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The elastoplastic damage model for concrete is elaborated that can be applied to various stress
states. In the previous study (2016) the 3D elastoplastic damage model, based on the Lubliner yield
criterion and Drucker—Prager flow rule, was constructed. The simplified forms of the two functions
set certain limitations on the calculations in true triaxial compression and high confining pressure.
Improved accuracy of yield surface and potential plastic surface is required. The Menétrey—Willam
yield criterion is adopted and analyzed in the effective stress space. The methods that define the
hardening and softening functions through the volume plastic strain are no longer used in some
successful 3D models since they employ double hardening and two-scalar damage to describe an
increase in effective yield stress and degradation of stiffness. The suppression of damage evolution in
triaxial compression is taken into account through the confining net decomposition of stress. The
validation of specific parameters in the potential plastic function of the novel model is verified. The
iteration return mapping algorithm is worked out and implemented. The reliability of the proposed
model is corroborated by numerical simulation results compared with existing experimental data.

Keywords: elastoplastic damage, effective stress, hardening law, confining net
decomposition, return mapping algorithm.

Introduction. Concrete materials exhibit complex nonlinear characteristics, such as
unilateral effects, stiffness degradation, post-peak strength softening, a significant increase
in strength and ductility under confining pressure, tension—compression softening and
irrecoverable deformation because of various failure mechanisms including microcrack
(microdefect) expansion and friction. Damage is caused by the initiation and propagation of
microcracks. Plasticity is mainly due to frictional sliding along closed microcracks under
compression. Under triaxial compression, with the increase of confining pressure, there is a
gradual transition from quasi-brittle to ductile behavior for concrete, which should be paid
particular attention to.

Elasticity, plasticity, and damage mechanics, etc. have been widely applied to
establish concrete constitutive models. Since pure plasticity models fail to describe stiffness
degradation and unilateral effects and are not appropriate for cyclic loading and reversed
loading [1-4] while pure damage models fail to reflect irrecoverable deformation, plasticity
and damage should be used simultaneously to simulate the nonlinear behavior of concrete.
Elastoplastic damage models, which combine plasticity and damage, have drawn
considerable attention in current researches [5—15] and become a kind of mainstream
constitutive theory which can adequately reflect the mechanical properties of concrete.
Some models have only one hardening variable and one damage variable and cannot reflect
the independent hardening and damage in tension and compression [8, 9]. Some models
utilize damage mechanics for stress and plasticity for compression but fail to realize the two
aspects at the same time [6, 11]. Some models, such as those proposed by Abu Al-Rub and
Kim [5] and Omidi and Lotfi [10], are not applicable to triaxial compression.
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There are two approaches to introduce the plastic strain and its evolution law into the
modeling process of damage constitutive relation. One relies on the Cauchy stress space
where the evolution equation of plastic strain is formulated [1-4]. Cauchy stress
characterizes the nominal stress at the macroscopic level. The macroscopic stress will
decrease after the material enters the softening stage. An elastoplastic damage model based
on the Cauchy stress space will inevitably involve the problem of contraction of the yield
surface. Consequently, there will be a series of problems of numerical convergence and
stability. Another alternative is based on the effective stress space [8, 10, 13, 15], where the
yield surface is always in the process of expansion without contraction during loading, so
the troublesome problem mentioned above can be avoided.

In the previous work by Zhang et al. [15], an elastoplastic damage model, which
employed the Lubliner yield criterion and Drucker—Prager flow rule, was developed. The
characteristics of concrete, such as unilateral effects, stiffness degradation, post-peak
strength softening, increasing strength and ductility under confining pressure, irrecoverable
deformation, etc., were reflected successfully. But owing to the simple forms of the yield
function and plastic potential function, which lead to straight meridians of the yield surface
and plastic potential surface, the calculations in true triaxial compression and high
confining pressure are limited. Consequently, more accurate yield function and plastic
potential function are required, which are to be studied in the present work.

The yield criterion proposed by Menétrey and Willam [16] is adopted and set up in the
effective stress space with double hardening and two damage scalars. Appropriate
hardening law and damage evolution law are introduced to describe the increase of
effective yield stress and the degradation of stiffness. The confining-net decomposition of
stress proposed by Zhang et al. [15] is applied to help to account for the suppression of
damage evolution in triaxial compression.

