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In many important cases one should treat plasma transport kinetically. In more general sense the solutions of the 

Landau-Fokker-Planck (LFP) equation, which is one of the key ingredient of plasma kinetic equation, have much 
broader interest ranging from plasma physics to stellar dynamics. We examine the interplay of the non-linear colli-
sional operator with the different heating terms: mono kinetic; hot ions, DC electrical field and a quasi-linear diffu-
sion operator that models interaction of RF waves with a plasma. Throughout the paper obtained analytical asymp-
totic results are confirmed with high accuracy by the numerical computing of the non-linear kinetic equation and 
vice versa. 
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1. PRELIMINARIES 
In many important cases one should treat plasma 

transport kinetically. Examples are: the electron heat 
transport in inertial confinement fusion; propagation of 
the heat bursts, caused by edge-localized mode (ELM), 
into scrape-off layer (SOL) of tokamaks. In more gen-
eral sense the solutions of the Landau-Fokker-Planck 
(LFP) equation, which is one of the key ingredient of 
plasma kinetic equation, have much broader interest 
ranging from plasma physics to stellar dynamics (e.g., 
see [1-4] and the references therein). In certain cases, it 
worthwhile to analyse simpler models of plasma trans-
port problems, solution of which, nevertheless, exhibit 
some important features of the problem of interest and 
also help to benchmark complex kinetic codes.  

The non-linear LFP equation reads 
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where L is the Coulomb logarithm, ie,=α . 
A complexity of the LFP equation makes it almost 

impossible to use analytical methods for applied prob-
lems. Therefore the role of numerical methods for this 
equation is very important. The well-known specific 
property of nonlinear kinetic equations is that a single 
equation has several conservation laws (mass, energy, 
momentum). In case of isotropic LFP equation this 
means that equation can be written in two equivalent 
divergent forms: conservation of mass and conservation 
of energy. We have used implicit schemes with itera-
tions that guaranteed energy conservation with high 
accuracy (till the order of machine errors, if necessary). 
For linear equation when particle exchange energy with 
the bulk plasma the only collision invariant is particle 
mass (density). 

We consider the isotropic electron distribution 
 and study the electron heating with a simple 

model: 

),( tvf
( ) ( )fH+ff,I=tf ∂∂ / , where ( ff,I )  is the 

LFP collisional integral and ( )fH  is the heating 

source. We examine the interplay of the non-linear col-
lisional operator with the different heating terms: mono 
kinetic distribution (the energy (particle) source and 
sink can be provided by ion beams, neutral injection, 
etc.); hot ions (two component plasma), and a quasi-
linear diffusion operator that models interaction of RF 
waves with a plasma. We shortly review some selected 
results of our works on the subject with a heating source 
localized in the velocity space. Then a broader class of 
the heating terms resulting in enhancement of the tail of 
the distribution function is analytically analyzed. Ana-
lytical treatment of the nonlinear kinetic equation usu-
ally deals with rigorous simplifications  (linearization of 
the equation, taking into account small parameters, such 
as mass ratio 1/ <<= ie mmρ , etc.). Throughout the 
paper obtained analytical asymptotic results are con-
firmed with high accuracy by the numerical computing 
of the non-linear kinetic equation and vice versa. 

The investigation is mainly concentrated on the evo-
lution of the distribution function tails in high velocity 
region ∞→∞→ tv , . To characterize the tail forma-
tion we use the following presentation of the distribu-
tion where )(),(),( ξξξ MftGtf ⋅= , where , 

 is the thermal velocity, and Maxwell distribution 

is . It is known that the Coulomb diffusion 
influence is the utmost in the cold energetic region 
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10 <≤ξ . In the high-velocity region 1>>ξ  the LFP 
non-linear parabolic equation degenerates because of 
known Rutherford cross-section dependence on velocity 
and acquires more pronounced hyperbolic type when 
the transport term (the first derivative) becomes more 
important . This circumstance 
leads to inevitable retarding of the distribution tail for-
mation comparing to the relaxation in the thermal veloc-
ity region

