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Ïëàíèðîâàíèå èñïûòàíèé íà äîëãîâå÷íîñòü ïðè ñòóïåí÷àòîé íàãðóçêå

íà îñíîâå îáîáùåííîãî ðàñïðåäåëåíèÿ Ðýëåÿ ïðè ïðîãðåññèâíîì öåíçó-

ðèðîâàíèè òèïà II ñ áèíîìèàëüíûìè âûáîðêàìè

Àëè À. Èñìàèë

Êàèðñêèé óíèâåðñèòåò, Ãèçà, Åãèïåò

Ðàññìîòðåíû ïàðàìåòð îöåíêè è îïòèìàëüíîå ïðîåêòèðîâàíèå ÷àñòè÷íî óñêîðåííûõ èñïû-

òàíèé íà äîëãîâå÷íîñòü ïðè ñòóïåí÷àòîé íàãðóçêå íà îñíîâå îáîáùåííîãî ðýëååâñêîãî

ðàñïðåäåëåíèÿ ïðè ïðîãðåññèâíîì öåíçóðèðîâàíèè òèïà II ñ áèíîìèàëüíûìè âûáîðêàìè. Â

êà÷åñòâå ôàêòîðà óñêîðåíèÿ èñïîëüçóþòñÿ ìàêñèìàëüíûå îöåíêè âåðîÿòíîñòè ïàðàìåòðîâ

ìàñøòàáà è ôîðìû, êîòîðûå ñîãëàñóþòñÿ ìåæäó ñîáîé. Ïîñòðîåíû ïðèáëèæåííûå äîâåðè-

òåëüíûå èíòåðâàëû ïàðàìåòðîâ ìîäåëè è ðàññ÷èòàíû ãðàíèöû âåðîÿòíîñòè. Ðàçðàáîòàíû

îïòèìàëüíûå ïëàíû èñïûòàíèé äëÿ óëó÷øåíèÿ ñòàòèñòè÷åñêîãî àíàëèçà. Ïðåäëîæåíû ðå-

çóëüòàòû ìîäåëèðîâàíèÿ è ÷èñëîâîé ïðèìåð.

Êëþ÷åâûå ñëîâà: ñòàòèñòè÷åñêèé àíàëèç, îïòèìàëüíûé ïëàí èñïûòàíèé, ñòóïåí÷àòàÿ

íàãðóçêà, ìàêñèìàëüíàÿ âåðîÿòíîñòü, îáîáùåííîå ðýëååâñêîå ðàñïðåäåëåíèå, ñëó-

÷àéíûå âûáîðêè.

Introduction. Burr [1] introduced twelve families of distributions for modeling

lifetime data. Among those families, Burr type X and Burr type XII have received the most

attention. The Burr-type X distribution is also known as the generalized Rayleigh

distribution (GRD). According to Burr [1], the probability density function (pdf),

cumulative distribution function (cdf) and hazard function of the two-parameter GRD are

defined, respectively, as below:
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where � and � are the shape and scale parameters, respectively. If ��1, the GRD reduces

to the traditional Rayleigh distribution. As indicated by [2–5], the GRD has been studied in

many papers. Also, Surles and Padgett [6] showed that the two-parameter GRD can be used

quite effectively in modeling strength data and also modeling general lifetime data.

As shown by Burr [1], if ��1/2, the GRD has a decreasing pdf and a bathtub-type

hazard function. But, when ��1/2, the pdf is a right-skewed unimodal function and the

hazard function is an increasing function. The two-parameter GRD has several properties

commonly happened in the two-parameter gamma, Weibull and generalized exponential

distributions. However, when ��1/2, the hazard function behaves more close to the

hazard function of Weibull with shape parameter greater than 1. Similar to the generalized

exponential distribution and Weibull distribution, the GRD has a closed form of cdf and is

very popular for dealing with censored data. Readers can refer to [4] and [7] for more

detailed information about the comparison among these distributions.

In reference to the literature, there is no research work about optimum partially

accelerated life test plans for the GRD under progressive type-II censoring scheme with

random removals.

Because of continual improvement in manufacturing design, one often deals with

products that are highly reliable with a substantially long life span. In these situations, the

standard life testing methods may require time-consuming and prohibitively expensive

testing time to obtain enough failure data necessary to make the desired inference. In order

to assure rapid failure and then to shorten the testing period, all or some of test units may be

subjected to stress conditions more severe than normal ones. Such accelerated life testing

(ALT) or partially accelerated life testing (PALT) results in shorter lives than would be

observed under normal operating conditions. In ALT test units are run only at accelerated

conditions, while in PALT they are run at both normal (use) and accelerated conditions.

