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Paccmompenvl napamemp oyenku u ONMUMAIbHOE NPOEKMUPOBAHUE YACMUYHO YCKOPEHHbIX UCHbI-
manuti Ha O0NIC08EYHOCMb NPU CMYNEHYAMOU Hacpy3Ke Hd OCHO8e 0000UeHHO20 PINeeBCKO20
pacnpeoenenus npu NpoepeccusHoM yeHzypuposanuu muna Il ¢ ounomuanvhvimu eviboprkamu. B
Kayecmee paxmopa yCKOpeHus UCnOIb3VIOMCA MAKCUMATbHbIE OYEHKU 8EPOAIMHOCIU NAPAMEMPO8
macwmaba u gopmul, komopovie coznacylomes mencoy coboi. Ilocmpoenvt npubnudicentvie dosepu-
MmenbHble UHMEPSAbl NAPaMempos8 MOOelu U PAcCUUmansl epanuysl gepossimuocmu. Paspabomarvl
ONMUMANbHBIe NIAHGI UCILIMAHUL O VIyYueHus cmamucmuieckoeo ananusa. [lpeonoscenvt pe-
3YILMamsvl MOOEIUPOSANUA U YUCTOBOU NpUMeD.

Knroueevte cnosa: CTaTUCTHUCCKUI aHAIN3, ONITUMAJIBHBIN [IJIaH UCIIBITAHUM, CTYIICHUATAS
Harpy3ka, MaKCHMajbHasi BEPOSTHOCTh, OOOOIICHHOE PIJEEBCKOE paCIpe/eiieHue, CIy-
YaiHbIC BBIOOPKH.

Introduction. Burr [1] introduced twelve families of distributions for modeling
lifetime data. Among those families, Burr type X and Burr type XII have received the most
attention. The Burr-type X distribution is also known as the generalized Rayleigh
distribution (GRD). According to Burr [1], the probability density function (pdf),
cumulative distribution function (cdf) and hazard function of the two-parameter GRD are
defined, respectively, as below:
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where 6 and « are the shape and scale parameters, respectively. If 6 = 1,the GRD reduces
to the traditional Rayleigh distribution. As indicated by [2-5], the GRD has been studied in
many papers. Also, Surles and Padgett [6] showed that the two-parameter GRD can be used
quite effectively in modeling strength data and also modeling general lifetime data.

As shown by Burr [1], if 6 < 1/2, the GRD has a decreasing pdf and a bathtub-type
hazard function. But, when 6> 1/2, the pdf is a right-skewed unimodal function and the
hazard function is an increasing function. The two-parameter GRD has several properties
commonly happened in the two-parameter gamma, Weibull and generalized exponential
distributions. However, when 6> 1/2, the hazard function behaves more close to the
hazard function of Weibull with shape parameter greater than 1. Similar to the generalized
exponential distribution and Weibull distribution, the GRD has a closed form of cdf and is
very popular for dealing with censored data. Readers can refer to [4] and [7] for more
detailed information about the comparison among these distributions.

In reference to the literature, there is no research work about optimum partially
accelerated life test plans for the GRD under progressive type-II censoring scheme with
random removals.

Because of continual improvement in manufacturing design, one often deals with
products that are highly reliable with a substantially long life span. In these situations, the
standard life testing methods may require time-consuming and prohibitively expensive
testing time to obtain enough failure data necessary to make the desired inference. In order
to assure rapid failure and then to shorten the testing period, all or some of test units may be
subjected to stress conditions more severe than normal ones. Such accelerated life testing
(ALT) or partially accelerated life testing (PALT) results in shorter lives than would be
observed under normal operating conditions. In ALT test units are run only at accelerated
conditions, while in PALT they are run at both normal (use) and accelerated conditions.

As [8] indicates, the stress can be applied in various ways, commonly used methods
are step-stress and constant-stress. Under step-stress PALT (SSPALT), a test item is first run
at use condition and, if it does not fail for a specified time, then it is run at accelerated
condition until failure occurs or the observation is censored. But the constant-stress PALT
runs each item at either use condition or accelerated condition only, i.c., each unit is run at a
constant-stress level until the test is terminated. Accelerated test stresses involve higher
than usual temperature, voltage, pressure, load, humidity, ..., etc., or some combination of
them. The objective of a PALT is to collect more failure data in a limited time without
necessarily using high stresses to all test units.

As shown from the literature, for example see [9—19], PALT has been studied under
step-stress scheme by several authors. In ALT or PALT, tests are often stopped before all
units fail. The estimate from the censored data is less accurate than those from complete
data. However, this is more than offset by the reduced test time and expense. The most
common censoring schemes are type-1 and type-II censoring. Consider » units placed on
life test. In conventional type-I censoring, the experiment continues up to a prespecified
time, 7. Any failures that occur after that time are not observed. The termination point 7
of the experiment is assumed to be s-independent of the failure times. But in conventional
type-1I censoring, the experimenter terminates the experiment after a prespecified number
of units m=<n fail. In this scenario, only the smallest lifetimes are observed. In type-I
censoring, the number of failures observed is random and the endpoint of the experiment is
fixed. While the number of failures is fixed in type-II censoring and the endpoint is
random.

According to [20-24], numerous articles in the literature have dealt with inference
under type-I and type-II censoring for various parametric families of distributions.
Conventional type-I and type-II censoring schemes do not allow removal of units at points
other than the terminal point of the experiment. This paper considers a generalized
censoring scheme which is progressive type-II censoring to save more time and cost

100 ISSN 0556-171X. Ilpobremvt npounocmu, 2017, Ne 2



Planning Step-Stress Life Tests ...

associated with testing. It allows for the surviving units to be removed from the test at each
failure time. This type of censoring will be described in the next Section.

