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Paccmampusaiomes wacmuuno yckopennvle pecypcrvle UCHbIMAHUA NPU NOWA2080M UMEHeHUU
Hanpsadlcenull, npu KOMopvix NOCMYAUPYemcs, Ymo 6peMs 00 paspyuleHus. Xapakmepuzyemes pacnpe-
Oenenuem Jlomaxca npu yensypuposanuu paspyuienus. Ilonyuenvt nokazamenu MaKCUManbHOU 6epo-
AMHOCMU NAPAMEmPo8 OAHHOU MOOeIU U COOMBEMCMaYIoujie cpeoHeKeaopamuitvle OmKIOHeHUs, d
makoice paccuumansl 0oeepumenvHvle UHMEPEANbl NAPAMEMpPO8 C COOMEEMCMEYIOUUMU BEPOM-
HOCMAMU NOKpbimus. M3yuensl onmumanshble 6apuanmol npoeedenus pecypcHvlx ucnlmanui. /s
sepudurayul NOIYYeHHbIX MeopPemuieckux pe3yabmamos 6blNOIHEHO YUCTeHHOe MOOenuposanue
mecmoguix 3a0ad.

Kniwouegvie cnosa: HanpsokeHue, pacrpesencHne Jlomakca, 9acCTHIHOE yCKOPEHNE, OIIEHKA
HMHTEpBasa, BEPOSATHOCTb MOKPBITHUS, ONTUMAJIbHBIN IJIaH UCIIBITAHUH, LIEH3ypUPOBaHUE 110
tuny 1, ypasaenus Hetotona—Padcona, HeTMHEHHOCTH, MOISIMPOBAHIE 1T0 MeTOy MoOHTe-
Kapso.

Introduction. To quickly obtain failures of highly-reliable modern electronic systems,
exceptional testing methods identified as accelerated life tests (ALT) are applied. In an
ALT, the pieces are run under conditions far harsher than those met in practice. Standing or
suggested life-stress model that relate the stress level to the parameters of life distribution
are then applied to induce the observed results under design stress. In such tests, either time
is compacted, in which a device is applied more repeatedly than it would be in the normal
setting, while the loads and stresses are retained at their ordinary levels, or loads on the
device are increased to gain failures in a shorter time period. (For more details, see [1].)

However, if the life-stress relationship can not be assumed, ALT can’t be applied. In
such cases partially accelerated life test (PALT) come to be a good alternative instead of
ALT. As indicated by Ismail [2-4], ALT and PALT are commonly used in up-to-date
industrial engineering to save time and cost.

As mentioned by Nelson [5], the loads can be used in many techniques. One approach
used to hasten failure is the step-stress. This article studies the step-stress PALT (SSPALT),
in which a test specimen is first run at design stress and, if it does not fail for an identified
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time 7, then it is run faster until failure occurs or the observation is terminated. As
Bhattacharyya and Soejoeti [6] have indicated, the step-stress PALT is useful for numerous
applications of life testing.

There is a vast literature on SSPALT. Goel [7] discussed the estimation process of the
acceleration factor 8 by means of the maximum likelihood approach for pieces having the
exponential distribution and uniform distribution under complete sampling. Also, he got the
optimal test designs. DeGroot and Goel [8] studied the following SSPALT model: Y =T if
T'st and Y = r+ﬁ_1(T—r) if T>7, where T is the lifetime of an specimen under

design stress and Y is its total lifetime. Bhattcharyya and Soecjoeti [6] suggested a
failure-rate model, in which h'(y)=h(y) if y<t and h'(y)= Bh(y) if y>rt, where
h(.) and h'(.) are failure rate functions of 7" and Y, respectively. Also, Bhattcharyya and
Soejoeti [6] found the estimates of the model parameters by the maximum likelihood
procedure under full sampling when T follows the Weibull distribution.

Using type-I censored data, some works on PALT have been conducted. For example,
Bai and Chung [9] applied the maximum likelihood technique to estimate the scale
parameter and the acceleration factor for exponentially distributed lifetime. They also
discussed the problem of optimally designing the SSPALT that terminates at a fixed time.
Bai et al. [10] extended the same work of Bai and Chung [9] to the case of pieces having
the lognormal distribution. Abdel-Ghaly et al. [11] used the maximum likelihood way for
estimating the acceleration factor and parameters of the Weibull distribution. Ismail [12]
discussed the estimation process of the generalized exponential distribution parameters and
the acceleration factor under progressive type-II censoring. Ismail [13] developed test plans
of time-step PALTs under the Weibull distribution with a failure-censoring scheme. Also,
Srivastava and Mittal [14] studied the optimum step-stress PALTs under the truncated
logistic distribution using type-I and type-II censored data. This article addresses the
optimum failure-censored PALT plans under the Lomax model.

This article is structured as follows. The Lomax distribution as a lifetime model is
presented in Section 1. Section 2 contains the derivation of both maximum likelihood
estimates (MLE) of the Lomax distribution parameters and the acceleration factor and the
confidence bounds of the model parameters. Section 3 considers the ptimum step-stress
PALT plans under failure-censoring. To clarify the theoretical results, simulation studies are
provided in Section 4. Finally, some concluding remarks are presented in Section 5.