As [8] indicates, the stress can be applied in various ways, commonly used methods

are step-stress and constant-stress. Under step-stress PALT (SSPALT), a test item is first run

at use condition and, if it does not fail for a specified time, then it is run at accelerated

condition until failure occurs or the observation is censored. But the constant-stress PALT

runs each item at either use condition or accelerated condition only, i.e., each unit is run at a

constant-stress level until the test is terminated. Accelerated test stresses involve higher

than usual temperature, voltage, pressure, load, humidity, …, etc., or some combination of

them. The objective of a PALT is to collect more failure data in a limited time without

necessarily using high stresses to all test units.

As shown from the literature, for example see [9–19], PALT has been studied under

step-stress scheme by several authors. In ALT or PALT, tests are often stopped before all

units fail. The estimate from the censored data is less accurate than those from complete

data. However, this is more than offset by the reduced test time and expense. The most

common censoring schemes are type-I and type-II censoring. Consider n units placed on

life test. In conventional type-I censoring, the experiment continues up to a prespecified

time, T. Any failures that occur after that time are not observed. The termination point T

of the experiment is assumed to be s-independent of the failure times. But in conventional

type-II censoring, the experimenter terminates the experiment after a prespecified number

of units m n� fail. In this scenario, only the smallest lifetimes are observed. In type-I

censoring, the number of failures observed is random and the endpoint of the experiment is

fixed. While the number of failures is fixed in type-II censoring and the endpoint is

random.

According to [20–24], numerous articles in the literature have dealt with inference

under type-I and type-II censoring for various parametric families of distributions.

Conventional type-I and type-II censoring schemes do not allow removal of units at points

other than the terminal point of the experiment. This paper considers a generalized

censoring scheme which is progressive type-II censoring to save more time and cost
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associated with testing. It allows for the surviving units to be removed from the test at each

failure time. This type of censoring will be described in the next Section.

The main purpose of this paper is to study the optimal design problem of SSPALT for

units whose lifetimes follow the generalized Rayleigh distribution under progressive type-II

censoring scheme with binomial removals. The rest of this paper is organized as follows: In

Section 1 the test procedure and its assumptions are presented. Point and interval

estimations of the model parameters are considered in Section 2. In Section 3, optimum

SSPALT plans are developed under different progressive censoring schemes. In Section 4

simulation studies are conducted for illustrative purposes. Moreover, in Section 5 data

analysis via a numerical example is provided. Finally, Conclusions involve some important

notes and potential effort required in this track.

1. Test Procedure and Its Assumptions. As indicated by many authors, see for

example [25], the type-II progressive censoring scheme has received considerable interest

among the statisticians. It is a generalization of type-II censoring. Although progressively

type-II censored sampling is effective in time and cost, it is not very popular in lifetime

experiment. It may be due to the complicated calculation of the likelihood function.

According to [26], if an experimenter desires to remove live units at points other than

the final termination point of the life test, the traditional type II censoring scheme will not

be of use to the experimenter. Type II censoring does not allow for units to be lost or

removed from the test at points other than the final termination point. This allowance will

be desirable, as in the case of studies of wear, in which the study of the actual aging process

requires units to be fully disassembled at different stages in the experiment. Intermediate

removal may also be desirable when a compromise between reduced time of experimentation

and the observation of at least some extreme lifetimes is sought, or when some of the

surviving units in the experiment that are removed early on can be used for some other

tests. As in the case of accidental breakage of experimental units or loss of contact with

individuals under study, the loss of test units at points other than the termination point may

also be unavoidable. These reasons lead us directly into the area of progressive censoring.

This censoring scheme can be described as follows. Suppose that n units are placed

on a life test and the experimenter decides beforehand the quantity m, the number of units

to be failed. Now at the time of the first failure, R1 of the remaining n�1 surviving units

are randomly removed from the experiment. Continuing on, at the time of the second

failure, R2 of the remaining n R� �1 2 units are randomly withdrawn from the experiment.

Finally, at the time of the mth failure, all the remaining R n m R Rm m� � � � � �1 1...

surviving units are removed from the experiment. Some of the earlier work on progressive

censoring was conducted by [27–29]. Recently, several articles have been published on

estimating the parameters for different distribution functions, see, for example, [30–35]. A

recent account on progressive censoring schemes can be found in the excellent review

article introduced by [36]. In progressive type-II censoring, if R R Rm1 2 1� � � � �...

� �Rm 0, then n m� which is the complete sampling case. But if n m R Rm� � � � �1 ...

� �1 0, then R n mm � � which is the case of conventional type-II right censoring scheme.

In many reliability experiments, the pattern of removal at each failure is random. We

assume that any test unit being dropped out from the life test is independent of the others

but with the same removal probability (as a binomial parameter), p. Then, the number of

test units removed at each failure time has a binomial distribution, see for example [37]. As

indicated in [38], when such conditions are not satisfied or can’t be assumed, one can use

another distribution. In some cases, it can be assumed that the pattern of removal at each

failure is fixed. But the random assumption is more realistic than the fixed one.

