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A feedforword neural network o f  multi-layer topologies fo r  systems with hysteretic nonlinearity was 
constructed based on the Bouc-Wen differential model. The proposed model not only reflects the 
hysteresis force characteristics o f the Bouc-Wen model, but can also determine the corresponding 
parameters. The simulation results demonstrate that the restoring force-displacement curve hysteresis 
loop closely represents real curves. The trained model can accurately predict the time response o f the 
system. By comparing results obtained by the proposed model with real responses, the model was 
validated in the presence o f  noise and exhibits increased modeling precision, good generalizability 
and anti-interference capability.
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In tro d u c tio n . Piezoelectric ceram ic actuators such as m agneto rheological damper, as 
w ell as dry friction dam ping steel w ire rope and nonlinear delay systems exist in 
mechanical isolation systems, earthquake engineering, civil engineering, aerospace structural 
dam ping systems, etc. [1, 2]. A ccurate m odeling is im portant to the analysis and response 
prediction o f  a dynam ic system, and has attracted w ide research attention. The B ouc-W en 
m odel is a w idely used non-linear phenom enological m odel w hich describes the smooth 
hysteresis behavior o f  the lag elem ent according to a nonlinear differential equation [3, 4]. 
The nonlinear restoring force is divided into two com ponents' the nonlinear an hysteretic 
restoring force related only to the instantaneous displacem ent and speed o f  the structure, 
and the pure lag restoring force related to the structure o f  the displacem ent tim e history 
w hich can be described by  a first-order nonlinear differential equation [5-7].

In the present study, the use o f  B ouc-W en m odel is used for the topological design 
o f  the neural netw ork layer. The corresponding relationship betw een netw ork w eights and 
the m odel param eters was established. A  neural netw ork m odel is obtained by network 
training, w hich reflects not only the hysteresis force characteristics o f  the B ouc-W en 
m odel, but also the corresponding m odel parameters.

1. M a th em atic a l M odel o f H ysteresis N o n lin ear System s. In practical engineering 
applications, it is necessary to establish the m athem atical description o f  the hysteretic 
nonlinear force in  order to analyze the hysteresis nonlinear dynam ics o f  the system. The 
B ouc-W en differential m odel can describe the various forms o f  smooth hysteresis 
nonlinearity [8-10]. As long as it is appropriate to change its param eters, the proposed 
m odel can describe the various types o f  hysteresis loops, described as follows'

R  (t ) =  b x ( t)+  z ( t ), (1)

Z =  T]X(t)— P\X( t )| z| z |n 1 — yX( t )| z |n . (2)

Equation (2) can be rew ritten as follows'

Z ( t ) =  1]X( t ) —f t X ( t ) | |Z ( t ) |n sgn[Z (t) ]—y X (t) |Z (t) |n . (3)
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In Eqs. (1)-(3), R ( t  ) is the system  lag restoring force, bx(t ) is the non-lag 
component, Z (t  ) is the lag component, b, 3 , y , and n are the parameters to be identified.
A m ong the identifiable param eters, b, ^ , 3 , and y control the shape o f  the hysteresis 
curve, while n controls smoothness o f  the transition zone in the hysteresis curve.

2. M odeling  P rinc ip les  B ased on th e  B ouc-W en  M odel. The B ouc-W en differential 
m odel reflects the relationship betw een the lag force and the deform ation displacement. 
The relationship betw een the restoring force and deform ation is determ ined by the five 
unknow n parameters.

A ccording to the relationship betw een the restoring force and deform ation, by 
constructing a series o f  activation function, describing the differential equation by specific 
neural network topology structure, correspond to the network weights and model parameters. 
The neural netw ork m odel o f  the system is able to obtain the lag resilience by  the training 
o f  the custom  network. The m odeling principle is shown in Fig. 1.

Fig. 1. Principle of hysteresis nonlinear system modeling.

3. N eu ra l N etw o rk  Topology B ased on th e  B ouc-W en  M odel. In order to construct 
a neural netw ork topology, Eq. (1) m ust be discretized to obtain the following:

R  (t ) =  b x ( t)+  z  ( t ). (4)

A fter the first order differential forward on Eqs. (2) and (3) can be w ritten as follows:

r(k ) -  r(k  -  1) b[x (k ) - x (k  -  T ) ] , . ^  _
 T  =  t  + z (t  ̂  (5)

z ( t ) = -?№  y «  - 1)] -  № ( t )| z ( t ) |z  (t ) r - i - rl-z ( t >r  № ) - x <k - 1 ) ] , (6)

where T  is the sam pling interval, and k  and k -  1 define the sam pling time. Equations (5) 
and (6) are then com bined, and the difference equation indicates the relationship between 
the restoring force, displacem ent and speed as follows:

R  (k ) =  R  (k  -  1)+ b[x( k ) - x( k  - 1)] + TqX (k  -  1 ) -  Tfi\X (k  -  1)||[ R  (k  - 1 ) -  bx(k -  1)]|r X

X sgn[ R  ( к  — 1)— bx( к  — 1)]— Tyx ( к  — 1)|[R (k — 1)— bx(k — 1)]|"
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4. C o n s tru c tio n  o f N eu ra l N etw o rk  Topology. A ccording to Eq. (7), the neural 
netw ork topology shown in Fig. 2 can be constructed to achieve hysteresis nonlinearity 
m ultilayer feedforw ard neural network m odeling betw een the restoring force and 
displacement.