ξξξ )(~)( 2/1 fffI +−
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The particle density n and temperature T (average 

energy ) expressed in energetic units are defined 
through integrals 
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In the absence of energy (particle) sources the den-
sity and the thermal velocity (energy) are constant. The 
unique equilibrium solution of the problem is the Max-
well distribution function. In this case the following 
results were obtained from asymptotic analysis of the 
distribution function behavior in the region 1>>ξ  and 
for time intervals larger than collision time . The 
initial function is located in the thermal velocity region 
and equals zero in high velocity region. The time period 
when the relaxation in the bulk of the distribution is 
finished is characterized by 

1>>t

1~),( tG ξ  (Fig.1). Asymp-
totic analysis shows that ),( tG ξ  for 1, >>tξ  can be 
analytically expressed in terms of error function, has a 
character of a propagating wave, which front moves 
under the law  with the constant front 

width 

3/2)3( tf =ξ

π=Δ )(tf  and can be roughly estimated as 

~ . )exp( 2/5ξ−

 
Fig.1. The graph of the function G(v,t) for different  

time instants 

2. HEATING LOCALIZED 
IN THE VELOCITY SPACE 

2.1. HEATING BY THE SOURCE  
OF HOT ELECTRONS 

Let us include into consideration the heating of the 
electrons by the source of the hot particles , 

which is localized in a high energetic region 
)( fH

1>>+ξ . In 
a cold region the distribution is supposed Maxwellian. 
The next simplified assumption is that the heating 
source has small intensity σ<<1, so the density and the 
energy of the system practically do not undergo notice-
able changes during the process under consideration. 
Then asymptotic analysis shows that if the source is 
localized at )/1log(~ σξ  then for the time period 

a non-equilibrium quasi steady-
state local distribution is formed. It is located inside the 
momentum interval between the energy (particle) source 
and the bulk of the particle distribution and reads 

1))/1(ln(1 −<<<< σt
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This non-equilibrium distribution has the form of 
plateau (Fig.2). In general the functional dependence of 
the quasi steady-state electron distribution is insensitive 
to the extent to which the source and sink are located in 

momentum space or the sink if any is localized at −ξ  
and −+ < ξξ . If, in particular, the source and the sink 
are mono kinetic distributions (like δ -type functions)  
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and η[y] is a unit function. The non-equilibrium distri-
bution may differ from the equilibrium by tens of orders 
in magnitude. Such extended knees of the distribution 
functions can be observed in laboratory experiments 
(additional heating in tokamaks, afterglow gas discharge 
with metastable atoms), as well in magnetoshperic 
plasmas. 

However, the distribution tail is under heated in 
comparison to the Maxwellian. Its formation is de-
scribed by aforesaid formulas in the region 

1, >>>> + tξξ  having wave-like character. 

 
Fig.2. Logarithm of the steady-state non equilibrium 
distribution function  vs. squared velocity (arbitrary 

units).The computations were carried out for the source 
located at 36=ξ  for theintensity  610−=σ

2.2. HEATING BY THE SOURCE OF HOT IONS 
Now let pass to the classical problem of electron and 

ion temperature relaxation considering a system of elec-
tron and ion LFP equations, with 0)( =fH , 

eqie TtTtT 2)()( =+ . We use two asymptotic parameters 

1/ <<= ie mmρ  and 1/)( <<= ei TTt ρε  for analytical 
analysis. We introduce the self-similar variables 

 then the equation for the 
electron function reads: 
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For the temperature changing we have 
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The remarkable property of the above equation is 
that the electron distribution is independent of the ion 
distribution and depends only on the ion energy. 

ei TT >  The hot ions interact primarily with cold elec-



trons at 0≈ξ . From asymptotic analysis (singular per-
turbation theory) it is obtained that the perturbation of 
the electron distribution function in a cold region has a 
character of a boundary layer with a width of . 
The electron function achieves its maximum absolute 
deviation from its local (in time) Maxwell distribution at 

3/2)(~ tε

0≅ξ : 

]/)(9.21[),( 3/2
iie TTTetf −+⋅≅ − εξ ξ . 