The main purpose of this paper is to study the optimal design problem of SSPALT for
units whose lifetimes follow the generalized Rayleigh distribution under progressive type-II
censoring scheme with binomial removals. The rest of this paper is organized as follows: In
Section 1 the test procedure and its assumptions are presented. Point and interval
estimations of the model parameters are considered in Section 2. In Section 3, optimum
SSPALT plans are developed under different progressive censoring schemes. In Section 4
simulation studies are conducted for illustrative purposes. Moreover, in Section 5 data
analysis via a numerical example is provided. Finally, Conclusions involve some important
notes and potential effort required in this track.

1. Test Procedure and Its Assumptions. As indicated by many authors, see for
example [25], the type-II progressive censoring scheme has received considerable interest
among the statisticians. It is a generalization of type-II censoring. Although progressively
type-II censored sampling is effective in time and cost, it is not very popular in lifetime
experiment. It may be due to the complicated calculation of the likelihood function.

According to [26], if an experimenter desires to remove live units at points other than
the final termination point of the life test, the traditional type II censoring scheme will not
be of use to the experimenter. Type II censoring does not allow for units to be lost or
removed from the test at points other than the final termination point. This allowance will
be desirable, as in the case of studies of wear, in which the study of the actual aging process
requires units to be fully disassembled at different stages in the experiment. Intermediate
removal may also be desirable when a compromise between reduced time of experimentation
and the observation of at least some extreme lifetimes is sought, or when some of the
surviving units in the experiment that are removed early on can be used for some other
tests. As in the case of accidental breakage of experimental units or loss of contact with
individuals under study, the loss of test units at points other than the termination point may
also be unavoidable. These reasons lead us directly into the area of progressive censoring.

This censoring scheme can be described as follows. Suppose that n units are placed
on a life test and the experimenter decides beforehand the quantity m, the number of units
to be failed. Now at the time of the first failure, R; of the remaining n— 1 surviving units
are randomly removed from the experiment. Continuing on, at the time of the second
failure, R, of the remaining »— R| — 2 units are randomly withdrawn from the experiment.
Finally, at the time of the mth failure, all the remaining R, =n—m—R;—...— R, —1
surviving units are removed from the experiment. Some of the earlier work on progressive
censoring was conducted by [27-29]. Recently, several articles have been published on
estimating the parameters for different distribution functions, see, for example, [30-35]. A
recent account on progressive censoring schemes can be found in the excellent review
article introduced by [36]. In progressive type-1I censoring, if R; =R, =...= R, —1=
=R,, = 0, then n= m which is the complete sampling case. But if n—m—R; —...— R, —
—1=0,then R,, = n—m which is the case of conventional type-II right censoring scheme.

In many reliability experiments, the pattern of removal at each failure is random. We
assume that any test unit being dropped out from the life test is independent of the others
but with the same removal probability (as a binomial parameter), p. Then, the number of
test units removed at each failure time has a binomial distribution, see for example [37]. As
indicated in [38], when such conditions are not satisfied or can’t be assumed, one can use
another distribution. In some cases, it can be assumed that the pattern of removal at each
failure is fixed. But the random assumption is more realistic than the fixed one.

Now, the following assumptions are considered:

(1) n identical and independent items are put on the life test;

(i1) the lifetime of each item has the GRD;

(iii) the test is finished at the mth failure, where m is pre-specified (m =< n);
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(iv) each of the » units is first run under design condition. If it does not fail or
eliminate from the test by a pre-specified time 7, it is put under severe condition;

(v) at the ith failure a random number of the remaining items, R;, i=12, .., m—1,
are randomly chosen and eliminated from the test. Finally, at the mth failure, the living

-1
units R, =n—m— Em 1Ri are all eliminated from the test and the test is finished;
i=
(vi) assume that an individual item being eliminated from the test is independent of

the others but with the same removal probability p. Then, the number of items eliminated
at each failure time follows a binomial distribution. That is, R; ~binomial(n—m, p).

i—1
For i=2,3,..., m—1, R; ~binomial(n— m— El, Nz p)and 1, =n—m—n—r—
j=

e T s

(vii) the lifetime, say Y, of an item tested under SSPALT can be expressed by

B T if T<rt,
_{t+(T—r)/ﬁ if T>r, @)

where T is the lifetime of the item under use condition, 7 is the stress change time and 8
is the acceleration factor, 3> 1. Therefore, the pdf of Y can be given by

0, y=0,
SW)=11= f(1; a,0), 0<y=rT,
So (), y>1,

where
_ _ 2 _ _ 2 .
L ()= f(3B.a,0)= B8/ a® [t +f(y—1)]e” THAOIN O™ (| =T+ pl=n )" 01

which is found by the transformation-variable procedure using f; () and the model set in
4).
Let (y;,7,04,04), i=1,2,..., m, denote the observation obtained from a
progressively type-II censored sample with random removals in a SSPALT. Here
Given the pre-fixed number of removals R=(R;=4#,...,R, 1 ="r,1), the
conditional likelihood function of the observations y= {(y;, r;, 01;, 0; ), i=1, 2, ..., m}
takes the form

L5 a, .0y, 05 IR=1)= [ [{LAGOS GO P LAGNDS () 1P, (5)
i=1
where

_ 2 _ _ 2
S1(M)=1=(1=e VO sy (p)= 1= (1= T THTIOTH0,

As shown earlier, the number of items eliminated at each failure time follows a
binomial distribution. Then,

n—m n—m—r
P(R1=r1)=( , )Pr(l—P) L
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For i=2,3,..., m—1,

i—1 i
n—m-— v ) n—m—z 7
P(Ri=ri|Ri—1=ri—lv---’R1=r1)=( 2/=1 f]pr’(l—p) =

T
where 07, <n—m— (1 +...+7_; ). Moreover, assume that R; is independent of Y; for
all i. Then the full likelihood function can be established as
Wy; a, B, p)= L1 (3, a, pIR=1)P(R=T).
Here, R= (R, R,,...,R,,) and r= (%, 1», ..., 7;,), and
PR=r1)=PR,y = 1ye> Rpy = 1yas s By = 1) =
=PR, 1 =Tyt Rpe2 =Tpns s Ry =R PR, = 1 n| Ry 3 = 1pzse o, Ry =1 )X
o XP(Ry=n|Ry =1)P(R; =1).

