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We study a system of linear singularly perturbed functional differential equations by using the
method of integral manifolds. We construct a change of variables that decomposes this system
into two subsystems: ordinary differential equation on the center manifold and integral equati-
ons on the stable manifold.
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1. Let Rn be the n-dimensional Euclidean space, C = C[−∆, 0] be the space of continuous
function x : [−∆, 0] → Rn. Let us denote by xt an element of the space C, which for any fixed
t is defined as the function xt = x(t+ θ),−∆ ≤ θ ≤ 0.

We denote by η0(θ) an n × n matrix whose elements are functions of bounded variation;
ηi(t, θ), i = 1, 4, are matrixes of dimentions n × n, n ×m, m ×m, m × n, whose elements are
functions of bounded variation in θ for each t and continuous in t uniformly with respect to θ.

Define linear functionals in terms of Stieltjes integrals,

L0ϕ =

0∫
−∆

[dη0(θ)]ϕ(θ), Li(t)ϕ =

0∫
−∆

[dηi(t, θ)]ϕ(θ), i = 1, 4,

(1)

Lj(t)ϕ =

0∫
−∆

[dηj(t, θ)]ϕ(εθ), j = 2, 3.

Consider the system of linear singularly perturbed functional differential equations

dx

dt
= L0xt + L1(t)xt + L2(t)yt, x(θ) = ϕ(θ), θ ∈ [−∆, 0],

(2)

ε
dy

dt
= L3(t)yt + L4(t)xt, y(θ) = ψ(θ), θ ∈ [−ε∆, 0],

where x ∈ Rn, y ∈ Rm, ε > 0 is a small parameter.
Linear singularly perturbed systems of ordinary differential equations were considered in

papers [1, 2], and systems with delay were studied in [3 – 6] and others. In this paper we will
consider application of the method of integral manifolds to study decomposition and stability
system (2).
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2. We give some results of the theory of functional-differential equations needed later [7, 8].
Define the shift operator corresponding to the autonomous equation

dx

dt
= L0xt (3)

by the relation T (t)ϕ = xt(ϕ). The family {T (t), t ≥ 0} is a strongly continuous semigroup,
infinitesimal generator A is given by

Aϕ =


dϕ

dθ
, −∆ ≤ θ < 0,

L0(ϕ), θ = 0.

(4)

The spectrum of A is only a point spectrum and consists of roots of the characteristic equation

det

λE − 0∫
−∆

eλθ[dη0(θ)]

 = 0. (5)

There is only a finite number of roots of the equation (5) in any half plane Re λ ≥ γ.
Let Λ = {λ1, ..., λl} denote the set of roots of equation (5) such that |Re λ| < α, and let

all the other roots lie in the half plane Re λ < −α. Denote the subspace in C associated Λ by
P and the subspace complementary to P by Q. The subspace P is finite dimensional and its
dimension is equal to l.

We give a constructive description of the subspaces P and Q. Consider the equation adjoint
to (3),

dy

dt
= −

0∫
−∆

[dηT0 (θ)]y(t− θ), t ≤ 0. (6)

Denote by Φ = Φ(θ), −∆ ≤ θ ≤ 0, a basis of P , and Ψ = Ψ(θ), 0 ≤ θ ≤ ∆, a basis of the
subspace of solutions of (6), P ∗, adjoint to P . For elements ϕ ∈ C[−∆, 0], ψ ∈ C[0,∆], we
define the scalar product by

(ψ,ϕ) = ψT (0)ϕ(0)−
0∫
−∆

θ∫
0

ψ(ξ − θ)dη0(θ)ϕ(ξ)dξ.

It is known [7] that the l × l matrix (Ψ,Φ) is nonsingular and we can take that (Ψ,Φ) = E. Let
B denote an l × l matrix such that AΦ = ΦB. The set of eigenvalues of the matrix B coincides
with the set Λ.

The subspaces P and Q are characterised now by the relation

P = {ϕ ∈ C[−∆, 0] : ϕ = Φ(Ψ, ϕ)}, Q = {ϕ ∈ C[−∆, 0] : (Ψ, ϕ) = 0}.
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Every element xt ∈ C can be represented in the form

xt = xPt + xQt = Φu(t) + zt, u(t) = (Ψ, xt) ∈ Rl, zt ∈ Q. (7)

Define the matrices

X0(θ) =

 0, −∆ ≤ θ < 0,

E, θ = 0,
Y0(θ) =

 0, −ε∆ ≤ θ < 0,

E, θ = 0,

and the shift operator V (t, σ) for the equation

ε
dy

dt
= L3(t)yt. (8)

For the projections X0(θ) into P and Q, we have the relations

XP
0 = ΦΨT (0), XQ

0 = X0 −XP
0 = X0 − ΦΨT (0).