1. Framework for Elastoplastic Damage Model. From the confining-net decomposition
of stress, a two-scalar damage expression can be formulated as [15]:

o=(1-d %" +(1-d" o +o-, (1)
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the Mcauley brackets < > means (x)= 5 (‘ x‘+x), d~ is the tensile/compressive damage

variable, o is the nominal stress, and o is the effective stress. The damage variable for the
confining part of stress, d~, is neglected since there is only residual deformation and
hardly stiffness degradation for concrete under hydrostatic compression.

1.1. Damage.

1.1.1. Damage Variables. In this paper, the authors follow a simplified micro-
mechanical damage evolution model proposed by Zhang et al. [15] which is an
improvement to Li and Ren [17]. The model was extended and could be used in triaxial
compression.

Accounting for the definition of stochastic integration, the tensile/compressive damage
variable d* can be expressed as
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1
d* = [H(e™ = A" (x))dx, (3)
0

where H() is the Heaviside step function, and A* (x) is the microscopic random fracture
strain.

Because of the presence of the confining part of stress, the damage evolution under
uniaxial compression will be suppressed. Zhang et al. [15] take this interaction into account
by modifying the microscopic fracture strain:

A (=01)
A= (x)= A" (x)exp|—cp ) “4)

and the compressive damage variable in Eq. (2) becomes

d” = | He™% = AZ (x))dx. (5)

o ——

A more detailed explanation can be found in [15].
1.1.2. Damage Driving Forces. Take the tensile/compressive damage energy release
rate as the damage driving force:

rE=-—t (©)

1
yt=-ot:¢°,
0 e (7)
_ | —
YT == (al #4373 ), ®)

for tension and compression, respectively, where E is the effective (initial) Young
modulus, /; is the first invariant of ¢, J, 1is the second invariant of the deviatoric part

of 0, and
_ fbc/fc_l
“ szc/fc_l’ (9)

in which f, is the uniaxial compressive strength, and f;. is the equi-biaxial compressive
strength ¥ only involves the elastic free energy ¢, while ¥~ is related to both the

elastic ¢ and plastic y? free energies [18].
1.1.3. Damage Criteria. The tensile/compressive damage threshold is defined by the
maximum of ¥ * throughout the loading history:

P = max YE (1 s
e ® (10)

where 7 is the loading history and ¢ is the current instant.
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The tensile/compressive damage criterion is expressed as
g (Y , )=y =T =0 (11)

Damage is driven by the damage thresholds as reflected in a monotonously increasing
function:

+ , +

d* =G* (). (12)

The Karush—Kuhn—Tucker loading/unloading conditions are always expressed as

+ +

d* =0, g*<0, d*g*=0 (13)

1.2. Plasticity. The plasticity part of the constitutive model is composed of yield
criterion, flow rule, hardening laws, evolution of hardening variables and the loading/
unloading conditions.

For infinitesimal elastoplastic deformation, the strain tensor ¢ can be decomposed in
an additive sense:

e=¢f+e?. (14)
Similarly, for the incremental strain de, we have
de = de® +de” (15)

where €€, de® and &, de? are the elastic components and plastic components,

respectively.
Based on the linear elasticity theory and the hypothesis of elastic strain equivalence,
one obtains

o=E:e®, o=E:°, (16)

where the rank four tensors E and E, are, respectively, the elastic stiffness for damaged
configuration and initial (undamaged) configuration. From Eqs. (14) and (16), the effective
stress can be written as

o=E:(e—¢?). (17)

1.2.1. Yield Surface. To apply to various stress states, the yield function proposed by
Menétrey and Willam [16] is employed herein. Unlike some other models [1-3] which take
the plastic volumetric strain as the variant of hardening/softening function and set up in the
nominal stress space, the present paper introduces another approach to express the
subsequent yield surface and set it up in the effective stress space. The yield function has
the form as

2
+m( L6, e)+ —1=0 (18)

P&, p. 6)=| 15
f(ép)(F Tor

-

5
N

The three unified cylindrical coordinates &, p, and 6 are defined as the same as
previous works except that all of them are expressed as functions of the principal effective
stresses (07 =0, =03, compression negative).
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The friction parameter m and elliptic function r are given by

-2 42
= 3ff_f{ee+1 (19)

_ 4(1—- e’ )cos2 0+ (2e— 1)2
2(1—e?)cos O+ (2e— D)[4(1— e? Ycos? O+ 5e* — 4e]'/?