Now, the following assumptions are considered:

(i) n identical and independent items are put on the life test;

(ii) the lifetime of each item has the GRD;

(iii) the test is finished at the mth failure, where m is pre-specified (m n� );
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(iv) each of the n units is first run under design condition. If it does not fail or

eliminate from the test by a pre-specified time �, it is put under severe condition;

(v) at the ith failure a random number of the remaining items, Ri , i�1, 2, ..., m�1,

are randomly chosen and eliminated from the test. Finally, at the mth failure, the living

units R n m Rm ii

m
� � �

�

�

	
1

1
are all eliminated from the test and the test is finished;

(vi) assume that an individual item being eliminated from the test is independent of

the others but with the same removal probability p. Then, the number of items eliminated

at each failure time follows a binomial distribution. That is, R n m p1 ~ ( , ).binomial �
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(vii) the lifetime, say Y , of an item tested under SSPALT can be expressed by
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where T is the lifetime of the item under use condition, � is the stress change time and �

is the acceleration factor, ��1. Therefore, the pdf of Y can be given by
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which is found by the transformation-variable procedure using f y1 ( ) and the model set in

(4).

Let ( , , , ),y ri i i i� �1 2 i m�1 2, , ... , , denote the observation obtained from a

progressively type-II censored sample with random removals in a SSPALT. Here
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As shown earlier, the number of items eliminated at each failure time follows a

binomial distribution. Then,
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For i m� �2 3 1, , ... , ,
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r n m r ri i( ... ). Moreover, assume that Ri is independent of Yi for

all i. Then the full likelihood function can be established as
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2. Parameter Estimation. This section deals with the process of finding the

maximum likelihood estimates (MLE) of the parameters �, �, and � based on

progressively type-II censored data with binomial removals. Both point and interval

estimations of the parameters are considered.

2.1. Point Estimation. In this subsection, the MLEs of the model parameters are

considered. From (5) we obtain the natural logarithm of the conditional likelihood function,

ln ,L1 as follows:
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where � � � �i iy� 
 �( ).

Since P R p( ; ) does not depend on the parameters �, �, and �, hence the MLEs of

�, �, and � can be derived by maximizing ln L1 directly. Similarly, since

L y R r1 ( ; , , | )� � � � does not include the binomial parameter p, the MLE of p can be

obtained by maximizing P R p( ; ) directly. In particular, the MLEs of �, �, and � can be

obtained by solving the following equations:
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Now, we have a nonlinear system of equations. It is very difficult to obtain a closed

form solution. The Newton–Raphson algorithm is applied to obtain the MLEs of the

unknown parameters numerically.

Independently, the MLE of the binomial parameter p can be found by solving the

following equation:
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2.2. Interval Estimation. Based on the asymptotic distributions of the MLEs of the

elements of the vector of unknown parameters $� ( , , ),� � � the approximate confidence

intervals of the parameters can be derived. It is known that the asymptotic distribution of

the MLEs of $ is given by [39],
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�N 0 1
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where I
�1 ( , , )� � � is the variance-covariance matrix of the unknown parameters $�
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Thus, the approximate 100 1( )%�) two-sided confidence bounds for �, �, and � are,

respectively, given by

� ( � , � , � ,/� � � �*
)

+
�Z I2 11

1
� ( � , � , � ),/� � � �

)
+

�Z I2 22
1

� ( � , � , � ),/� � � �
)

+
�Z I2 33

1

where Z
) / 2 is the upper ()/2)th percentile of a standard normal distribution.

3. Optimum Test Plans. The core intention of this section is to decide the optimal

stress-change time �
* based on progressive type-II censoring with binomial removals

using three different progressive censoring schemes. In step-stress setting, the experimenter

is often interested in estimating the mean life at use condition with high precision. The

mean lifetime is an important characteristic in reliability analysis. Practically, the optimum

test plans are important for improving the quality of the statistical inference. One selection

optimality criterion is the D-optimality criterion. It is used to determine the optimal value of

�.

The D-optimality criterion is based on the determinant of Fisher’s information matrix

F. It has been extensively used in the context of planning life test. If one is more interested

in estimation with high precision, a more reasonable criterion should be D-optimality,

which takes into account the overall parameter space. According to Bai et al. [40], it can be

constructed in terms of the generalized asymptotic variance (GAV) of the MLEs of the

model parameters. This GAV is proportional to reciprocal of the determinant of Fisher-

information matrix. So that maximizing this determinant is equivalent to minimizing GAV.

The criterion function is then expressed by

GAV ( � , � , � )
| |

.� , � �
1

F
(6)

Hence, the optimal stress-change time �
* is determined such that the GAV is

minimized.

4. Simulation Studies. To demonstrate theoretical results introduced in this article,

simulation studies are conducted. In order to evaluate the performance of the MLEs, the

mean square error (MSE), the average confidence interval lengths of the model parameters

and their coverage probabilities are obtained under three different progressive censoring

schemes. Also, the influences of the sample size n, the observation size m, and the

binomial parameter p on the accuracy of the parameter estimates are discussed.