Changing variables (7) in system (2) and using the variation of constant formula [8] we get
an equivalent system of differential and integral equations,

du

dt
= Bu(t) + ΨT (0)[L1(t)(Φu(t) + zt) + L2(t)yt],

zt = T (t− σ)zσ +

t∫
σ

T (t− s)XQ
0 [L1(s)(Φu(s) + zs) + L2(s)ys]ds, (9)

yt = V (t, σ)yσ +
1

ε

t∫
σ

V (t, s)Y0L4(s)(Φu(s) + zs)ds.

The integrals in (9), for each θ, are understood as the integral in the Euclidean spaces Rn

and Rm.
Suppose that all roots of the characteristic equation for (8),

det

λE − 0∫
−∆

eλθ[dη3(t, θ)]

 = 0,

lie in the half plane Re λ ≤ −2µ < 0.
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This condition and the way the roots of equation (5) are partitioned give the following
estimates [7, 8]:

|eBt| ≤ K1e
(α−β)|t|,

|T (t)ϕP | ≤ K2e
(−α+β)t|ϕP |, t ≤ 0,

(10)

|T (t)ϕQ| ≤ K2e
−(α+β)t|ϕQ|, t ≥ 0,

|V (t, σ)ξ| ≤ K3e
−µ
ε

(t−σ)|ξ|, t ≥ σ,

where K1,K2,K3 > 0, α > β > 0, ϕ ∈ C[−∆, 0], ξ ∈ C[−ε∆, 0].

3. Definition. A set of points M ⊂ R × Rl × Q × C[−ε∆, 0] is said to be an integral mani-
fold of system (9) if for each ε ∈ (0, ε0] and any point (t0, u0, zt0 , yt0) ∈ M it follows that
(t, u(t), zt, yt) ∈ M for all t ≥ t0, where (u(t), zt, yt) is a solution of system (9) with initial values
(t0, u0, zt0 , yt0).

Theorem 1. Let estimates (10) hold and

|L1(t)ϕ| ≤ ν|ϕ|, |L2(t)ϕ| ≤ ν|ϕ|, |L4(t)ϕ| ≤ ν|ϕ|, ν > 0. (11)

Then for all sufficiently small ε, ν, system (9) has a central manifold represented in the form

zt = Ht(θ)u, yt = ht(θ)u,

where Ht(θ) : Rl → Q, ht(θ) : Rl → C[−ε∆, 0] are linear bounded operators.

It is not difficult to prove this theorem similarly to [4] using the iteration process

H0
t = 0, Hn+1

t =

t∫
−∞

T (t− s)XQ
0 [L1(s)(Φ +Hn

s ) + L2(s)hns ]Un(s, t)ds,

h0
t = 0, hn+1

t =
1

ε

t∫
−∞

V (t, s)Y0L4(s)(Φ +Hn
s )Un(s, t)ds, n = 0, 1, ...,

where Un(t, s) is the fundamental matrix of the equation

du

dt
= [B + ΨT (0)(L1(t)(Φ +Hn

t ) + L2(t)hnt )]u(t).

Let us find differential equations for the functions Ht, ht. Introduce the following notati-
on: W is a set of continuously differentiable functions ϕ ∈ C[−ε∆, 0]; E1 is a set of fuctions
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Ht : Rl → C[−∆, 0], E2 is a set of functions ht : Rl → C[−ε∆, 0] that are continuously
differentiable in t, θ. For ϕ ∈ W , we define the operator

D(ε)ϕ =


dϕ

dθ
, −ε∆ ≤ θ < 0,

1

ε
L3(t)ϕ, θ = 0.