1. Model. In this article, it is assumed that the life distribution is the Lomax one. The
probability density function of this distribution is expressed by

rwo.a=—""_ " >0 6>0 a>0 |
T\t Uy (0+t)a+l 5 > > g ( )
The reliability function is given by
06{
R(t)y=—. 2
O+1)* )
The failure-rate function is
a
h(t)=—,
(=50 )

which is a decreasing function as ¢> 0, indicating the early failure stage. According to
Martz [1], this type of failures may be due to initial defects, bad assembly or poor fits, etc.
Hence, as indicated by Abdel-Ghaly et al. [15], the Lomax distribution may be applied as a
reliability growth model.
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Grimshaw [16] used the Lomax distribution to model tensile-strength data from a
random sample of nylon carpet fibers. Also, as stated by Davis and Feldstein [17] and Abdel-
Ghaly et al. [15], it has been used in connection with reliability theory and survival analysis.

2. ML Estimation. As shown by Grimshaw [16], the ML technique is usually applied
for most theoretical models and styles of censored data. Also, Bugaighis [18] indicated that
the maximum likelihood technique mostly provides efficient estimators.

The probability density function of the total lifetime Y of an item in SSPALT is set by

0 y=0,
0(1
f(»)= (e:{T 0<y=<t, (4)
pad” >T
[0+7+B(y—1)]“"! '

The experimental values of the total lifetime Y are expressed by

y(l) <...= y(nu) =7=< y(nu+1) =..= y(r)
Let 0,; and 0, be indicator functions such that 0, =I(¥; <7) and 0, =

EI(T<YI Sy(r) )
The natural logarithm of the total likelihood function is set by

InL=rlna+nalnO+n, In f—(n—rialn(@+7+pB(y,)— 1))~

—(@+D)| 0y, In(B+ y; )+ D8y In(B+7+B(y; —1)|. (5)

i=1 i=1

The first derivatives of the function in (5) with respect to the three parameters are
obtained as

dInL_n, (n=r)a(yq _T)_(a+1)§n:62i (y;—7)
i=1

) 6
BB v, l- ©
where
Y, =0+1+p(y,y—7) and Y, =0+7+B(y; —7),
dlnL na (n—r o Oy o 0y
=——( )a—(a+1) 2 : +E 2 (7
0 0 v, S O+y) T
Al r o= (n=r) ia In(6+ y;) ia |
=—+nlnb—(n—r)lny, — ; Inl )~ ;Iny,.
E a wr p 1i Vi “ 2i 1/’1 (8)
The ML estimate of a can be obtained from Eq. (8) as follows:
&= - ©

(n—r)lny, —nln 0+ Y 6y, B+ y, )+ D0y Inyp,

i=1 i=1
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Thus, the system equations are reduced to the following form:

n, rHn=r)y,—1) (r )n (y;i —7)

ce W T )Y 6y, =0 10

B Ay, 0 Z‘T ? i (10)
and

nr r(n—r) (V ) o O O 0o

—_— = |—+1 —+ — =0, 11

0 O, \9 {2(9"')’1‘) 21/)1‘ W
where

01 = (=P, —nln b+ 3.0, @+ y; )+ D05 Iny;,

i=1 i=1

and

0,=0(n—r)Iny, —nlnd+ > 6y, In(B+ y, )+ 05 Iny,.

i=1 i=1

The above nonlinear system is solved by applying the Newton—Raphson technique.
Now, for constructing the confidence bounds of the parameters, the second partial
derivatives of the function in (5) are needed in this respect, which can be given by

9% InL n, ((n=rya(y, — )’ )
__la +(a+1) 6, , (12)
B P y? zl "y
azlnL na (n—r) L Oy; . 0y,
=——4 Fa+)| Y —H 4 ,
0> 92 Y2 (« )E O+, Z; ¥} )
d lan_L (14)
oa? a? ’
PR InL _ (n=ra(y,) —7) . (yi—7)
G0 )2 +(a+1)§52i R (15)
2L (= =T (y;i—7)
o ) >y — (16)
azlnL_ﬁ_ (n—r) o O N Oai
a0y, {z(ew,f; i | 47

3. Test Plan. Optimum Stress Switching-Time 7", In this section, the optimal
SSPALT designs are established under the failure-censoring scheme. That is, the optimum
stress switching-time " is found such that the generalized asymptotic variance (GAV) of
MLEs of the model parameters at design stress is minimized.
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As defined by Bai et al. [19] the GAV of the MLEs of the model parameters is the
reciprocal of the determinant of F. That is

GAV(B, 0, &)= —.
|F|

The optimum stress switching-time " that minimizes the GAV defined above can be

obtained by using the Newton—Raphson technique.

4. Simulation Studies. Using different parameters values settings from Lomax
distribution and different sample sizes 30, 40, 50, 75, and 100 with 10,000 replications,
optimum test plans are numerically obtained. Two populations are used in this study with
parameter values (3, 2, 1.5) and (2, 3, 0.6). To evaluate the performance of the MLEs, mean
square error (MSE), average confidence intervals lengths (IL) and the associated coverage
probabilities (CP) were calculated as shown from the numerical results. In addition, the
optimum value t", the optimum expected number of units failed at each stress level, and

the optimum value of GAV were also derived (Tables 1-4).

