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An anisotropic damage model was proposed to describe the nonlinear behavior of concrete beams

under monotonic and cyclic loading. The hysteresis effect of concrete is approximately modeled by

employing nonlinear loading/linear reloading stress paths in the model, which was implemented into

ABAQUS. Linear, bilinear, exponential and Reinhardt strain softening functions are introduced to

investigate their influence on accuracy of calculations. The load–deflection responses obtained by the

damage model reflect the damage-induced nonlinear behavior of concrete beams, results are

comparable with the test data. The strain softening functions significantly affect simulation accuracy,

and the responses obtained by the Reinhardt function are in the best agreement with experimental

ressults. The numerical data under cyclic loading are consistent with those obtained in the

experiment, characterizing the degradation of stiffness and hysteresis effect of concrete beams. It is

concluded that the anisotropic damage model can be used to simulate the nonlinear behavior of

concrete structures.
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Introduction. Numerical simulation is an important method to investigate the damage

and fracture mechanisms of the concrete structure. One of the critical issue for numerical

simulation is to develop a constitutive model of concrete which represents its nonlinear

behavior. The continuum damage mechanics theory (CDMT) was by far the most popular

theory for developing a constitutive model of concrete.

Based on the assumption of isotropic damage, Mazars et al. [1, 2] and Papa [3]

developed damage models of concrete by utilizing scalar damage variable to represent the

degradation of stiffness, which established the fundamental framework of continuum

damage mechanics. Cervera et al. [4] and Richard et al. [5] introduced weighted damage

evolution rules into the scalar damage model to model the stiffness recovery effect resulting

from the closing of microcracks upon load reversals. Cervera et al. [4] and Haussler-Combe

and Kuhn [6] proposed rate-dependent damage models within the framework of CDMT,

which evolve from the fundamental rate-independent scalar damage models via an

additional viscoelastic contribution, to take into account the strain-rate sensitivity of

concrete. Desprez et al. [7] formulated an isotropic damage model for FRP-confined

concrete and analyzed the nonlinear response of FRP-confined concrete column under axial

and flexural loads. Although those scalar damage models didn’t account for the anisotropic

features of concrete, they were widely used in the nonlinear analyses of concrete structures

because of their high efficiency.

Second- or fourth-order damage tensor was employed by Papa and Taliercio [8],

Alliche [9], Lu et al. [10], Badel et al. [11], and Francois [12], within the fundamental

framework of continuum damage mechanics, to model the anisotropic properties of

concrete damage and develop anisotropic damage models. The above models were applied

to the analyses of damage and failure prediction of concrete structures subjected to cyclic
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and fatigue loads. Wu and Xu [13] introduced thermodynamically consistent projection

operators into the damage models employing the spectral decomposition of the stress and

strain tensor, which guarantees the fulfillment of energy conservation under arbitrary load

history. Based on the concept of thermodynamics, Ngo et al. [14] proposed an anisotropic

damage model for thermo-mechanical coupling and modeled the nonlinear response of

concrete members under thermal and mechanical loading. Hariri-Ardebili and Mirzabozorg

[15] employed anisotropic damage mechanics approach to model the cracking behavior in

mass concrete and then conducted a numerically seismic assessment of the arch–reservoir–

foundation system. Compared to the isotropic damage models, the governing equations of

the anisotropic ones were much more complicated. Most of these models, therefore,

employed linear paths to represent unloading/reloading behavior to obtain high numerical

efficiency. They might get a closer result, when the hysteretic behavior could be modeled,

to the realistic response of the concrete structure.

Long and He [16] developed an anisotropic damage model in which nonlinear

unloading/linear reloading stress paths were employed to model the hysteretic behavior.

This model was implemented into the finite element analysis (FEA) program ABAQUS

[17] by programming its constitutive relation in user subroutine UMAT [18]. Although this

model could reflect the stiffness degradation and hysteretic response of concrete sample

under uniaxial tension or compression, its applicability to the concrete structure should be

demonstrated.

