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The scattering of an external monochromatic electromagnetic wave by identical charged particles is considered, the 

influence of the scattered radiation on particles motion being taken into account. The diffusion in velocity of particles 
caused by their collisions and fields of the scattered radiation is investigated. The mean-square spread in the velocity of 
particles is determined as a function on time, parameters of external electromagnetic wave and the system of the 
charged particles.  
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1. INTRODUCTION 
The scattering of electromagnetic waves by the 

charged particles is of interest for heating [1] and 
diagnostics [2] of plasma, acceleration of the charged 
particles [3], and for applications of short wavelength 
electromagnetic radiation by relativistic beams of 
electrons in external periodic fields [4]. The emitted 
spontaneous radiation is incoherent for spatially 
homogeneous system consisting of identical charged 
particles that occur in an external electromagnetic field. 
The influence of the scattering radiation on the charged 
particle motion leads to the increase in the mean square 
spread in the velocity of particles [5]. The most actual 
increase in the mean square spread in the velocity of 
particles is observed for sources of ultrashort wavelength 
coherent radiation of the free-electron-lasers class, based 
on the selfamplified spontaneous emission [6]. The 
change of the mean square value of particle velocity is 
found in neglect by its initial thermal motion [5].  
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In the given work the diffusion of particles in velocity 
space in view of the initial velocity spread of particles is 
considered. Besides the diffusion in the velocity of 
particles caused both by fields of the scattered radiation 
and Coulomb interaction of particles is considered. The 
analytical expressions for the mean-square value of the 
velocity caused by radiation effects are found for a small 
interval of time when the distance passed by a particle due 
to thermal motion is much less than the wavelength of 
radiation, and for a great interval of time when this 
distance is much greater than the wavelength.  

2. FORMULATION OF THE PROBLEM  
Let's consider the system consisting of N identical 

charged particles, each with charge q and mass m, 
occupying the volume V and occuring in the field of the 
external monochromatic electromagnetic wave (EMW) 

, where Е( kztExext −ω= cos0eE 0 is the amplitude of 
the wave, ω and k are its frequency and the wave number, 
ex is the unit vector along X axis of the Cartesian system 
of coordinates.  

We assume that the particle motion is nonrelativistic 
with the amplitude of the charge oscillation in the field of 
the external wave ( 2ω≡⊥ mqEr ) that is small in 
comparison with the wavelength λ (λ=2π/k): 

10 <<= ωmcqEa . The position of each of the particles 

will characterize the radius vector rs of the Cartesian 
system of coordinates  
 ( ) ( ) (tka szxss Δ−ϕ−= eerr cos0 ) ,  (1) 
where ϕ=ωt-kzs(t), rs

(0)=r0s+v0s(t-t0), Δs is the 
displacement on z trajectories of a particle relative to 
equilibrium one, r0s, v0s are coordinate and velocity of a 
particle at the initial moment of time t0.  

The charges, moving in the external field, create their 
own fields. Electric and magnetic fields produced by an 
individual particle, moving in the trajectory (1), are found 
from Lienard-Wiechert potentials [7]. They become [5]  
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when a is a small parameter. Here (δz)s=ezRs , 
( )( )tss
0rrR −= , ( )tkzRkt sss −−ω=ϕ′ 0 , ck ω=0 .  

The equations of longitudinal motion of the test 
particle in the external electromagnetic field and the fields 
created by other charges of the system studied are written 
in the form 
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Let's consider the particle motion in the interval of 
time greater than the period of the wave, but considerably 
smaller then the time of relaxation due to its collective 
interaction. The expression for the force of pair 
interaction of particles, according to the equations (2) and 
(3) becomes 
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where ( )tkzRk sss −=ψ 0 , , , 

p=mv, 

( )pr,=x ( )sssx pr ,=

20 aa = .  
It is necessary to calculate the longitudinal diffusion 

coefficient describing the change of the mean-square 
velocity along the direction of external EMW propagation 
[5]:  
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where Δvz=vz(t)-< vz >, x(0)=(r(0),p(0)), f is the one-particle 
distribution function, angular brackets denote ensemble 
averaging. 

Deriving the equation (6) we neglected the correlation 
of particles at the initial moment of time.  

3. DIFFUSION COEFFICIENT 
Substituting expressions for the pair interaction force 

of charges (4) in the formula (6) the expression for 
diffusion coefficient takes the form 
 RQ DDD += , (7) 
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where , ( )tts ′−−′−= vrrw ss ψ′±ψ=ψ± , ( )tss ′ψ=ψ′ , 
.  ( )tss ′=′ RR

For calculation of integral I(w,g) it is expedient to 
replace integration for r0s by integration for ρ=rs(t,xos)-r. 
In these variables function ψ- depends on the angle 
between vectors ρ and w but does not depend on ρ at 
greater values of the latter. In its turn ψ+ is proportional to 
ρ, and hence, subintegral expression I(w, ψ+) is an 
oscillating function of ρ. Therefore the second term J(-) 
introduces the main contribution to JR. We shall assume, 
that the linear sizes of area R occupied by particles are 
supposed to be greater than the wavelength (R>>λ), being 
greater than the distance the charge passes owing to the 
thermal motion during the considered process (R>>vTτ). 
Besides we study the diffusion in velocity of particles 
which are near to the center of the considered system. 
Integrating for ρ in Eq. (10a) and denoting  

I(-)(w)≡I(w, ψ-), we find 
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It is possible to obtain the equation for I(w,0) tending 
k to zero in expression for I(w, ψ-) and neglecting 
constants in the obtained equation: ( ) wwI π20, = .  