That is,

(n—m)! "l (m=1)(n=m)= 3" (m=iyr;
m—1 m—1 pzl_] (1_ P) 21_] :
(n=m= " [

2. Parameter Estimation. This section deals with the process of finding the
maximum likelihood estimates (MLE) of the parameters 6, «, and [ based on
progressively type-II censored data with binomial removals. Both point and interval
estimations of the parameters are considered.

2.1. Point Estimation. In this subsection, the MLEs of the model parameters are
considered. From (5) we obtain the natural logarithm of the conditional likelihood function,

In Z;, as follows:

P(R=r)=

my, o
InZy =2mn@—2mlna+m, Inf+ > Iny; — (1/a®)D> y?+

i=1 i=1

U my, mny ny
+(O=DD In[1= e O 11 D nfi— (1= PO N g, - (1767) Dy +
i=1 i=1 i=1

i=1

ma ma
+(O=D) D In[1= eV 1D gl (1- e WO7 )y

i=1 i=1

where ¢, =t+p(y;, — 7).
Since P(R; p) does not depend on the parameters 6, a,and f, hence the MLEs of

0, a, and [ can be derived by maximizing InZ; directly. Similarly, since
Ly (y; 0, a, B|R=r) does not include the binomial parameter p, the MLE of p can be
obtained by maximizing P(R; p) directly. In particular, the MLEs of 6, ,and f can be
obtained by solving the following equations:
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Now, we have a nonlinear system of equations. It is very difficult to obtain a closed
form solution. The Newton—Raphson algorithm is applied to obtain the MLEs of the
unknown parameters numerically.

Independently, the MLE of the binomial parameter p can be found by solving the
following equation:

m=1 m—1
dlnL 21‘:1 i (m=1D(n—m)— 21‘:1 (m=i)r;
ap §4 I-p

Therefore, we find immediately

>
v
i=1"

(m=Dn=m)= > (m=i= Ty

p:

2.2. Interval Estimation. Based on the asymptotic distributions of the MLEs of the
elements of the vector of unknown parameters Q= (0, «, ), the approximate confidence
intervals of the parameters can be derived. It is known that the asymptotic distribution of
the MLEs of Q is given by [39],

(B=6), (@—a), (B-B)=>N©O, 1718, a, B)),
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where 17! (0, a, B) is the variance-covariance matrix of the unknown parameters Q =
= (0, a, B). The elements of the 3X3 matrix | 1; 0, a, B), i, j=1,2, 3; can be
approximated by 1 (0 a, ﬁ) where

0% In L(Q)

[U'(Q)=_ aQian 0=0"

Now, we get the following:
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Thus, the approximate 100(1—y )% two-sided confidence bounds for 6, «,and f are,
respectively, given by

0=Z, I 0. &, B),  axZ, oI5 0.4 B).  B£Z,,15 O, &, p),

where Z,, is the upper (y/2)th percentile of a standard normal distribution.
3. Optimum Test Plans. The core intention of this section is to decide the optimal
stress-change time 7" based on progressive type-II censoring with binomial removals

using three different progressive censoring schemes. In step-stress setting, the experimenter
is often interested in estimating the mean life at use condition with high precision. The
mean lifetime is an important characteristic in reliability analysis. Practically, the optimum
test plans are important for improving the quality of the statistical inference. One selection
optimality criterion is the D-optimality criterion. It is used to determine the optimal value of
T.

The D-optimality criterion is based on the determinant of Fisher’s information matrix
F. 1t has been extensively used in the context of planning life test. If one is more interested
in estimation with high precision, a more reasonable criterion should be D-optimality,
which takes into account the overall parameter space. According to Bai et al. [40], it can be
constructed in terms of the generalized asymptotic variance (GAV) of the MLEs of the
model parameters. This GAV is proportional to reciprocal of the determinant of Fisher-
information matrix. So that maximizing this determinant is equivalent to minimizing GAV.
The criterion function is then expressed by

s 1
GAV (&, A, B)=—.
(@ 4, B) ¥ (6)

Hence, the optimal stress-change time t" is determined such that the GAV is
minimized.

4. Simulation Studies. To demonstrate theoretical results introduced in this article,
simulation studies are conducted. In order to evaluate the performance of the MLEs, the
mean square error (MSE), the average confidence interval lengths of the model parameters
and their coverage probabilities are obtained under three different progressive censoring
schemes. Also, the influences of the sample size n, the observation size m, and the
binomial parameter p on the accuracy of the parameter estimates are discussed.