The simulation studies are implemented based on the following algorithm:

(i) determine the value of n;

(ii) determine the value of m;

(iii) determine the values of the parameters �, �, �, and p;

(iv) determine the value of �;

(v) generate a random sample with size n and observation size m from the random

variable Y given by (4) and sort it. The generalized Rayleigh random variable can be

easily generated. For example, if U represents a uniform random variable from [0, 1], then

Y U� � ��
�[ ln( )]/ /1 1 1 2 has generalized Rayleigh distribution with the distribution function

given by (2). The true parameters values are set to be �� 2, �� 1.5, and �� 2.5;

(vi) generate a random number R1 from binomial ( , );n m p�

(vii) for i m� �2 3 1, , ... , , generate a random number Ri from binomial (n m� �

�
�

�

	 r pll

i
, );

1

1

(viii) set Rm according to the following relation:
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,
1

1

1

1

0

if

otherwise;

(ix) use the progressively type-II censored sample created in steps 5–8 to calculate the

MLEs of the parameters �, �, and �. The Newton–Raphson method is used to

simultaneously solve the nonlinear equations to get the MLEs of the model parameters;

(x) steps 5–9 are replicated 10,000 times.

(xi) calculate the MSE related to the MLEs of the parameters;

(xii) construct the confidence intervals width (CIW) for each parameter with

confidence level 1� �) 0.95;

(xiii) steps 1–12 are implemented with different values of n, m, and p.

Tables 1–3 give the MSE of the MLEs of �, �, and �. Also, these tables includes both

the CIW of the model parameters and their coverage probabilities against the values of n

when n� 30, 50, 75, and 100 and various m when p� 0.10, 0.25, and 0.50, respectively.

From the results presented in Tables 1–3, it can be concluded that:

1. For fixed m/n and p, the MSE associated with the parameter estimates decreases as

n increases.

2. For fixed n and p, as m decreases the MSE increases.

3. The effect of m on the precision of the MLEs of the parameters is influenced by the

value of removal probability p. As p increases, for fixed n and m/n, the MSE of the

parameter estimates increases.

4. For fixed m/n and p, the CIW decreases as n increases. But for fixed n and m/n, the

CIW increases as p increases.

5. For fixed m/n and small p, the CP is very close to the nominal level as n increases.

But for fixed n and m/n, the CP is not good as p is large.

6. For fixed n and p, as m decreases, the CP is considerably lower than the nominal

level.

Therefore, it can be said that as the sample size n increases and the effective sample

proportion m/n increases, the act of the MLEs in terms of MSE become better unless p is

large. A higher value of p leads to higher values of MSE. When p increases, the experiment

is terminated more quickly. But it is important to note that with a highly larger p the

experiments will be less informative and lead to larger standard errors in estimates. These

results coincide with the note of Wu et al. [41]. Regarding the effect of � on MSE of the

parameter estimates, it can be said that a small value of � gives a better estimate in the

sense of having smaller MSE.

As coincided with the note of Wu and Huang [42], the design of an optimal life test

already enables us to obtain estimations of high degree of precision. They said that in order

to obtain a precise estimate of mean life, one needs to design an optimal life test. So, in this

section, the optimal choice of � is explored. Optimum test plans have been developed here

numerically under different values of n, m, and p. The numerical results of the optimal

stress change-time �
* under different progressive censoring schemes, as well as the

optimal GAV of the MLEs of the model parameters are given in Table 4. The optimal GAV

is numerically obtained with �
* in place of �.

From the results shown in Table 4, it can be detected that:

1. For fixed m/n and p, both the optimal stress change-time �
* and the optimal GAV

of the MLEs of the model parameters decrease as the sample size n increases. That is, good

estimates of the model parameters are obtained.

2. For fixed n and p, as m decreases both �
* and the optimal GAV of the MLEs of the

model parameters increase. That is, inefficient estimates of the model parameters are

obtained.
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3. For fixed n and m/n, as p increases both the optimal stress change-time �
* and the

optimal GAV of the MLEs of the model parameters increase.

5. Data Analysis: An Illustrative Example. To show the applicability of the

methodology presented in this article, a numerical example is displayed. Generalized

Rayleigh model is used to fit the data set. To confirm the power of the model, we compute

the Kolmogorov–Smirnov (K–S) distance between the empirical distribution function and
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Results for p� 0.10: Average Values of MSE, CIW, and CP when � , �, �, and � Set