The differentiation on z′ in Eqs. (7) and (8) may be 
replaced that of –z because w depends on a difference of r 
and r′. In the right-hand- side of the Eqs. (9) and (10) we 
take into account the dependence of radius-vector of the 
test particle on initial velocity and time. Substituting the 
coordinate of the test particle r= r0+v(t-t0) in expression 
for w and replacing differentiation with respect to z by 
that of vz in Eqs. (9) and (10), we find 
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where u=v-vs, τ=t-t′.  

The diffusion coefficient due to Coulomb interaction 
of particles is obtained by substituting expression (12) in 
the Eq. (8). The divergence on the bottom limit of 
integration for τ′ in Eq. (8) can be corrected by taking into 
account, that the minimal distance between two particles 
isn’t equal to zero and is finite being equal to rmin. 
Substituting expression (12) in (8), after integration with 
respect to τ′ in this equation, taking into account, that 
rmin<<R for times τ>>τmin we obtain (cf. [8]) 
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where Λ=ln(rmax/rmin), rmax=min(uτ, R).  
Let's find the diffusion coefficient due to the fields of 

scattered electromagnetic radiation. In general case 
expression for DR is clumsy. Therefore we find the 
asymptotic DR describing the initial stage of diffusion 
τ<<τc and the opposite limiting case τ>>τc, where 
τc=λ/vT.  

At the initial stage of diffusion at τ<<τc, expanding the 
right-hand-side of expression (13) into series on the small 
parameter kuτ′ up to the terms proportional to this 
parameter, and then substituting the obtained expression 
in the Eq. (8), we find 
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This expression consists of two parts. The first term in 
the right-hand-side of expression (15) is connected with 
the interaction of charges through the scattered incoherent 
electromagnetic radiation. The second term is connected 
with quasi-static fields of charges-radiators. It can be 
easily seen that the second term in brackets in (15) is the 
same as in Eq. (14).  

In the limiting case τ>>τc the top limit of integration 
for the time in the right-hand-side of the Eq. (8) may tend 
to infinity. Retaining the terms proportional to the linear 
size of the system, which are dominant in this subintegral 
expression, we obtain:  
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Notice, that at τ>>τc the expression for DQ takes the 
form (14).  

4. DISCUSSION 
Thus the diffusion coefficient for velocity of particles 

at scattering of a monochromatic EMW by the identical 
charged particles is found in this work. The principal 
analytical tool used in this study was the analytical 
descriptive model of motion of the point identical charged 
particles in their scattered radiation field. 

It should be noted, that the diffusion coefficient for 
velocity due to Coulomb interaction of particles (14) 
agrees with that, which follows from the collisions term 
derived in [9].  

As regards to the diffusion coefficient connected with 
the influence of incoherent scattered radiation on particle 
motion the following should be noted. This diffusion 
coefficient is proportional to the linear size of area 
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ДИФФУЗИЯ ПО СКОРОСТЯМ ЗАРЯЖЕННЫХ ЧАСТИЦ,  
РАССЕИВАЮЩИХ ЭЛЕКТРОМАГНИТНУЮ ВОЛНУ 

В.В. Огнивенко 

Рассмотрено рассеяние внешней монохроматической электромагнитной волны идентичными 
заряженными частицами с учетом влияния рассеянного излучения на движение частиц. Исследована 
диффузия по скоростям частиц, вызванная столкновениями частиц и полями рассеянного излучения. 
Установлена зависимость среднеквадратичного разброса частиц по скоростям от времени, параметров 
волны и системы заряженных частиц. 
 

ДИФУЗІЯ ПО ШВИДКОСТЯМ ЗАРЯДЖЕНИХ ЧАСТИНОК,  
ЩО РОЗСІЮЮТЬ ЕЛЕКТРОМАГНІТНУ ХВИЛЮ 

В.В. Огнівенко 

Розглянуто розсіяння зовнішньої монохроматичної електромагнітної хвилі ідентичними зарядженими 
частинками з урахуванням впливу розсіяного випромінювання на рух частинок. Досліджено дифузію по 
швидкостям частинок, що викликана зіткненнями частинок і полями розсіяного випромінювання. 
Встановлено залежність середньоквадратичного розкиду частинок по швидкостях від часу, параметрів хвилі 
і системи заряджених частинок.  
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