1<<t.). Due to this fact
the particles pair interaction force does not depend on
time. In this limit case the expression for root-mean-
square value of longitudinal velocity can be written in the

form:
<(AVZ )2>l/2 =agcr, oT427Rny /3

where r, = qrz/mc2 .

This formula agrees with the corresponding formula
of [5], when the volume occupied by particles represents a
plane layer in the width of (2/3) R.

For the great times t>>t, , when the motion of
particles in the field of external wave is uncorrelated, the
diffusion coefficient does not depend on time. In this case
uncorrelated force acts on particles, as a result of which
rout-mean-square value of velocity increases as 1'%,

The comparison of the Egs. (15) and (16) with the
Eq. (14) shows, that at a’kR>A the diffusion in velocity
will be caused mainly by the radiation interaction of

particles.
The author thanks prof. A.A.Ruhadze and
prof. K.N. Stepanov for fruitful discussion.
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JUDPY3USA 11O CKOPOCTSAM 3APSIKEHHBIX YACTUII,
PACCEUMBAIOIIUX JIEKTPOMATHUTHYIO BOJIHY

B.B. Oznueenko

PaccMoTpeHo paccesHue  BHEILHEH

MOHOXPOMaTHYECKON

BHGKTpOMaFHHTHOﬁ BOJIHbBI ~MJACHTHYHBIMH

3apsOKCHHBIMH  HYaCcTULlaMHU C Y4YC€TOM BJIMSAHUA PACCCAHHOIO0 H3JIYYCHHUA Ha JABWXKCHUC YaCTHUL. I/ICCHe}IOBaHa
I[I/I(l)(i)ySI/ISI MO0 CKOpPOCTAM 4YacCTull, BbI3BaAHHAA CTOJIKHOBCHUSAMHU YaCTULl WU IOJAMHU PACCCAHHOI'O0 H3JIYUYCHUA.
VYcraHoBIIeHa 3aBUCUMOCTH CPCAHCKBAAPATUIHOT'O pa36poca JacTull IO CKOPOCTAM OT BPEMCHHU, NapaMETpPOB
BOJIHBI U CUCTEMbI 3aps’KEHHBIX YaCTHULI.

JUOY3IS 11O BUAKOCTAM 3APANKEHUX YACTUHOK,
1O PO3CIIOIOTH EJIEKTPOMATHITHY XBUJIIO

B.B. Oznisenxo

Po3risiHyTO pO3CisiHHSL 30BHIIIHEOT MOHOXPOMATHYHOI €JEKTPOMArHITHOI XBHJIl 1IEHTUYHHMH 3apsKCHUMH
YaCTHHKaMH 3 ypaxyBaHHSM BIUIMBY PO3CISIHOTO BHIIPOMIHIOBAaHHs Ha pyX 4yacTHHOK. JlocmimmkeHo audysito 1o
IIBUIKOCTSAM YaCTHHOK, IO BHKIMKAHA 3ITKHEHHSAMHM YaCTHHOK 1 IIOJSIMH PO3CISIHOTO BHIIPOMIHIOBAHHSI.
BcTaHOBICHO 3aNIKHICTh CEPEAHBOKBAIPATHYHOTO PO3KH/Y YACTHHOK MO MIBHIKOCTSX Bil Yacy, mapamMeTpiB XBHII
1 CHCTEMH 3apsKEHUX YACTHHOK.
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