The applicability condition of the known formula for 
temperatures  is )(2/

eite TTCTT −≅ 1<<ε  that is hundred 
times less rigorous than the condition 1<<ρ . From nu-
merical simulation the condition is estimated as 1.0≤ε . 
Note, from the formula the time dependence of the tem-
perature is . The relative deviation of the elec-
tron distribution 

3/2~ tT
),(/),(),( tvftvftG Me=ξ from the 

equilibrium is much larger in the tail region. It has a 
wave character with a stable front, which propagates in 
high velocity region being described by the above for-
mulas in the case without heating. For hot electrons 

 the electron tail is cooling while relaxation in 
the high energetic region having the same character of a 
propagating wave with  (Fig.3).   

ie TT >
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Fig.3. The graph of the deviation of the electron func-

tion ϕ  for different time instants 

 
Fig.4. The graph of the function G(v,t) 

for different time instants 
Now we consider the example when the initial elec-

tron and ion distribution functions are )1( −vδ  and 
)5.0( −vδ , correspondingly, and the ion function is con-

stant in time. For this case the plots demonstrate the 
comparison of the numerical simulation results with 
analytical results. First, the spreading of the function G 
in high velocity region is presented (Fig.4). From the 
time, when the parameter 05.0≤ε  the curves do not 
change their slope. Then the dependence of the energy, 

the wave front velocity and the width front on time is 
given (Figs.5-7). As can be seen the analytical and nu-
merical results are a good match.  

 
Fig.5. The electron energy dependence on time 

The deviation of the width front at the beginning is 
understandable: the system “remembers the initial 
state”. Another example considered here is interaction 
of RF waves with plasma that is simulated by the quasi-
linear operator (usually 2D in velocity space) acting 
within corresponding resonant region 

.0,][)( 21
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Fig.6. The plot of the front width on time 

 
Fig.7. The wave front velocity dependence on time 

 
Fig.8. The function ),( tG ξ  for the different time mo-

ments in a case of the quasi-linear operator action with-
in the energetic region 75.005.0 ≤≤ξ  
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For this case Fig.8 demonstrates the numerical result 
of the temporal tail formation that has a character of a 
propagating wave with the slope slightly changing in 
time because of constant heating.  

The same behavior of the distribution function tails 
seems valid for any localized in the momentum space 
heat source having time dependence as . 3/2~)( ttT

2.3. HEATING AND ACCELERATION BY DC 
ELECTRICAL FIELD 

The problem of runaway electrons is connected with 
the solution of the 2D in the velocity space LFP equa-
tion with the DC electrical field action. The influence of 
an electrical field which is small in comparison with 
that of Dreiser 1/ <<= DEEγ  is taken into account as 
follows 

( ) .// zvf+ff,I=tf ∂⋅∂∂ γ  
In the direction of the electrical field the distribution 

has the enhanced tail and it is depleted in the opposite 
direction so the density of particles is preserved. During 
the process of constant heating the thermal region of the 
distribution function is close to the Maxwell distribution 
because the parameter γ  is small. Otherwise the maxi-
mum of the distribution corresponds to the velocity  
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For the numerical simulation the boundary condition 
 for 0),( →tvf ∞→v  is used, so that the numerical 

distribution function is equal to machine zero. Fig.9 
shows the electron distribution function that formed 
under the DC field action when the initial temperature 
rises two times, 01.0=γ . The distribution has an accel-
erated tail in the electrical field direction up to the criti-
cal velocity  ( ). Further the 
curve slightly changes the functional dependence. Thus 
even with the additional transport term in the LFP equa-
tion the tail of the electron distribution is under heated. 