at 1.5, 2, 2.5, and 5, Respectively

n m MSE
�

�
MSE

��
MSE

�

�
CIW ( )� CIW ( )� CIW ( )� CP( )� CP( )� CP( )�

30 30

25

0.001217

0.001462

0.002219

0.002946

1.893067

2.642556

1.275569

1.296151

1.475701

1.960679

2.425164

2.657831

0.9452

0.9438

0.9445

0.9428

0.9431

0.9422

50 50

45

40

35

30

25

0.000485

0.000536

0.000618

0.000796

0.001126

0.001703

0.001656

0.001914

0.002246

0.002439

0.005353

0.005636

1.013526

1.131995

1.330531

1.906093

2.512575

3.720213

0.508048

0.561169

0.647662

0.833581

1.179544

1.784301

1.102341

1.273663

1.495169

1.623662

3.563141

3.751335

1.268735

1.363604

1.602377

1.702679

1.886014

2.127013

0.9463

0.9445

0.9381

0.9353

0.9332

0.9293

0.9457

0.9438

0.9374

0.9347

0.9326

0.9286

0.9443

0.9427

0.9364

0.9336

0.9315

0.9272

75 75

70

65

60

55

50

45

40

35

30

25

0.000347

0.000381

0.000425

0.000594

0.000739

0.000852

0.001207

0.001512

0.002256

0.003028

0.003561

0.001141

0.001879

0.002037

0.002251

0.003069

0.003569

0.004066

0.004731

0.005156

0.005656

0.005944

0.735891

0.826313

0.944028

1.177313

1.483242

1.727252

2.687445

3.981686

4.898563

6.279956

7.913035

0.363671

0.399084

0.445394

0.622461

0.775012

0.892832

1.264673

1.584076

2.363855

3.172238

3.730682

0.759266

1.043733

1.107462

1.152765

1.318365

1.421446

2.375571

2.706533

3.148681

3.431621

3.764314

0.837441

1.054683

1.248992

1.345457

1.526344

1.731061

1.941812

1.980412

2.264005

2.537966

2.961408

0.9558

0.9539

0.9474

0.9446

0.9425

0.9383

0.9372

0.9367

0.9313

0.9318

0.9267

0.9551

0.9531

0.9465

0.9437

0.9419

0.9374

0.9363

0.9356

0.9305

0.9307

0.9259

0.9541

0.9522

0.9457

0.9429

0.9408

0.9368

0.9355

0.9349

0.9296

0.9298

0.9251

100 100

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

0.000159

0.000168

0.000185

0.000246

0.000366

0.000511

0.000752

0.000931

0.001186

0.001443

0.001719

0.002103

0.002419

0.002761

0.003592

0.004183

0.00667

0.000874

0.001126

0.001281

0.001405

0.001879

0.002016

0.002165

0.002412

0.003345

0.004525

0.004791

0.005329

0.005468

0.006128

0.006242

0.326703

0.377281

0.398866

0.497412

0.731985

1.022658

1.395732

2.017223

2.574228

3.029566

3.550372

4.369404

5.348727

6.010147

7.634965

8.796061

3.730682

0.166852

0.175706

0.194094

0.258110

0.383422

0.535291

0.787952

0.975916

1.242199

1.509162

1.801324

2.203132

2.534113

2.892334

3.763372

0.443878

0.581887

0.749315

0.852714

0.935346

1.250733

1.342018

1.440661

1.605491

2.226314

3.011972

3.188484

3.547133

3.639716

4.078836

4.154546

0.602627

0.791056

0.934575

1.164924

1.301911

1.552325

1.672194

1.869879

1.906743

1.956241

2.169941

2.310687

2.455186

2.847099

3.179888

3.517201

0.9511

0.9524

0.9481

0.9467

0.9441

0.9426

0.9423

0.9384

0.9379

0.9354

0.9284

0.9277

0.9261

0.9257

0.9251

0.9246

0.9504

0.9517

0.9472

0.9462

0.9435

0.9421

0.9411

0.9376

0.9374

0.9347

0.9276

0.9269

0.9253

0.9246

0.9244

0.9238

0.9496

0.9506

0.9463

0.9447

0.9424

0.9409

0.9403

0.9366

0.9363

0.9338

0.9268

0.9262

0.9244

0.9239

0.9234

0.9231

Planning Step-Stress Life Tests ...



the fitted distribution function when the parameters estimates are obtained by the maximum

likelihood method. The result of K–S test is D� 0.0691 with p� 0.483. This result

observably shows that the generalized Rayleigh model provides excellent fit to the data set.

Thus, it can be used successfully for modeling this data set. Assuming generalized Rayleigh

distribution under progressive type-II censoring scheme with binomial removals we use

n� 36, �� 2.2, �� 1.25, �� 2.5, �� 9, m� 21, and P� 0.20. The MSE of the MLEs of
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Results for p� 0.25: Average Values of MSE, CIW, and CP when � , �, �, and � Set