The simulation studies are implemented based on the following algorithm:

(i) determine the value of n;

(i1) determine the value of

(iii) determine the values of the parameters 6, a, f, and p;

(iv) determine the value of 7;

(v) generate a random sample with size n and observation size m from the random
variable Y given by (4) and sort it. The generalized Rayleigh random variable can be
casily generated. For example, if U represents a uniform random variable from [0, 1], then
Y =of-In(1-U 1o )]1/2 has generalized Rayleigh distribution with the distribution function

given by (2). The true parameters values are set to be =2, a= 1.5, and f=2.5;
(vi) generate a random number R; from binomial (n—m, p);
(vii) for i=2, 3, ..., m—1, generate a random number R; from binomial (n—m—

—Z;:”z p);

(viii) set R,, according to the following relation:
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m—1 m—1
Rmz{n—m— R if n—m>zl:1r,,
0, otherwise;

(ix) use the progressively type-II censored sample created in steps 5-8 to calculate the
MLEs of the parameters 6, «, and f. The Newton—Raphson method is used to
simultaneously solve the nonlinear equations to get the MLEs of the model parameters;

(x) steps 5-9 are replicated 10,000 times.

(xi) calculate the MSE related to the MLEs of the parameters;

(xii) construct the confidence intervals width (CIW) for each parameter with
confidence level 1—y = 0.95;

(xiii) steps 1-12 are implemented with different values of n, m, and p.

Tables 1-3 give the MSE of the MLEs of 6, ,and f. Also, these tables includes both
the CIW of the model parameters and their coverage probabilities against the values of n
when n= 30,50, 75, and 100 and various m when p= 0.10, 0.25, and 0.50, respectively.

From the results presented in Tables 1-3, it can be concluded that:

1. For fixed m/n and p, the MSE associated with the parameter estimates decreases as
n increases.

2. For fixed n and p, as m decreases the MSE increases.

3. The effect of m on the precision of the MLEs of the parameters is influenced by the
value of removal probability p. As p increases, for fixed n and m/n, the MSE of the
parameter estimates increases.

4. For fixed m/n and p, the CIW decreases as n increases. But for fixed » and m/n, the
CIW increases as p increases.

5. For fixed m/n and small p, the CP is very close to the nominal level as n increases.
But for fixed n and m/n, the CP is not good as p is large.

6. For fixed n and p, as m decreases, the CP is considerably lower than the nominal
level.

Therefore, it can be said that as the sample size n increases and the effective sample
proportion m/n increases, the act of the MLEs in terms of MSE become better unless p is
large. A higher value of p leads to higher values of MSE. When p increases, the experiment
is terminated more quickly. But it is important to note that with a highly larger p the
experiments will be less informative and lead to larger standard errors in estimates. These
results coincide with the note of Wu et al. [41]. Regarding the effect of 7 on MSE of the
parameter estimates, it can be said that a small value of 7 gives a better estimate in the
sense of having smaller MSE.

As coincided with the note of Wu and Huang [42], the design of an optimal life test
already enables us to obtain estimations of high degree of precision. They said that in order
to obtain a precise estimate of mean life, one needs to design an optimal life test. So, in this
section, the optimal choice of 7 is explored. Optimum test plans have been developed here
numerically under different values of n, m, and p. The numerical results of the optimal
stress change-time 7" under different progressive censoring schemes, as well as the

optimal GAV of the MLEs of the model parameters are given in Table 4. The optimal GAV
is numerically obtained with " in place of 7.

From the results shown in Table 4, it can be detected that:

1. For fixed m/n and p, both the optimal stress change-time 7" and the optimal GAV

of the MLEs of the model parameters decrease as the sample size #n increases. That is, good
estimates of the model parameters are obtained.

2. For fixed n and p, as m decreases both 7" and the optimal GAV of the MLEs of the
model parameters increase. That is, inefficient estimates of the model parameters are
obtained.
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Table 1
Results for p =0.10: Average Values of MSE, CIW, and CP when 0, «, 3, and t Set
at 1.5, 2, 2.5, and 5, Respectively

n | m| MSE, | MSE, | MSE; | CIW@®)|CIW(a) | CIW(p) CP@®)| CP@)| CP(p)

30 | 30 |10.001217|0.002219 | 1.893067 | 1.275569 | 1.475701 | 2.425164 | 0.9452 | 0.9445 | 0.9431
25 10.001462{0.002946 | 2.642556 | 1.296151 | 1.960679 | 2.657831 | 0.9438 | 0.9428 | 0.9422

50 | 50 | 0.000485|0.001656 | 1.013526|0.508048 | 1.102341 | 1.268735| 0.9463 | 0.9457 | 0.9443
45 10.000536{0.001914 | 1.131995 | 0.561169 | 1.273663 | 1.363604 | 0.9445 | 0.9438 | 0.9427
40 | 0.000618{0.002246 | 1.330531 | 0.647662 | 1.495169 | 1.602377 | 0.9381 | 0.9374 | 0.9364
35 10.000796 | 0.002439 | 1.906093 | 0.833581 | 1.623662 | 1.702679 | 0.9353 | 0.9347 | 0.9336
30 10.001126 | 0.005353 |2.512575 | 1.179544 | 3.563141 | 1.886014 | 0.9332 | 0.9326 | 0.9315
25 10.001703 | 0.005636 |3.720213 | 1.784301 | 3.751335|2.127013 | 0.9293 | 0.9286 | 0.9272