A s shown in Fig. 2, the m odel param eter inform ation and structural inform ation is 
em bedded in  the m ultilayer feedforw ard neural network w hich is integrated into the 
structure, and m ust be identified by  previous knowledge of the model. In  the M ATLAB 
environm ent, a custom  neural netw ork is generated by  the com m and net =  network, known 
as the init function, w hich initializes the network w ith a w eight-defined initialization 
function to create a hybrid network, training and learning, until the requirem ents of training 
perform ance indicators are met.
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Fig. 2. Multilayer feedforward neural network modeling.
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5. C o n s tru c tio n  o f N eu ra l N etw o rk  Topology. U sing three groups o f  experimental 
response data, custom  neural network training is achieved as shown in Fig. 2. Because the 
created network is static, training is achieved through the im proved BP algorithm. The 
training result parameter values are presented in Table 1. With the exception o f  parameter y, 
all param eters are nearly identical to their nom inal values.

T a b l e  1
Neural Network Modeling Results Based on the Bouc-W en Model

Parameter Parameter values training of differential model
Nominal value No noise £ = 5% £ =10% £=15%

b 0.1 0.1089 0.1317 0.1613 0.1668
1.0 0.9894 1.0385 1.0710 0.9468

ß 0.8 0.9954 1.1689 1.7103 2.2500
n 1.5 1.4980 1.6111 1.6860 1.3010

V 0.2 0.0060 0.1746 0.4144 0.3021

By com paring Fig. 3, results indicate that the restoring force-displacem ent hysteresis 
loop curve and the real hysteresis loop curve are nearly identical.

A s show n in Fig. 4, the contrast betw een the predicted steady-state response and the 
real system response under the three levels o f  m otivation indicates that the training model 
can accurately predict the tim e response o f  the system.

Real curve Predicted curve

Fig. 3. Three types of real and predicted horizontal excitation resilience-displacement hysteresis
curves.

30 35 //s 40 45 50

Fig. 4. Comparison of steady-state responses under the three levels of motivation (solid lines 
correspond to real curve and dashed lines -  predicted curve).
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Fig. 5. Hybrid models to predict compared with real response for Xg4 = 6.0: (a) restoring force; 
(b) acceleration.

In order to test the training ability o f  the hybrid netw ork m odel, the predicted response 
is calculated and com pared to the real response, as show n in Fig. 5. The hybride network 
m odel is still able to accurately predict the system response and the hysteresis curve, and 
exhibits good generalizability.

6. M odel P erfo rm a n ce  in  th e  P resence of Noise. It is assum ed that the restoring 
force data representing the three levels o f  m otivation is polluted by noise, expressed as 
follows:

R j (t  ) =  R j (t )+£rj R j o , (8)

where rj is the norm al distribution w ith zero m ean unit variance random  signal sequence, 
R j o is the m agnitude o f  the restoring force j ,  and £ is the noise level.

Fig. 6. Hybrid models to predict compared with real response for £ = 5%: (a) restoring force; (b) 
acceleration.

The hybrid netw ork is separately trained in the use o f  data w here £ is equal to 5, 
10, and 15%. The training param eters are shown in Table 1. W hen the noise level is equal 
to 5%, the training param eters exhibit some deviation. However, the sim ulation m odel is 
still able to accurately predict the response o f  the system  w ith hysteresis characteristics as 
shown in Fig. 6. Additionally, the results depicted in Table 1 also indicate that the value of 
the error param eter during training gradually increases w ith noise level. Thus, the influence 
o f  noise can be reduced by increasing the training sample data.

232 ISSN 0556-171X. npoÖÄeubi 2017, N2 1



Modeling o f Nonlinear Isolation System

C o n c l u s i o n s

1. In the present study, a B ouc-W en differential m odel o f  delayed nonlinear systems 
was presented, a m ultilayer feedforward neural network m odel o f  neural network topology 
was constructed and the proposed model w as trained w ith experim ental response data.

2. Sim ulation results indicate that the obtained restoring force-displacem ent hysteresis 
loop curves and the real hysteresis loop curves were nearly identical, dem onstrating that the 
trained model can accurately predict the tim e response o f  the system.

3. Results indicate that the m odel exhibits good generalizability based on com parison 
with real response data.
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