1. Fundamental Governing Equations. There are three granted assumptions in

Long’s model [16]. First, the strain can be, for any arbitrary material point, decomposed

into elastic and inelastic parts. Then, the material axes are mutually orthogonal and parallel

to the principal directions of the stress tensor. Last, the damage relations are defined

regarding stress and inelastic strain corresponding to the rotating material axes with the

assumption that the damage is decoupled. According to these assumptions, the governing

equations of the model are as follows:

� �� D , (1)

where � and � denote the stress and strain tensor, respectively, and D is the constitutive

matrix representing the stress–strain relation and given as
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in which E0 is the linear elastic stiffness matrix, and Tr is the transformation matrix of

strain from global coordinates to the local one defined by the rotating material axes. G stands

for the damage matrix corresponding to flexibility in local coordinates and is defined as
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where g ei i
in( ) and ei

in denote the secant flexibility and inelastic strain on damage axis

i�1, 2,3. Because the above-mentioned governing equations are nonlinear, the linearization

method should be utilized to obtain the constitutive relation in the incremental form that

can be referred to work [16].

As shown in Fig. 1, stress paths subjected to cyclic loading comprises the loading

path, unloading path, reloading path, partial unloading path and partial reloading one. The
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loading path is defined by the yielding function, given in Eq. (4), considering the effect of

stress state on the material strength:
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in which p denotes the hydrostatic pressure, q stands for the Mises stress, � and � are

dimensionless parameters, fbc and fc represent the maximum compressive stresses under

equibiaxial and uniaxial compression, respectively, and � �c c
in( ) and � �t t

in( ) denote the

equivalent stresses corresponding to uniaxial compression and tension. The symbol 	 is

the McCauley bracket which means x x x� �
1

2
( | | ).

The hysteretic behavior is approximately modeled by employing the nonlinear

unloading path and linear reloading one. Figure 1 shows the unloading/reloading paths

defined regarding stress and inelastic strain. The nonlinear unloading path is given in Eq. (5):
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where i denotes the ith damage axis and 
� ( , )t c represents tension or compression, si

and ei
in are the present principal stress and inelastic strain, �


i m and ei m
in



denote the

stress and inelastic strain at the start of unloading, ei
p



is the plastic strain, Hi
t



denotes
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Fig. 1. The definition of unloading and reloading paths subjected to cyclic loading.



the tangent modulus of unloading path corresponding to zero stress, and �


� ( , )0 1 is a

constant.

Besides, the reloading path is defined by Eq. (6) as a linear path
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in which �

i a and ei a

in



are the stress and inelastic strain at the start of the reloading path,

and Hi
 is the modulus determined by the damage factor di . Herein, di is defined

concerning tensile and compressive damage variables, which can be referred to reference

[16]. The definitions of partial unloading and partial reloading are similar to those of

unloading and reloading and also can be referred to [16].

2. A Numerical Example of a Notched Beam Test. This model is used to simulate

the damaging process of plain concrete beam tests conducted by Hordijk [19]. As shown in

Fig. 2, square-cross-section beams, whose dimensions were 500 100 50� � mm, had an

initial notch depth � 10, 30, and 50 mm, respectively, and were subjected to four-point

loading. The material properties used herein are as follows: elastic modulus E0
43 8 10� 	.

MPa, Poisson’s ratio �� 0.2, tensile strength ft � 3.0 MPa, tensile fracture energy density

Gt
f
� 125 N/m. The details of Hordijk’s experiments can be referred to study [19].

Numerical analyses are carried out by the finite element analysis program ABAQUS since

this model has been embedded into ABAQUS by its user-defined subroutine UMAT.

Four-point plane stress element with dimensions 5 5� mm is utilized to model those

concrete beams in the numerical simulations.

2.1. Monotonic Loading Tests. The stress–inelastic strain curve is an important effect

on numerical simulation. Four types of the strain–softening curve are used in the monotonic

loading analyses, as illustrated in Fig. 3. The definitions of these curves are as follows:
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Fig. 2. Testing plan and finite element mesh of notched beam test.



(1) The linear softening curve is given by Eq. (7):
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where � and �
in are the stress and inelastic strain, and Gt

f
, ft , and h denote the tensile

fracture energy density, tensile strength, and characteristic size of the damaged element,

respectively.

(2) The bilinear softening curve is defined by Eq. (8) is proposed in [20]:

�

�

�

� �

� �

� �

� � �

ft

in

f

in

f
in

f

in
f

�

� � �

�

�

� �

1 0 85 0

0 15

1

1
1

. , ,

. , ,

. , ,

�

�

�

�

�

�

�

� � �� � �

�

1 2 0 15
G

f h

G

f h

t
f

t
f f

F t
f

t
(8)

where it is assumed that the maximum diameter of aggregate is 16 mm and �F � 7 is

given.