75 | 75 10.000347|0.001141|0.735891 | 0.363671 | 0.759266 | 0.837441 | 0.9558 | 0.9551 | 0.9541
70 10.000381 |0.001879 |0.826313 | 0.399084 | 1.043733 | 1.054683 | 0.9539 | 0.9531 | 0.9522
65 10.000425|0.002037 | 0.944028 | 0.445394 | 1.107462 | 1.248992 | 0.9474 | 0.9465 | 0.9457
60 | 0.000594 | 0.002251 | 1.177313 | 0.622461 | 1.152765 | 1.345457 | 0.9446 | 0.9437 | 0.9429
55 10.000739 | 0.003069 | 1.483242 | 0.775012 | 1.318365 | 1.526344 | 0.9425 | 0.9419 | 0.9408
50 10.000852 |0.003569 | 1.727252 | 0.892832 | 1.421446 | 1.731061 | 0.9383 | 0.9374 | 0.9368
45 10.001207 | 0.004066 | 2.687445 | 1.264673 | 2.375571 | 1.941812| 0.9372 | 0.9363 | 0.9355
40 10.001512{0.004731 |3.981686 | 1.584076|2.706533 | 1.980412 | 0.9367 | 0.9356 | 0.9349
35 10.002256 | 0.005156 | 4.898563 | 2.363855 | 3.148681 |2.264005 | 0.9313 | 0.9305 | 0.9296
30 10.003028 | 0.005656 | 6.279956 | 3.172238 | 3.431621 | 2.537966 | 0.9318 | 0.9307 | 0.9298
25 10.003561 | 0.005944 | 7.913035 | 3.730682 | 3.764314 | 2.961408 | 0.9267 | 0.9259 | 0.9251

100[100|0.000159 | 0.00667 |0.326703 | 3.730682 | 0.443878 | 0.602627| 0.9511 | 0.9504 | 0.9496
95 10.000168 | 0.000874 | 0.377281 | 0.166852 | 0.581887 | 0.791056 | 0.9524 | 0.9517 | 0.9506
90 | 0.000185|0.001126 | 0.398866 | 0.175706 | 0.749315 | 0.934575 | 0.9481 | 0.9472 | 0.9463
85 10.000246 | 0.001281 | 0.497412 | 0.194094 | 0.852714 | 1.164924 | 0.9467 | 0.9462 | 0.9447
80 [0.000366 |0.001405|0.731985|0.258110|0.935346|1.301911 | 0.9441 | 0.9435 | 0.9424
75 10.000511]0.001879 |1.022658 | 0.383422 | 1.250733 | 1.552325| 0.9426 | 0.9421 | 0.9409
70 10.0007520.002016 | 1.395732 | 0.535291 | 1.342018 | 1.672194 | 0.9423 | 0.9411 | 0.9403
65 10.000931|0.002165 |2.017223 | 0.787952 | 1.440661 | 1.869879 | 0.9384 | 0.9376 | 0.9366
60 | 0.001186 |0.002412 |2.574228 | 0.975916 | 1.605491 | 1.906743 | 0.9379 | 0.9374 | 0.9363
55 10.001443 10.003345 | 3.029566 | 1.242199 | 2.226314 | 1.956241 | 0.9354 | 0.9347 | 0.9338
50 10.001719 | 0.004525 |3.550372 | 1.509162 | 3.011972 |2.169941 | 0.9284 | 0.9276 | 0.9268
45 10.002103 {0.004791 | 4.369404 | 1.801324 | 3.188484 | 2.310687 | 0.9277 | 0.9269 | 0.9262
40 | 0.002419{0.005329 | 5.348727 | 2.203132 | 3.547133 | 2.455186 | 0.9261 | 0.9253 | 0.9244
35 10.002761 | 0.005468 | 6.010147 | 2.534113 |3.639716 | 2.847099 | 0.9257 | 0.9246 | 0.9239
30 /0.003592 | 0.006128 | 7.634965 | 2.892334 | 4.078836 | 3.179888 | 0.9251 | 0.9244 | 0.9234
25 10.004183 0.006242 | 8.796061 | 3.763372 | 4.154546 | 3.517201 | 0.9246 | 0.9238 | 0.9231

3. For fixed n and m/n, as p increases both the optimal stress change-time 7" and the

optimal GAV of the MLEs of the model parameters increase.

5. Data Analysis: An Illustrative Example. To show the applicability of the
methodology presented in this article, a numerical example is displayed. Generalized
Rayleigh model is used to fit the data set. To confirm the power of the model, we compute
the Kolmogorov—Smirnov (K—S) distance between the empirical distribution function and
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Table 2
Results for p =0.25: Average Values of MSE, CIW, and CP when 0, «, 3, and t Set
at 1.5, 2, 2.5, and 5, Respectively

n | m| MSE, | MSE, | MSE; | CIW@®)|CIW(a) | CIW(p) CP@®)| CP@)| CP(p)

30 | 30 |0.001704|0.003547 |2.082374 | 1.658241 | 1.962682 | 2.885945 | 0.9357 | 0.9256 | 0.9148
25 10.002047{0.004714 |2.906812 | 1.684996 | 2.607703 | 3.162819 | 0.9344 | 0.9239 | 0.9139

50 | 50 | 0.000679 | 0.002652 | 1.114879|0.660462 | 1.466114 | 1.509795 | 0.9368 | 0.9268 | 0.9167
45 10.000752{0.003062 | 1.245195 | 0.729523 | 1.693972 | 1.622689 | 0.9351 | 0.9249 | 0.9144
40 | 0.000865 | 0.003594 | 1.463584 | 0.841961 | 1.988575 | 1.906829 | 0.9287 | 0.9187 | 0.9083
35 10.001114]0.003902 |2.096702 | 1.083655 | 2.15947 |2.026188|0.9259 | 0.9163 | 0.9056
30 [ 0.001576 | 0.008565 |2.763833 | 1.533407 | 4.738978 | 2.244357 | 0.9239 | 0.9139 | 0.9036
25 10.002384 1 0.009018 | 4.092231 | 2.319591 | 4.989276 |2.531145|0.9231 | 0.9131 | 0.8994