Consider the following system for the functions Ht ∈ E1, ht ∈ E2:

∂Ht

∂t
u+Ht[B + ΨT (0)(L1(t)(Φ +Ht) + L2(t)ht)]u

= A(Htu) +XQ
0 [L1(t)(Φ +Ht) + L2(t)ht]u, θ ∈ [−∆, 0],

(12)
∂ht
∂t

u+ ht[B + ΨT (0)(L1(t)(Φ +Ht) + L2(t)ht)]u

= D(ε)(htu) +
1

ε
Y0L4(t)(Φ +Ht)u, θ ∈ [−ε∆, 0],

where u(t) is a solution of the Cauchy problem

du

dt
= [B + ΨT (0)(L1(t)(Φ +Ht) + L2(t)ht)]u(t),

(13)
u(σ) = u0.

Theorem 2. The functions Ht, ht determine a central manifold of system (9) if and only if
Ht ∈ E1 , ht ∈ E2 , and they satisfy system (12) for all t ∈ R, u0 ∈ Rl.

Proof. Let u(t) be a solution of the Cauchy problem (13). Then the functions zt = Htu,
yt = htu are solutions of the second and third equations of system (9),

Htu(t) = T (t− σ)Hσu0 +

t∫
σ

T (t− s)XQ
0 [L1(s)(Φ +Hs)

+ L2(s)hs]u(s)ds, θ ∈ [−∆, 0], (14)

htu(t) = V (t, σ)hσu0 +
1

ε

t∫
σ

V (t, s)Y0L4(s)(Φ +Hs)u(s)ds, θ ∈ [−ε∆, 0].

Differentiating the first equation of system (14) on the right with respect to t at t = σ for
fixed θ ∈ [−∆, 0]. For the derivate of the left-hand side, we obtain

d

dt
[Htu(t)]

∣∣∣∣
t=σ

=
∂Hσ

∂t
u0 +Hσ[B + ΨT (0)(L1(σ)(Φ +Hσ) + L2(σ)hσ)]u0. (15)
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Denote byX(t) the fundamental matrix of solutions of equation (3) such thatX(t) = X0(t), t ∈
[−∆, 0]. Let us now make use of the relation T (t)X0 = X(t + θ), −∆ ≤ θ ≤ 0. We have that
the function T (t)XQ

0 = T (t)[X0 − ΦΨT (0)] is continuous for t ≥ 0. It follows that

lim
t→0

1

t

σ+t∫
σ

T (t+ σ − s)XQ
0 [L1(s)(Φ +Hs) + L2(s)hs]u(s)ds

= XQ
0 [L1(σ)(Φ +Hσ) + L2(σ)hσ]u0. (16)

Then, by the definition of the operator T (t), for the right derivative of the first term in
right-hand side of the equation, we get

d

dt
[T (t− σ)Hσu0]

∣∣∣∣
t=σ

= A(Hσu0). (17)

It follows from (15) – (17) that the functions Htu, htu satisfy the first equation of system (14)
for t = σ, u = u0 and all θ ∈ [−∆, 0]. Analogously, we proved that these functions satisfy the
second equation of system (14) for all θ ∈ [−ε∆, 0].

Conversely, let a pair of functions (Ht, ht) be a solution of system (12). We must prove that
the functions Htu, htu satisfy the second and the third equations of system (9).

Consider the expression

Ω = Htu− T (t− σ)Hσu0 −
t∫
σ

T (t− s)XQ
0 [L1(s)(Φ +Hs) + L2(s)hs]u(s)ds. (18)

If ϕ : [σ,∞) → C[−∆, 0] is a continuously differentiable function, then for t ≥ σ, θ ∈ [−∆, 0],
the following equality holds [9]:

ϕ(t)− T (t− σ)ϕ(σ) =

t∫
σ

T (t− s)
[
dϕ(s)

ds
−Aϕ(s)

]
ds. (19)

Using formula (19) with ϕ(t) = Htu(t) we can write expression (18) in the form

Ω =

t∫
σ

T (t− s)

[
d

ds
(Hσu(s))−A(Hsu(s))

−XQ
0 (L1(s)(Φ +Hs) + L2(s)hs)u(s)

]
ds.