The numerical results show that the MLEs are close to the right values as » increases.
Also, as n increases, the MSE decreases. In addition, the confidence bounds of the
parameters are getting much narrower if the sample size n increases. It is also observed
that the CP for each parameter is close to the nominal confidence level. That is, the
procedure is quite successfull.

Moreover, the optimum design of SSPALT is developed. The results showed that the
SSPALT model is appropriate. The optimal GAV decreases as n increases.

Table 1
MLEs, MSE, and IL95% on Average with Parameters (3, 0, @) Set at (3, 2, 1.5),
Respectively, Using 7 =7 with r=0.75n

n Parameter Estimate MSE 1L95% 95%CP

30 B 3.3536 0.0394 0.4627 0.9481
0 2.3335 0.0588 1.0683 0.9546

a 1.6685 0.0292 0.2385 0.9564

40 B 3.2810 0.0281 0.3401 0.9605
0 2.2661 0.0349 1.0515 0.9533

a 1.5897 0.0121 0.1441 0.9528

50 B 3.1838 0.0179 0.1736 0.9492
0 2.1435 0.0232 0.5283 0.9517

a 1.5465 0.0009 0.1012 0.9524

75 B 3.0702 0.0133 0.0878 0.9554
0 2.0617 0.0156 0.2131 0.9502

a 1.5045 0.0004 0.0434 0.9511

100 B 3.0121 0.0081 0.0480 0.9519
0 1.9946 0.0117 0.1573 0.9502

a 1.4902 0.0002 0.0199 0.9507
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Table 2
The Optimal 7" and GAV Values Based on the Results from Table 1

n T nP, nP, Optimal GAV

30 22.4877 14 9 0.0180

40 22.1819 18 12 0.0085

50 22.0901 23 15 0.0043

75 21.5479 34 22 0.0016

100 22.1196 45 30 0.0005
Table 3

MLEs, MSE, and IL95% on Average with Parameters (3, 0, @) Set at (2, 3, 0.6),
Respectively, Using 7 =7 with r=0.75n

n Parameter Estimate MSE 1L95% 95%CP
30 B 2.4618 0.249 0.5042 0.9491
0 3.3106 0.0371 1.1638 0.9523
a 0.8591 0.0184 0.2599 0.9522
40 B 2.3447 0.0178 0.3706 0.9515
0 3.2272 0.0222 1.1461 0.9516
a 0.7471 0.0076 0.1569 0.9518
50 B 2.2022 0.0113 0.1888 0.9512
0 3.1639 0.0146 0.5757 0.9512
a 0.6848 0.0005 0.1091 0.9513
75 B 2.0732 0.0082 0.0962 0.9508
0 3.0186 0.0097 0.2294 0.9509
a 0.6365 0.0003 0.0476 0.9506
100 B 1.9848 0.0051 0.0523 0.9503
0 29718 0.0076 0.1713 0.9505
a 0.5982 0.0001 0.0217 0.9502
Table 4 .
The Optimal 7 and GAV Values Based on the Results from Table 3
n T nP, nP, Optimal GAV
30 15.0668 10 13 0.0343
40 14.8619 13 17 0.0173
50 14.8004 16 22 0.005
75 14.4371 25 31 0.0018
100 14.8201 34 41 0.0005
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5. Summary and Concluding Remarks. In this article, the failure-censored SSPALT
plans are addressed assuming the Lomax distribution as a lifetime model. The estimates of
the Lomax parameters and the acceleration factor were obtained. Also, the optimum
designs were considered using the D-optimality principle. The SSPALT model applicability
and workability is demonstrated.
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Pe3ome

Po3rnsmaroThess 9acTKOBO MPUCKOPEHI PECypCHi MOCTIKCHHS MPH ITOKPOKOBiH 3MiHI Ha-
NPYXKEHb, 32 SIKMX MOCTYJIIOETHCS, IO Yac JI0 PyHHYBaHHs XapaKTepU3YEThCSI PO3IO/IIOM
Jlomakca mpH LEH3ypyBaHHI pyiHyBaHHs. OTpHMaHO MMOKAa3HHKH MaKCHMaJbHOI IMOBIp-
HOCTI IapameTpiB JaHOoi MOJEINI 1 BIAMOBIIHI CepeHbOKBAAPATUYHI BIIXWUIICHHS Ta PO3pa-
XOBaHO JIOBIpYi iHTEpBaIN MapaMeTpiB 13 BIAMOBITHUMH IMOBIPHOCTSIMU ITOKPHUTTS. Bupue-
HO ONTHMAaJIbHI BapiaHTH MPOBEACHHS PeCcypcHHX BunpoOyBaub. [l Bepudikamii oTpu-
MaHHX TEOPETHYHHMX pE3yJIbTaTiB BUKOHAHO YHCEJIbHE MOJEIIOBAHHS TECTOBHX 3ajad.
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