75 | 75 10.000486|0.001826 | 0.809482 | 0.472772|1.009824 | 0.996555 | 0.9462 | 0.9364 | 0.9255
70 10.000533|0.003006 | 0.908944 | 0.518809 | 1.388165 | 1.255073 | 0.9444 | 0.9342 | 0.9236
65 10.000595|0.003259 |1.038431 | 0.579012 | 1.472924 | 1.486371 | 0.9379 | 0.9276 | 0.9173
60 | 0.000832|0.003602 | 1.295044 | 0.809199 | 1.533177 | 1.601094 | 0.9352 | 0.9248 | 0.9146
55 10.001035]0.004912 | 1.631566 | 1.007516 | 1.753425 | 1.816349 | 0.9331 | 0.9231 | 0.9126
50 10.001193 10.005713 | 1.899977 | 1.160682 | 1.890523 | 2.059963 | 0.9289 | 0.9187 | 0.9087
45 10.001692 | 0.006506 | 2.956193 | 1.644075 | 3.159509 | 2.310756 | 0.9278 | 0.9176 | 0.9074
40 1 0.002117{0.007572 |4.379855|2.059299 | 3.599689 | 2.356694 | 0.9273 | 0.9169 | 0.9069
35 10.003158 0.008252 | 5.388419|3.073012 | 4.187746 | 2.694166 | 0.9221 | 0.9119 | 0.9017
30 10.004239 | 0.009054 | 6.907952 | 4.123909 | 4.564056 | 3.020182 | 0.9225 | 0.9121 | 0.9019
25 10.004985 | 0.009516 | 8.704339 | 4.849887 | 5.006538 | 3.524076 | 0.9174 | 0.9074 | 0.8973

100(10010.000223 | 0.001067 | 0.359373 | 4.849887 | 0.590358 | 0.717126| 0.9416 | 0.9314 | 0.9211
95 10.000235|0.001398 | 0.415008 | 0.216908 | 0.773911 | 0.941357 | 0.9429 | 0.9327 | 0.9221
90 0.000259 |0.001802 |0.438753 | 0.228418 | 0.996589 | 1.112144 | 0.9386 | 0.9283 | 0.9179
85 10.000344 | 0.002050 | 0.547153 10.252322 | 1.134113 | 1.386261 | 0.9372 | 0.9273 | 0.9164
80 [0.00051210.002248 | 0.805184 | 0.335543 | 1.244016 | 1.549274 | 0.9347 | 0.9246 | 0.9141
75 10.000715 {0.003006 | 1.124924 | 0.498449 | 1.663475 | 1.847267 | 0.9332 | 0.9233 | 0.9127
70 10.001053 {0.003226 | 1.535305 | 0.695878 | 1.784884 | 1.989911 | 0.9329 | 0.9223 | 0.9121
65 10.001303 |0.003464 |2.218945 | 1.024338 | 1.916079 | 2.225156 | 0.9291 | 0.9188 | 0.9085
60 | 0.001662 | 0.003859 |2.831651 | 1.268691 |2.135303 | 2.269024 | 0.9285 | 0.9187 | 0.9082
55 10.002021 | 0.005352 |3.332523 | 1.614859 | 2.960998 | 2.327927 | 0.9262 | 0.9162 | 0.9058
50 10.002407 | 0.007241 | 3.905409 | 1.961911 |4.005923 |2.582235|0.9191 | 0.9091 | 0.8991
45 10.002944 | 0.007666 | 4.806344 | 2.341721 | 4.240684 | 2.749718 | 0.9184 | 0.9084 | 0.8984
40 | 0.003387{0.008526 | 5.883632 | 2.864072 | 4.717687 |2.921671 | 0.9168 | 0.9068 | 0.8967
35 10.003865 | 0.008749 | 6.611162 | 3.294347 | 4.840822 | 3.388048 | 0.9164 | 0.9061 | 0.8962
30 10.005029 | 0.009805 | 8.398462 | 3.760034 | 5.424852 | 3.784067 | 0.9158 | 0.9059 | 0.8957
25 10.005856 | 0.009987 | 9.675667 | 4.892384 | 5.525546 | 4.185469 | 0.9154 | 0.9053 | 0.8954

the fitted distribution function when the parameters estimates are obtained by the maximum
likelihood method. The result of K-S test is D= 0.0691 with p= 0.483. This result
observably shows that the generalized Rayleigh model provides excellent fit to the data set.
Thus, it can be used successfully for modeling this data set. Assuming generalized Rayleigh
distribution under progressive type-II censoring scheme with binomial removals we use
n=236,0=22, a=125 =25, 1t=9, m=2l,and P=0.20. The MSE of the MLEs of
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Table 3
Results for p =0.50: Average Values of MSE, CIW, and CP when 0, «, 3, and t Set
at 1.5, 2, 2.5, and 5, Respectively

n | m| MSE, = MSE, | MSEy | CIW()|CIW() CIW(p)| CP@®)| CP@)| CP({)

30 | 30 10.002386|0.004966 | 2.498849 | 2.155713 | 2.355218 | 3.174545 | 0.9168 | 0.9071 | 0.8965
25 10.002866 | 0.006631 | 3.488174 | 2.190495 | 3.129244 1 3.479101 | 0.9157 | 0.9054 | 0.8956