at 1.5, 2, 2.5, and 5, Respectively

n m MSE
�

�
MSE

��
MSE

�

�
CIW ( )� CIW ( )� CIW ( )� CP( )� CP( )� CP( )�

30 30

25

0.001704

0.002047

0.003547

0.004714

2.082374

2.906812

1.658241

1.684996

1.962682

2.607703

2.885945

3.162819

0.9357

0.9344

0.9256

0.9239

0.9148

0.9139

50 50

45

40

35

30

25

0.000679

0.000752

0.000865

0.001114

0.001576

0.002384

0.002652

0.003062

0.003594

0.003902

0.008565

0.009018

1.114879

1.245195

1.463584

2.096702

2.763833

4.092231

0.660462

0.729523

0.841961

1.083655

1.533407

2.319591

1.466114

1.693972

1.988575

2.15947

4.738978

4.989276

1.509795

1.622689

1.906829

2.026188

2.244357

2.531145

0.9368

0.9351

0.9287

0.9259

0.9239

0.9231

0.9268

0.9249

0.9187

0.9163

0.9139

0.9131

0.9167

0.9144

0.9083

0.9056

0.9036

0.8994

75 75

70

65

60

55

50

45

40

35

30

25

0.000486

0.000533

0.000595

0.000832

0.001035

0.001193

0.001692

0.002117

0.003158

0.004239

0.004985

0.001826

0.003006

0.003259

0.003602

0.004912

0.005713

0.006506

0.007572

0.008252

0.009054

0.009516

0.809482

0.908944

1.038431

1.295044

1.631566

1.899977

2.956193

4.379855

5.388419

6.907952

8.704339

0.472772

0.518809

0.579012

0.809199

1.007516

1.160682

1.644075

2.059299

3.073012

4.123909

4.849887

1.009824

1.388165

1.472924

1.533177

1.753425

1.890523

3.159509

3.599689

4.187746

4.564056

5.006538

0.996555

1.255073

1.486371

1.601094

1.816349

2.059963

2.310756

2.356694

2.694166

3.020182

3.524076

0.9462

0.9444

0.9379

0.9352

0.9331

0.9289

0.9278

0.9273

0.9221

0.9225

0.9174

0.9364

0.9342

0.9276

0.9248

0.9231

0.9187

0.9176

0.9169

0.9119

0.9121

0.9074

0.9255

0.9236

0.9173

0.9146

0.9126

0.9087

0.9074

0.9069

0.9017

0.9019

0.8973

100 100

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

0.000223

0.000235

0.000259

0.000344

0.000512

0.000715

0.001053

0.001303

0.001662

0.002021

0.002407

0.002944

0.003387

0.003865

0.005029

0.005856

0.001067

0.001398

0.001802

0.002050

0.002248

0.003006

0.003226

0.003464

0.003859

0.005352

0.007241

0.007666

0.008526

0.008749

0.009805

0.009987

0.359373

0.415008

0.438753

0.547153

0.805184

1.124924

1.535305

2.218945

2.831651

3.332523

3.905409

4.806344

5.883632

6.611162

8.398462

9.675667

4.849887

0.216908

0.228418

0.252322

0.335543

0.498449

0.695878

1.024338

1.268691

1.614859

1.961911

2.341721

2.864072

3.294347

3.760034

4.892384

0.590358

0.773911

0.996589

1.134113

1.244016

1.663475

1.784884

1.916079

2.135303

2.960998

4.005923

4.240684

4.717687

4.840822

5.424852

5.525546

0.717126

0.941357

1.112144

1.386261

1.549274

1.847267

1.989911

2.225156

2.269024

2.327927

2.582235

2.749718

2.921671

3.388048

3.784067

4.185469

0.9416

0.9429

0.9386

0.9372

0.9347

0.9332

0.9329

0.9291

0.9285

0.9262

0.9191

0.9184

0.9168

0.9164

0.9158

0.9154

0.9314

0.9327

0.9283

0.9273

0.9246

0.9233

0.9223

0.9188

0.9187

0.9162

0.9091

0.9084

0.9068

0.9061

0.9059

0.9053

0.9211

0.9221

0.9179

0.9164

0.9141

0.9127

0.9121

0.9085

0.9082

0.9058

0.8991

0.8984

0.8967

0.8962

0.8957

0.8954
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�, �, and � are respectively 0.001941, 0.002811, and 1.005113. The CIW of �, �, and �

are 1.450012, 2.381473, and 2.796281 with CP 0.9360, 0.9287, and 0.9150, respectively.

Using the same settings of the life-testing experiment with different items, the results of the

test design are as follows. The optimal stress change-time �
* and the optimal GAV of the

MLEs of the model parameters are respectively 8.3441 and 0.041532.
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T a b l e 3