2/1−≅γcrv 100/ 22 ≈thcr vv

 
Fig.9. The graph of the electron distribution function for 

2D case for different  )cos( Ev
rr

=μ

3. SELF-SIMILAR SOLUTIONS 
WITH ACCELERATED TAILS 

Unlike the cases considered above the situation 
changes drastically when coefficient of quasi-linear dif-
fusion increases with velocity increasing. We consider a 

special class of functions , 

where  is the normalization constant and  
is an adjustable parameter, for which it is possible to 
construct a self-similar solution in high velocity region 
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Here the variable  is changing in time. 2
h

2 / vv=ξ
Two cases ought to be specified: for  the so-

lution is the Maxwellian and for  we have a 

power-law tail 

2/3=p
2/5=p

2/5−→ξf . The time dependence of the 

temperature is as the above . 3/2~)( ttT
In numerical modeling the initial distribution is ap-

proximated on the mesh in the usual way, that is, it dif-
fers from zero at one point. Very rapidly, the solution 
acquires a quasi equilibrium form in the thermal veloc-
ity region at the instant  that corresponds to the 
collision time. In this region the distribution functions 
are close to each other throughout the entire relaxation 
process for different coefficients of quasi-linear diffu-
sion. The main difference is observed in the region of 
the distribution tails for 

1~et

1>>ξ . For the case p=3/2 the 
solution is Maxwellian. Numerical results show that at 
the beginning the tail has Coulombian character and 
then since the time  it spreads into super ther-
mal region following the diffusion action (Fig.10).  

0/1~ Dt

 
Fig.10. The graph of the function ),( tG ξ  

for the quasi-linear coefficient  
for different time moments  

0015.00 =D
1000,...,100,50,10=t

p=2  
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Fig.11. Temporal evolution of the electron distribution 
function for p=3/2. In agreement with analytic results, 
the distribution function approaches Maxwellian distri-

bution (dotted line) 
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REFERENCES Fig.11 shows the logarithm of the distribution func-
tion ),( tf ξ  normalized on its value at zero velocity 

for different time moments for ),0( tf 2=p . It dis-
plays the transition region between the Maxwellian part 
and the enhanced tail. In the region  the 
distribution is visibly close to Maxwellian. The obtained 
results can be used for the assessment of the impact of 
ELMs on heat transport and sheath parameters. 
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КИНЕТИКА ФОРМИРОВАНИЯ ФУНКЦИИ РАСПРЕДЕЛЕНИЯ ЭЛЕКТРОНОВ 
И ЕЕ САМОПОДОБИЕ В ПРОЦЕССЕ НАГРЕВА 

И.Ф. Потапенко 
Во многих важных случаях перенос плазмы необходимо рассматривать кинетически. В более общем 

смысле решения уравнения Ландау-Фоккера-Планка, являющегося одним из ключевых компонентов кине-
тического уравнения плазмы, представляют более широкий интерес: от физики плазмы до динамики звезд. 
Мы исследуем взаимосвязь нелинейного столкновительного оператора с различными составляющими на-
грева: однокомпонентная кинетика, горячие ионы, постоянное электрическое поле и квазилинейный диффу-
зионный оператор, который моделирует взаимодействие ВЧ-волн с плазмой. Полученные в работе аналити-
ческие асимптотические результаты подтверждаются с высокой точностью численным моделированием не-
линейного кинетического уравнения и наоборот. 

КІНЕТИКА ФОРМУВАННЯ ФУНКЦІЇ РОЗПОДІЛУ ЕЛЕКТРОНІВ 
ТА ЇЇ САМОПОДІБНІСТЬ У ПРОЦЕСІ НАГРІВУ 

І.Ф. Потапенко 
У багатьох важливих випадках транспорт плазми треба розглядати кінетично. У більш загальному розу-

мінні розв’язки рівняння Ландау-Фокера-Планка, яке є одним з ключових компонентів кінетичного рівняння 
плазми, становлять більш широку цікавість: від фізики плазми до динаміки зірок. Ми дослідимо взаємо-
зв’язок нелінійного столкновительного оператора зіткнень з різними складовими нагріву: однокомпонентна 
кінетика, гарячі іони, постійне електричне поле та квазілінійний дифузійний оператор, який моделює взає-
модію ВЧ-хвиль з плазмою. Отримані у роботі аналітичні асимптотичні результати підтверджуються з висо-
кою точністю числовим моделюванням нелінійного кінетичного рівняння та навпаки. 
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