From the first equation of system (12), we have that Ω = 0. Thus, the functions Htu, htu satisfy
the second equation of system (9). Similarly, it can be proved that these functions satisfy the
third equation of system (9). This completes the proof of the Theorem 2.
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4. Let us cange the variables in system (9),

z̄t = zt −Htu, ȳt = yt − htu. (20)

Using the formulas

Htu− T (t− σ)Hσu0 =

t∫
σ

T (t− s)
[
d

ds
(Hsu(s))−A(Hsu(s))

]
ds,

htu− V (t, σ)hσu0 =

t∫
σ

V (t, s)

[
d

ds
(hsu(s))−D(ε)(hsu(s))

]
ds

and equation (12), we get the following system for the new variables,

du

dt
= [B + ΨT (0)(L1(t)Ht + L2(t)ht)]u(t) + ΨT (0)[L1(t)z̄t + L2(t)ȳt],

z̄t = T (t− σ)z̄σ +

t∫
σ

T (t− s)[(XQ
0 −HσΨT (0))(L1(s)z̄s + L2(s)ȳs)]ds, (21)

ȳt = V (t, σ)ȳσ +
1

ε

t∫
σ

V (t, s)[Y0L4(s)z̄s − εhsΨT (0)(L1(s)z̄s + L2(s)ȳs)]ds.

Theorem 3. Let estimates (10) and condition (11) of Theorem 1 hold. Then for all sufficiently
small ε, ν, system (21) has a stable manifold represented in the form

u(t) = G(t, z̄t, ȳt), (22)

where G : R×Q× C[−ε∆, 0] → Rl is a linear bounded operator.

To prove this statement we can follow the scheme of [10] used to prove the existence of
stable manifold for ordinary differential equations.

Consider the system of integral equations,

u(t) = −
∞∫
t

U(t, s)ΨT (0)[L1(s)z̄s + L2(s)ȳs]ds,

z̄t = T (t− σ)z̄σ +

t∫
σ

T (t− s)[(XQ
0 −HsΨ

T (0))(L1(s)z̄s + L2(s)ȳs)]ds, (23)

ȳt = V (t, σ)ȳσ +
1

ε

t∫
σ

V (t, s)[Y0L4(s)z̄s − εhsΨT (0)(L1(s)z̄s + L2(s)ȳs)]ds.
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It is not difficult to establish the existence of solution of system (23) using the method of
successive approximations. Substituting t = σ in (23), we obtain a representation of the integral
manifold

u = G(σ, z̄σ, ȳσ) = −
∞∫
σ

U(σ, s)ΨT (0)[L1(s)z̄s(σ, z̄σ) + L2(s)ȳs(σ, ȳσ)]ds, (24)

where the functions z̄t(σ, z̄σ), ȳt(σ, ȳσ) satisfy the second and the third equations of system (23).

Remark . For any solution (u(t), z̄t, ȳt) of system (21) belonging to stable manifold (22)
there exist the constants M > 0, 0 < δ < α such that we have the estimate

|u(t)|+ |z̄t|+ |ȳt| ≤ Me−δ(t−σ)(|u0|+ |z̄σ|+ |ȳσ|), t ≥ σ. (25)

Changing variables in (21),

ū = u−G(t, z̄t, ȳt). (26)

We get the following system:

dū

dt
= [B + ΨT (0)(L1(t)Ht + L2(t)ht)]ū(t),

z̄t = T (t− σ)z̄σ +

t∫
0

T (t− s)[(XQ
0 −HσΨT (0))(L1(s)z̄s + L2(s)ȳs)]ds, (27)

ȳt = V (t, σ)ȳσ +
1

ε

t∫
0

V (t, s)[Y0L4(s)z̄s − εhsΨT (0)(L1(s)z̄s + L2(s)ȳs)]ds.

System (27) consists of ordinary differential equation on a central manifold and integral
equations on a stable manifold. Relations between systems (9) and (27) are given by the follo-
wing:

u = ū+G(t, z̄t, ȳt), zt = z̄t +Htu, yt = ȳt + htu. (28)

The solution of system (21) on the stable manifold is governed by the functions (G(t, z̄t, ȳt), z̄t, ȳt)
and, for this solution, inequality (25) holds. Then with transformation (28) we obtain a reducti-
on principle for system (9).

Theorem 4. Let estimates (10) and condition (11) hold. Then for all sufficiently small ε, ν,
system (9) by means of tansformation (28) reduces to the form (27). The zero solution of system
(9) is stable (asymptotically stable, unstable) if and only if stable (asymptotically stable, unstable)
is the zero solution of the system

dū

dt
= [B + ΨT (0)(L1(t)Ht + L2(t)ht)]ū(t) (29)

on the central manifold.
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Theorem 4 allows to reduce the study of stability of the initial singularly perturbed differential-
functional system (9) to an analysis of system of ordinary differential equations (29) which is
regular and has no lag in the argument.
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