Results for p� 0.50: Average Values of MSE, CIW, and CP when � , �, �, and � Set

at 1.5, 2, 2.5, and 5, Respectively

n m MSE
�

�
MSE

��
MSE

�

�
CIW ( )� CIW ( )� CIW ( )� CP( )� CP( )� CP( )�

30 30

25

0.002386

0.002866

0.004966

0.006631

2.498849

3.488174

2.155713

2.190495

2.355218

3.129244

3.174545

3.479101

0.9168

0.9157

0.9071

0.9054

0.8965

0.8956

50 50

45

40

35

30

25

0.000951

0.001053

0.001211

0.001563

0.002206

0.003338

0.003713

0.004287

0.005032

0.005463

0.011991

0.012625

1.337855

1.494234

1.756301

2.516042

3.316641

4.910677

0.858601

0.948382

1.094549

1.408752

1.993429

3.015468

1.759337

2.032766

2.386291

2.591364

5.686774

5.987131

1.660775

1.784958

2.097512

2.228807

2.468793

2.784264

0.9181

0.9164

0.9101

0.9074

0.9054

0.9046

0.9083

0.9064

0.9003

0.8982

0.8956

0.8948

0.8984

0.8961

0.8901

0.8875

0.8855

0.8814

75 75

70

65

60

55

50

45

40

35

30

25

0.000682

0.000746

0.000833

0.001165

0.001449

0.001676

0.002369

0.002964

0.004421

0.005935

0.006979

0.002556

0.004208

0.004563

0.005043

0.006877

0.007998

0.009108

0.010601

0.011553

0.012676

0.013322

0.971378

1.090733

1.246117

1.554053

1.957879

2.279972

3.547432

5.255826

6.466103

8.289542

10.44521

0.614604

0.674452

0.752716

1.051959

1.309771

1.508887

2.137298

2.677089

3.994916

5.361082

6.304853

1.211789

1.665798

1.767509

1.839812

2.104113

2.268628

3.791411

4.319627

5.025295

5.476867

6.007846

1.096211

1.380582

1.635008

1.761203

1.997984

2.265959

2.541832

2.592363

2.963583

3.322241

3.876484

0.9181

0.9164

0.9101

0.9074

0.9054

0.9046

0.9181

0.9164

0.9101

0.9074

0.9054

0.9177

0.9155

0.9091

0.9063

0.9046

0.9003

0.8992

0.8986

0.8937

0.8939

0.8893

0.9072

0.9051

0.8994

0.8963

0.8943

0.8905

0.8893

0.8888

0.8837

0.8839

0.8794

100 100

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

0.000312

0.000329

0.000363

0.000482

0.000717

0.001001

0.001474

0.001824

0.002327

0.002829

0.003372

0.004122

0.004742

0.005411

0.007041

0.008198

0.001494

0.001957

0.002523

0.002872

0.003147

0.004208

0.004516

0.004853

0.005403

0.007493

0.010137

0.010732

0.011936

0.012249

0.013727

0.013982

0.431248

0.498011

0.526504

0.656584

0.966221

1.349909

1.842366

2.662734

3.397981

3.999028

4.686491

5.767613

7.060358

7.933394

10.07815

11.61082

6.304853

0.281983

0.296943

0.328019

0.436206

0.647984

0.904641

1.331639

1.649298

2.099317

2.550484

3.044237

3.723294

4.282651

4.888044

6.460099

0.708432

0.928693

1.195907

1.360936

1.492819

1.996172

2.141861

2.299295

2.562364

3.553198

4.807108

5.088821

5.661224

5.808986

6.509822

6.630655

0.788839

1.035493

1.223358

1.524887

1.704201

2.031994

2.188902

2.447672

2.495926

2.560723

2.840459

3.024691

3.213838

3.726853

4.162474

4.604016

0.9228

0.9241

0.9198

0.9185

0.9162

0.9145

0.9142

0.9105

0.9099

0.9077

0.9007

0.9011

0.8985

0.8981

0.8975

0.8971

0.9128

0.9142

0.9097

0.9088

0.9061

0.9048

0.9039

0.9004

0.9003

0.8979

0.8909

0.8902

0.8887

0.8883

0.8878

0.8872

0.9027

0.9037

0.8995

0.8981

0.8958

0.8944

0.8939

0.8903

0.8931

0.8877

0.8811

0.8804

0.8788

0.8783

0.8778

0.8775
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Conclusions. The issue of progressive type-II censoring has received care in the past

few years. The GRD can be used quite effectively in modeling strength data and also

modeling general lifetime data. MLEs of parameters of the GRD were discussed using
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T a b l e 4

Average Values of Optimal � and Optimal GAV;

Considering Three Different Cases of p, � , �, and �

n m �
*(1) Optimal

GAV
(1)

�
*(2) Optimal

GAV
(2)

�
*(3) Optimal

GAV
(3)