0, e) (20)

where f* = f* (k™) is the subsequent effective yield stress for uniaxial tension/
compression, k™ is the internal variable and will be introduced later in Section 1.2.3. The

eccentricity parameter e is assumed as 0.52.
From all above, the yield function can be reduced to

SP=fr(o, k)=0, 1)

where

o represents the effective stress, and k represents the vector consisting of two
scalars k

=+

1.2.2. Plastic Potential Surface. A non-associated flow rule and plastic potential
function in parabolic type are used here and given by

2
Poal P g Py S 22)
¢ (fb') G

in a similar form to that proposed by Carrazedo et al. [2]. How to calibrate the coefficients
A and B will be discussed later in Section 3. The plastic strain rate is computed by

. agp

P =) 23
€ prg (23)

where 1 is the plastic consistency parameter and is non-negative.
However, it should be noted that the potential plastic function g” is not only related

to the stress o, but also is related to the internal variables k. Here, for simplicity, it is
assumed that the potential plastic surface does not evolve with the change of the internal
variables.

1.2.3. Hardening Laws. The hardening law here is formulated by making use of the
Ludwik power law:

FEUE )= £ +KE ), (24)

where foi is the initial effective yield stress under uniaxial tension/compression, K= is
the effective tensile/compressive strength index, k™= is the tensile/compressive hardening
variable, and »n™ is the tensile/compressive hardening exponent.

In the present model, the initial effective yield stress can be assumed as f;” = f,,

fo =057, where f, and f, are, respectively, the strengths in uniaxial tension and
compression.
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The evolution of hardening variables k* s given by [15]:

(~a1)

KT =wil, kT =—(1-w)k exp (—ck

where ¢f and & are, respectively, the maximum and minimum principal plastic strains,

¢, 1s the coefficient of hardening slowdown, and the weight factor
W=E<6i>/2‘6i" (26)
i i

The tensile and compressive hardening functions are

9o P Jo P -0
ht=w h-z_a—wyé——mp—q< 1>. @7)
90, 90 4 I
Then the expression of k* s rephrased as
Kt =Ant. (28)

The Karush—Kuhn—Tucker loading/unloading conditions are always expressed as
A=0, fP=<0, iP=0 (29)

2. Numerical Implementation. In the numerical implementation process of the
proposed model, the plasticity part and damage part are considered separately and a user
subroutine is developed. The specific procedure has already been studied maturely and can
be summarized in three steps: (i) elastic predictor; (ii) plastic corrector; and (iii) damage
corrector. A completely implicit backward-Euler return-mapping algorithm is employed for
the constitutive integration. No detailed introduction will be made here. For more
information, readers are referred to the literature [19, 20].

3. Calibration. The parameters A4 and B in the potential plastic function

2
Pl P g Py S (30)
: (fb') G

must be determined based on the results of uniaxial compression tests and triaxial
compression tests with uniform active confinement. Consider the gradient of the potential
plastic surface

d
¢=—£=2AL_+B. 31

dp fo
The plastic potential parameters A4 and B can be derived as

Nl

A= Jfo > 32
2p1—p; 0 (32)
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B=w1—2Aj:1_, (33)
0

where the subscript 1 and 2 for 1 and p represent the uniaxial compression and triaxial

compression with uniform active confinement at peak stress, respectively. The inclination
¥, and ¥, can be determined by

_ \E(€§3 ath

(34)
24
The deviatoric lengths p; and p, can be calculated as
2
pr = \E A (35)
2
P2= Efcc_o-pc (36)

where o, donates the confining pressure, and f, and f. donate the uniaxial and
triaxial compression strengths, respectively. The plastic volumetric strain £ is assumed as

ey = L(1 ) (37)

C
for all stress states. The lateral plastic strains 8{7 , and 852 are obtained by

p
R S (38)

Next, we need to determine the values of the axial plastic strain ¢%;, lateral stresses
011 and 0, and axial stress 033. For uniaxial compression

1
853:5‘33_?[]2_1/(04‘0)]:86—%, (39)

c c

The calculation of ¢, follows the recommendations of MC90 [21] and CEB Working
Group on HSC/HPC [22]:
0.0022,

€ =—min 07 £ (40)
1000

For triaxial compression with uniform active confinement:

1
€§3=€33_F[033_V(011+022)]=€ [fu 0, ] (41)
C
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The ultimate axial stress f,. is estimated from the expression by Carrazedo et al. [2]:

fo (205, [40.6420,

fe=5 7 N a

(42)

The total axial strain at triaxial stress is obtained from the expression by Papanikolaou
and Kappos [4]:

0 pe
Eoe = €| 1H17 s (43)

c

where 0 ,. represents the confining pressure.