(3) The exponent one proposed by Karihaloo [21] is given as follows:
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(4) The Reinhardt’s one [22] is defined as
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in which c1 3� and c2 � 6.93 are used and, therefore, � f t
f

tG f h� 5 136. .
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Fig. 3. Tensile strain softening curves of concrete.



Figure 4 shows the responses between load and deflection, i.e., the P fl� curves,

compared to the experimental ones. The peak value of load in each case is given in Table 1,

where !� �( )max max maxP P Pe e denotes the error between the numerical result and the

experimental one. As illustrated in Fig. 4, softening curves have a significant influence on

the structural responses of concrete beams although the calculated P fl� curves are

comparable to the experimental ones. In the case with the linear softening curve, numerical

responses are significantly different from experimental ones, as they overestimate the

values of peak load from 12 to 29% and their post-peak curves are much steeper than the
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T a b l e 1

The Comparison of the Calculated Peak Value of Load Pmax

and Experimental One Pe max [19]

Notch

depth

, mm

Experimental Linear Bilinear Exponential Reinhardt’s

Pe max ,

kN

Pmax ,

kN

!,

%

Pmax ,

kN

!,

%

Pmax ,

kN

!,

%

Pmax ,

kN

!,

%

10 3.62 4.67 29.0 4.14 14.4 4.21 16.3 3.98 9.9

30 2.53 2.93 15.8 2.61 3.2 2.65 4.7 2.51 �0.8

50 1.42 1.59 12.0 1.43 0.7 1.44 1.4 1.37 �3.5

Fig. 4. The P fl� curves of concrete beams subjected to monotonic loading (compared with

experimental results [19]).



experimental ones. When utilizing bilinear and exponential softening curves, the numerical

P fl� curves are much closer to the experimental results than those obtained by the linear

softening curve. Furthermore, the numerical responses in the case with the Reinhardt’s

curve are in the closest agreement with experimental ones, in which the errors of peak load

are from�3.5 to 9.9%. Consequently, the Reinhardt’s curve best reflects the influence of

strain-softening effect on the structural response of the notched concrete beams.

2.2. Cyclic Loading Tests. Cyclic tests of the notched beams are also modeled by the

anisotropic damage model. The loading path is determined by the Reinhardt curve, and the

unloading and reloading ones are defined by Eqs. (5) and (6). Equation (11) gives the

plastic strain eit
p

and tangent modulus Hit
t at a zero stress:
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where ct � 0, kt � 0.4, At � 0.5, Bt � 1.0, and �0 0� f Et . The exponential constant

�



defining the unloading curve is given as 0.5.

Figure 5 shows the P fl� curves of notched beams obtained by numerical

simulation, subjected to monotonic and cyclic loading, compared to the experimental

results. The P fl� curves under monotonic loading are identical to the envelopes of
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Fig. 5. The P fl� curves of concrete beams subjected to cyclic loading [19].



those under cyclic loading because they are determined by the loading path that gives the

boundary of structural responses of concrete beams. The calculated results are highly

consistent with experimental ones, which indicates that this anisotropic damage model

reasonably reflects the stiffness degradation and hysteretic behavior of concrete. Slight

difference between numerical and experimental results, such as the peak load, the post-peak

envelope, and the unloading/reloading paths, results from the fact that the envelopes of the

numerical responses are different from those of experiments. The hysteretic behavior in the

material level is approximately modeled by employing the nonlinear unloading and linear

reloading paths, which obtains a reasonably hysteretic response in the structural level.

Therefore, this method applies to modeling the effect of hysteretic behavior on the

structural response of concrete structures.

Conclusions. The fracture behavior of concrete beams was investigated by an

anisotropic damage model. The results draw the following conclusions:

1. The strain softening curves significantly affect the numerical response of concrete

beams. The linear softening curve overestimates the peak value of the load and causes

steeper post-peak responses than experimental ones while the Reinhardt’s one obtains the

closest responses compared with experimental ones.

2. The method of nonlinear unloading/linear reloading applies to represent the

hysteretic behavior of concrete. Using this method, the calculated load-deflection responses

agree well with experimental ones. The numerical results make it possible to conclude that

the stiffness degradation and hysteretic behavior can be well represented by the present

anisotropic damage model.
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