30 30

25

6.1328

7.3656

0.024364

0.034012

8.1213

11.3372

0.040607

0.056686

11.1873

14.8639

0.073092

0.102035

50 50

45

40

35

30

25

2.4441

2.7062

3.1123

4.0169

5.6694

8.5787

0.013044

0.014569

0.017125

0.024531

0.032338

0.047882

4.3481

4.8563

5.7082

8.1771

10.7793

15.9605

0.021741

0.024282

0.028541

0.040886

0.053897

0.079803

8.3569

9.6556

11.3351

12.3094

27.0121

28.4399

0.039133

0.043707

0.051374

0.073594

0.097014

0.143645

75 75

70

65

60

55

50

45

40

35

30

25

1.7527

1.9172

2.1408

2.9941

3.7239

4.3073

6.0883

7.6175

11.3621

15.2531

17.9362

0.009472

0.010635

0.012152

0.015152

0.019089

0.022231

0.034587

0.051243

0.063047

0.080824

0.101842

3.1572

3.5449

4.0499

5.0507

6.3631

7.4099

11.5292

17.0811

21.0156

26.9414

33.9472

0.015786

0.017725

0.020253

0.025254

0.031816

0.027052

0.057645

0.085406

0.105078

0.134707

0.169736

5.7562

7.9125

8.3957

8.7391

9.9945

10.7763

18.0091

20.5183

23.8751

28.0156

36.5378

0.028415

0.031904

0.036449

0.045456

0.057268

0.066689

0.103761

0.153732

0.189141

0.242473

0.305525

100 100

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

0.8018

0.8455

0.9329

1.2387

1.8427

2.5726

3.7882

4.6877

5.9804

7.2705

8.6661

10.5942

12.1873

13.9062

18.0951

21.0697

0.004205

0.004856

0.005233

0.006402

0.009421

0.013162

0.017963

0.025962

0.033132

0.038993

0.045694

0.056236

0.068838

0.077355

0.98264

0.113206

1.4016

1.6185

1.7111

2.1339

3.1402

4.3872

5.9877

8.6539

11.0434

12.9976

15.2312

18.7454

22.9461

25.7849

32.7547

37.7354

0.007008

0.008093

0.008556

0.010674

0.015701

0.021936

0.029939

0.043278

0.055217

0.064988

0.076156

0.093727

0.114731

0.128925

0.163774

0.188677

3.3651

4.4113

5.6806

6.4644

7.0909

9.4818

10.1741

10.9224

12.1717

16.8788

22.8340

24.1722

26.8916

27.5932

35.9226

39.4965

0.012614

0.014567

0.015443

0.019205

0.028262

0.039485

0.053889

0.077885

0.099391

0.116978

0.137081

0.168709

0.206515

0.232064

0.294792

0.339619

(1) When p� 0.10 and � , �, and � set at 1.5, 2, and 2.5, respectively;
(2) when p� 0.25 and � , �, and � set at 1.5, 2, and 2.5, respectively;
(3) when p� 0.50 and � , �, and � set at 1.5, 2, and 2.5, respectively.
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progressively type-II censored data with binomial removals. The performance of the MLEs

was assessed numerically. In addition, the roles of sample size n, failure size m, and

removal probability p toward the accuracy of estimations were explored via simulation

studies. It can be concluded that as both the sample size n and the effective sample fraction

m/n increase, the performance of the MLEs become better unless p is large.

Moreover, statistically optimum step-stress partially accelerated life test plans have

been developed. The optimality criterion adopted is the minimization of the GAV of the

MLEs of the model parameters. That is, �
* is obtained such that the GAV is minimized.

Thus, the optimal design of the life tests can be considered as a technique to improve the

quality of the statistical inference. This issue agrees with the annotation of Wu and Huang

[38]. In order to obtain a precise estimate of mean life, one needs to design an optimal life

test. As a future work, the Bayesian inference in the case of SSPALT under the same

censoring schemes proposed in this paper will be considered. Also, the optimum test plans

will be explored under constant-stress PALT using progressively type-II censored data

which is an extension to the work of Ismail [43].

Ð å ç þ ì å

Ðîçãëÿíóòî ïàðàìåòð îö³íêè ³ îïòèìàëüíå ïðîåêòóâàííÿ ÷àñòêîâî ïðèñêîðåíèõ âè-

ïðîáóâàíü íà äîâãîâ³÷í³ñòü ïðè ñòóïåíåâîìó íàâàíòàæåíí³ íà îñíîâ³ óçàãàëüíåíîãî

ðåëå¿âñüêîãî ðîçïîä³ëó ïðè ïðîãðåñèâíîìó öåíçóðóâàíí³ òèïó ²² ç á³íîì³àëüíèìè

âèáîðêàìè. ßê ôàêòîð ïðèñêîðåííÿ âèêîðèñòîâóþòüñÿ ìàêñèìàëüí³ îö³íêè ³ìîâ³ð-

íîñò³ ïàðàìåòð³â ìàñøòàáó ³ ôîðìè, ÿê³ óçãîäæóþòüñÿ ì³æ ñîáîþ. Ïîáóäîâàíî

íàáëèæåí³ äîâ³ð÷³ ³íòåðâàëè ïàðàìåòð³â ìîäåë³ ³ ðîçðàõîâàíî ãðàíèö³ ³ìîâ³ðíîñò³.

Ðîçðîáëåíî îïòèìàëüí³ ïëàíè âèïðîáóâàíü ³ç ìåòîþ ïîêðàùàííÿ ñòàòèñòè÷íîãî

àíàë³çó. Çàïðîïîíîâàíî ðåçóëüòàòè ìîäåëþâàííÿ ³ ÷èñëîâèé ïðèêëàä.
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