50 | 50 | 0.000951|0.003713 |1.337855|0.858601 | 1.759337 | 1.660775| 0.9181 | 0.9083 | 0.8984
45 10.001053 | 0.004287 | 1.494234 | 0.948382 | 2.032766 | 1.784958 | 0.9164 | 0.9064 | 0.8961
40 10.001211|0.005032 | 1.756301 | 1.094549 | 2.386291 |2.097512| 0.9101 | 0.9003 | 0.8901
35 10.001563 | 0.005463 | 2.516042 | 1.408752 | 2.591364 |2.228807 | 0.9074 | 0.8982 | 0.8875
30 10.002206 | 0.011991 |3.316641 | 1.993429 | 5.686774 | 2.468793 | 0.9054 | 0.8956 | 0.8855
25 10.0033380.012625 |4.910677 | 3.015468 | 5.987131 |2.784264 | 0.9046 | 0.8948 | 0.8814

75 | 75 10.000682 | 0.002556 |0.971378 | 0.614604 | 1.211789 | 1.096211 | 0.9181 | 0.9177 | 0.9072
70 10.000746 | 0.004208 | 1.090733 | 0.674452 | 1.665798 | 1.380582 | 0.9164 | 0.9155 | 0.9051
65 10.000833 |0.004563 | 1.246117{0.752716 | 1.767509 | 1.635008 | 0.9101 | 0.9091 | 0.8994
60 | 0.001165 |0.005043 | 1.554053 | 1.051959 | 1.839812|1.761203 | 0.9074 | 0.9063 | 0.8963
55 10.001449 | 0.006877 | 1.957879 | 1.309771 | 2.104113 | 1.997984 | 0.9054 | 0.9046 | 0.8943
50 10.001676 |0.007998 | 2.279972 | 1.508887 | 2.268628 | 2.265959 | 0.9046 | 0.9003 | 0.8905
45 10.002369 | 0.009108 |3.547432|2.137298 | 3.791411 | 2.541832 | 0.9181 | 0.8992 | 0.8893
40 | 0.002964 | 0.010601 |5.255826|2.677089 | 4.319627 | 2.592363 | 0.9164 | 0.8986 | 0.8888
35 10.004421 | 0.011553 | 6.466103 | 3.994916 | 5.025295 |2.963583 | 0.9101 | 0.8937 | 0.8837
30 [ 0.00593510.012676 | 8.289542 | 5.361082 | 5.476867 | 3.322241| 0.9074 | 0.8939 | 0.8839
25 10.006979 | 0.013322|10.44521 | 6.304853 | 6.007846 | 3.876484 | 0.9054 | 0.8893 | 0.8794

100(100|0.000312 | 0.001494 | 0.431248 | 6.304853 | 0.708432 | 0.788839 | 0.9228 | 0.9128 | 0.9027
95 10.000329 | 0.001957 | 0.498011 | 0.281983 | 0.928693 | 1.035493 | 0.9241 | 0.9142 | 0.9037
90 | 0.000363 |0.002523 | 0.526504 | 0.296943 | 1.195907 | 1.223358 | 0.9198 | 0.9097 | 0.8995
85 10.000482|0.002872 | 0.656584 | 0.328019 | 1.360936 | 1.524887 | 0.9185 | 0.9088 | 0.8981
80 | 0.00071710.003147 | 0.966221 | 0.436206 | 1.492819 | 1.704201 | 0.9162 | 0.9061 | 0.8958
75 10.001001 | 0.004208 | 1.349909 | 0.647984 | 1.996172 {2.031994 | 0.9145 | 0.9048 | 0.8944
70 10.00147410.004516 | 1.842366 | 0.904641 | 2.141861 |2.188902 | 0.9142 | 0.9039 | 0.8939
65 10.001824 |0.004853 |2.662734 | 1.331639 | 2.299295 |2.447672 | 0.9105 | 0.9004 | 0.8903
60 | 0.002327|0.005403 | 3.397981 | 1.649298 | 2.562364 | 2.495926 | 0.9099 | 0.9003 | 0.8931
55 10.002829 | 0.007493 | 3.999028 | 2.099317 | 3.553198 | 2.560723 | 0.9077 | 0.8979 | 0.8877
50 10.0033720.010137 | 4.686491 | 2.550484 | 4.807108 | 2.840459 | 0.9007 | 0.8909 | 0.8811
45 10.004122{0.010732|5.767613 | 3.044237|5.088821 | 3.024691 | 0.9011 | 0.8902 | 0.8804
40 1 0.004742{0.011936 | 7.060358 | 3.723294 | 5.661224 | 3.213838 | 0.8985 | 0.8887 | 0.8788
35 10.005411|0.012249 | 7.933394 | 4.282651 | 5.808986 | 3.726853 | 0.8981 | 0.8883 | 0.8783
30 10.0070410.013727 | 10.07815 | 4.888044 | 6.509822 | 4.162474 | 0.8975 | 0.8878 | 0.8778
25 10.008198|0.013982 | 11.61082|6.460099 | 6.630655 | 4.604016 | 0.8971 | 0.8872 | 0.8775

0, a,and f are respectively 0.001941, 0.002811, and 1.005113. The CIW of 6, a,and f
are 1.450012, 2.381473, and 2.796281 with CP 0.9360, 0.9287, and 0.9150, respectively.
Using the same settings of the life-testing experiment with different items, the results of the
test design are as follows. The optimal stress change-time " and the optimal GAV of the