4. Verification. To examine the rationality and practicability of the present constitutive
model, numerical simulations of a series of standard concrete tests were carried out and
compared with the existing experimental results. The simulations of uniaxial loading tests,
including monotonous loading, and cyclic loading, are the same as the results in Zhang et
al. [15] and will not be discussed here again.

4.1. Tension—Compression Reversed Loading. In this section, two tension—compression
reversed loading scenarios were simulated, while one is compression-dominated, the other
is tension-dominated. No comparative experimental data were found. The material parameters
are calibrated from the cyclic uniaxial compression test [23]. The stress—strain responses
for such loadings are given in Fig. 1. The unilateral effect and the crack-opening,
crack-closing are exhibited.

4.2. Biaxial Compression. The experiments by Kupfer et al. [24] are chosen for the
simulations of biaxial compression loading, as shown in Fig. 2.

4.3. Pseudo Triaxial Compression. A triaxial compression test with uniform
confinement (0> o0, = 0, >03) is simulated. The purpose is to study whether the present
model can reflect the enhancement of strength and improvement of ductility under
confinement. Four different confining pressures were considered, i.e., 0; =0, =—4 MPa,
0,=0,=—8MPa, 0, =0, =—12MPa, and 0, = 0, = —4 MPa. In these tests, after the
hydrostatic pressure was increased to the desired value, the axial displacement loading
started. The material parameters are calibrated from the experimental uniaxial stress—strain
curves and stress—strain curves under the confining pressure o, = 0, = —4 MPa, then the
same set of material parameters are used to predict the behavior under 0y = 0, = —8 MPa
and 0, =0, =—12 MPa. The material parameters are listed in Table 1. The calculation
results and comparison with Candappa et al. [25] were shown in Fig. 3.

rebte Material Parameters for Simulations of Uniaxial Reversed Loading
E, N/mm? v ut w Ve -
50.9-10° 0.2 - 7.75 - 0.75
1o fo K* K~ nt n-
- 16.7 - 0.035E - 0.5
N % fi Je A B
- - - 60.6 1.57 0.65

52
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Fig. 1. Compression- (a) and tension-dominated (b) reversed loadings.

= = *— test
- - -~ --------simulation
& & strain(mm/mm) A] &
—16 —
-0.006 -0.004 -0.002 0.800 0.002 0.004 0.006
<
a
e
2
2
@
0:—l=0',: (o
prazlil
prs
] -0.52:-1
-50 -
0-3
Fig. 2. Biaxial compression [24].
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Fig. 3. Peudo triaxial compression [25].
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Although there is a small amount of deviation between simulation and experiment, the
increase of peak strength and the improvement of ductility under confinement have been
appropriately represented in the proposed model.

4.4. True Triaxial Compression. In fact, pseudo triaxial compression is an ideal stress
state. In practical cases, concrete is usually in a complex stress state. Here, the authors have
examined the model in true triaxial states. Simulations of true triaxial compression
(0>0, >0, >03) are attempted based on the tests by van Mier [26] and displayed in
Fig. 4. The test data from the loading path 0,:0,:05=-0.05:—0.1:—1 are used for
parameter calibration, and those from 0,:0,:03 =—0.05:—0.33:—1 are blindly predicted.

s test
simulation

& strain(mm/mm) R ] & &

r—r T T T "~ T %] 1T "~ T T "~ T
-0.012-0.010-0.008 -0.006 -0.004 -0.002 0,400 0.002 0.004 0.006 0.008

stress(MPa)

: O 0,=—0.05:-0.33:~1

-100

Fig. 4. True triaxial compression [26].

Conclusions. By the combination of the confining-net decomposition of stress with
the Menétrey—Willam yield function and the Ludwik power hardening law, the constitutive
model proposed in this study achieves a more accurate description of the mechanical
behavior of concrete in triaxial compression. With the aid of the positive-negative
decomposition of stress, double hardening, and two-parameter damage, the model also
performs satisfactorily in reversed tension and compression. Several numerical examples
have preliminarily demonstrated the capabilities of this versatile 3D elastoplastic damage
model. Further study is underway to extend the present theory to very high confining
pressure and large deformation.
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