MLEs of the model parameters are respectively 8.3441 and 0.041532.
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Table 4
Average Values of Optimal 7 and Optimal GAV;
Considering Three Different Cases of p, 0, o, and
n m M Optimal 7® Optimal 7 Optimal
GAVY GAV? GAVY
30 30 6.1328 0.024364 8.1213 0.040607 11.1873 0.073092
25 7.3656 0.034012 11.3372 0.056686 14.8639 | 0.102035
50 50 2.4441 0.013044 4.3481 0.021741 8.3569 0.039133
45 2.7062 0.014569 4.8563 0.024282 9.6556 0.043707
40 3.1123 0.017125 5.7082 0.028541 11.3351 0.051374
35 4.0169 0.024531 8.1771 0.040886 12.3094 | 0.073594
30 5.6694 0.032338 10.7793 0.053897 27.0121 0.097014
25 8.5787 0.047882 15.9605 0.079803 28.4399 | 0.143645
75 75 1.7527 0.009472 3.1572 0.015786 5.7562 0.028415
70 1.9172 0.010635 3.5449 0.017725 7.9125 0.031904
65 2.1408 0.012152 4.0499 0.020253 8.3957 0.036449
60 2.9941 0.015152 5.0507 0.025254 8.7391 0.045456
55 3.7239 0.019089 6.3631 0.031816 9.9945 0.057268
50 4.3073 0.022231 7.4099 0.027052 10.7763 0.066689
45 6.0883 0.034587 11.5292 0.057645 18.0091 0.103761
40 7.6175 0.051243 17.0811 0.085406 | 20.5183 0.153732
35 11.3621 0.063047 | 21.0156 | 0.105078 23.8751 0.189141
30 15.2531 0.080824 | 26.9414 | 0.134707 | 28.0156 | 0.242473
25 17.9362 0.101842 33.9472 0.169736 36.5378 0.305525
100 100 0.8018 0.004205 1.4016 0.007008 3.3651 0.012614
95 0.8455 0.004856 1.6185 0.008093 44113 0.014567
90 0.9329 0.005233 1.7111 0.008556 5.6806 0.015443
85 1.2387 0.006402 2.1339 0.010674 6.4644 0.019205
80 1.8427 0.009421 3.1402 0.015701 7.0909 0.028262
75 2.5726 0.013162 4.3872 0.021936 9.4818 0.039485
70 3.7882 0.017963 5.9877 0.029939 10.1741 0.053889
65 4.6877 0.025962 8.6539 0.043278 10.9224 | 0.077885
60 5.9804 0.033132 11.0434 | 0.055217 12.1717 | 0.099391
55 7.2705 0.038993 12.9976 | 0.064988 16.8788 0.116978
50 8.6661 0.045694 15.2312 0.076156 | 22.8340 | 0.137081
45 10.5942 0.056236 18.7454 | 0.093727 | 24.1722 0.168709
40 12.1873 0.068838 22.9461 0.114731 26.8916 | 0.206515
35 13.9062 0.077355 25.7849 | 0.128925 27.5932 0.232064
30 18.0951 0.98264 32.7547 0.163774 35.9226 | 0.294792
25 21.0697 0.113206 37.7354 | 0.188677 39.4965 0.339619

M When p=0.10 and 0, o, and f set at 1.5, 2, and 2.5, respectively;
@ when p=025and 0, a,and f set at 1.5, 2, and 2.5, respectively;
® when p=0.50 and O, a, and f set at 1.5, 2, and 2.5, respectively.

Conclusions. The issue of progressive type-II censoring has received care in the past
few years. The GRD can be used quite effectively in modeling strength data and also
modeling general lifetime data. MLEs of parameters of the GRD were discussed using
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progressively type-II censored data with binomial removals. The performance of the MLEs
was assessed numerically. In addition, the roles of sample size n, failure size m, and
removal probability p toward the accuracy of estimations were explored via simulation
studies. It can be concluded that as both the sample size n and the effective sample fraction
m/n increase, the performance of the MLEs become better unless p is large.

Moreover, statistically optimum step-stress partially accelerated life test plans have
been developed. The optimality criterion adopted is the minimization of the GAV of the
MLEs of the model parameters. That is, " is obtained such that the GAV is minimized.

Thus, the optimal design of the life tests can be considered as a technique to improve the
quality of the statistical inference. This issue agrees with the annotation of Wu and Huang
[38]. In order to obtain a precise estimate of mean life, one needs to design an optimal life
test. As a future work, the Bayesian inference in the case of SSPALT under the same
censoring schemes proposed in this paper will be considered. Also, the optimum test plans
will be explored under constant-stress PALT using progressively type-II censored data
which is an extension to the work of Ismail [43].

Pe3ome

PosrnsiHyTO mMapamerp OLIHKM i ONTUMAaJIbHE NPOCKTYBAaHHS YaCTKOBO MPHCKOPEHHX BH-
npoOyBaHb Ha JIOBrOBIYHICTH IPH CTYNEHEBOMY HABAHTA)KEHHI Ha OCHOBI y3araJlbHEHOI'O
PENIEiBCHKOTO PO3IONUTY TMPH MPOTPECHBHOMY IeH3ypyBaHHI Tumy Il 3 OiHOMiamsHUMHE
BuOopkamu. Sk (akTop MPHUCKOPESHHS BUKOPHUCTOBYIOTHCS MAaKCHUMaJbHI OLIIHKH IMOBIp-
HOCTI mapaMeTpiB MacmrTaby i Qopmu, sKi y3roKyloThcs MiX coboro. IToOymosaHo
HaOJIMKeH1 JTOBipUl 1HTEpBaIW MapaMmeTpiB MOJENl 1 PO3paxoBaHO T'PAHMIN IMOBIPHOCTI.
Po3pobisieHo onTuUMaibHI IUIAaHK BUNPOOYBAaHb 13 METOIO TOKpPAIlaHHS CTATHCTHYHOTO
aHawi3zy. 3amporrOHOBAHO PE3yIbTaTH MOICTIOBAHHS 1 YMCIIOBHH MPHKIIAL.
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