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In many important cases one should treat plasma transport kinetically. In more general sense the solutions of the
Landau-Fokker-Planck (LFP) equation, which is one of the key ingredient of plasma kinetic equation, have much
broader interest ranging from plasma physics to stellar dynamics. We examine the interplay of the non-linear colli-
sional operator with the different heating terms: mono kinetic; hot ions, DC electrical field and a quasi-linear diffu-
sion operator that models interaction of RF waves with a plasma. Throughout the paper obtained analytical asymp-
totic results are confirmed with high accuracy by the numerical computing of the non-linear kinetic equation and

vice versa.
PACS: 52. 65. -y

1. PRELIMINARIES

In many important cases one should treat plasma
transport kinetically. Examples are: the electron heat
transport in inertial confinement fusion; propagation of
the heat bursts, caused by edge-localized mode (ELM),
into scrape-off layer (SOL) of tokamaks. In more gen-
eral sense the solutions of the Landau-Fokker-Planck
(LFP) equation, which is one of the key ingredient of
plasma kinetic equation, have much broader interest
ranging from plasma physics to stellar dynamics (e.g.,
see [1-4] and the references therein). In certain cases, it
worthwhile to analyse simpler models of plasma trans-
port problems, solution of which, nevertheless, exhibit
some important features of the problem of interest and
also help to benchmark complex kinetic codes.

The non-linear LFP equation reads
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where L is the Coulomb logarithm, @ = e, i .

A complexity of the LFP equation makes it almost
impossible to use analytical methods for applied prob-
lems. Therefore the role of numerical methods for this
equation is very important. The well-known specific
property of nonlinear kinetic equations is that a single
equation has several conservation laws (mass, energy,
momentum). In case of isotropic LFP equation this
means that equation can be written in two equivalent
divergent forms: conservation of mass and conservation
of energy. We have used implicit schemes with itera-
tions that guaranteed energy conservation with high
accuracy (till the order of machine errors, if necessary).
For linear equation when particle exchange energy with
the bulk plasma the only collision invariant is particle
mass (density).

We consider the isotropic electron distribution
f(v,t) and study the electron heating with a simple

model: & /a=1(f.f)+H(f), where I(f.f) is the
LFP collisional integral and H ( f ) is the heating

source. We examine the interplay of the non-linear col-
lisional operator with the different heating terms: mono
kinetic distribution (the energy (particle) source and
sink can be provided by ion beams, neutral injection,
etc.); hot ions (two component plasma), and a quasi-
linear diffusion operator that models interaction of RF
waves with a plasma. We shortly review some selected
results of our works on the subject with a heating source
localized in the velocity space. Then a broader class of
the heating terms resulting in enhancement of the tail of
the distribution function is analytically analyzed. Ana-
lytical treatment of the nonlinear kinetic equation usu-
ally deals with rigorous simplifications (linearization of
the equation, taking into account small parameters, such
as mass ratio p=m, /m; <<1 , etc.). Throughout the

paper obtained analytical asymptotic results are con-
firmed with high accuracy by the numerical computing
of the non-linear kinetic equation and vice versa.

The investigation is mainly concentrated on the evo-
lution of the distribution function tails in high velocity
region v —> 00, —> 0. To characterize the tail forma-

tion we use the following presentation of the distribu-
tion where f(&,1)=G(&,1)- £, (&), where £=v7/v],
v,, 1s the thermal velocity, and Maxwell distribution
is ~e °. It is known that the Coulomb diffusion

influence is the utmost in the cold energetic region
0<¢&<1. In the high-velocity region & >>1 the LFP

non-linear parabolic equation degenerates because of
known Rutherford cross-section dependence on velocity
and acquires more pronounced hyperbolic type when
the transport term (the first derivative) becomes more

important 1(f) ~ f_m(fé + /). This circumstance
leads to inevitable retarding of the distribution tail for-
mation comparing to the relaxation in the thermal veloc-
ity regionE~1,¢=1/t, ~1, t, - the collision time.

The particle density n and temperature 7 (average
energy e(f)) expressed in energetic units are defined
through integrals

[azevren=1. [dz&7rEn=e).
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In the absence of energy (particle) sources the den-
sity and the thermal velocity (energy) are constant. The
unique equilibrium solution of the problem is the Max-
well distribution function. In this case the following
results were obtained from asymptotic analysis of the
distribution function behavior in the region & >>1 and

for time intervals larger than collision time ¢ >>1. The

initial function is located in the thermal velocity region
and equals zero in high velocity region. The time period
when the relaxation in the bulk of the distribution is
finished is characterized by G(&,¢) ~1 (Fig.1). Asymp-
totic analysis shows that G(&,t) for &,¢>>1 can be

analytically expressed in terms of error function, has a
character of a propagating wave, which front moves

under the law &, =(3t)*"* with the constant front

width A f(t)z\/; and can be roughly estimated as

~exp(-¢""?).
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Fig. 1. The graph of the function G(v,t) for different
time instants

2. HEATING LOCALIZED
IN THE VELOCITY SPACE
2.1. HEATING BY THE SOURCE
OF HOT ELECTRONS

Let us include into consideration the heating of the
electrons by the source of the hot particles H(f),

which is localized in a high energetic region & >>1.In

a cold region the distribution is supposed Maxwellian.
The next simplified assumption is that the heating
source has small intensity 6<<1, so the density and the
energy of the system practically do not undergo notice-
able changes during the process under consideration.
Then asymptotic analysis shows that if the source is
localized at & ~log(l/o) then for the time period

l<<t<<(In(l/o))"a non-equilibrium quasi steady-

state local distribution is formed. It is located inside the
momentum interval between the energy (particle) source
and the bulk of the particle distribution and reads

<
FO= fiy @+ [dor H (),

This non-equilibrium distribution has the form of
plateau (Fig.2). In general the functional dependence of
the quasi steady-state electron distribution is insensitive
to the extent to which the source and sink are located in
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momentum space or the sink if any is localized at &_
and &, <&_. If, in particular, the source and the sink
are mono kinetic distributions (like J -type functions)

H(f)zo &2 [8(E-&) —6(E-&),
then f(&)=C-e* +0-A(E), where

AG) =nl&, —E1+nl(& —&,)]-exp[—(& —&,)]

-l = &1+ nl(§ —&)]-exp[—(& —&0)]

and #[y] is a unit function. The non-equilibrium distri-
bution may differ from the equilibrium by tens of orders
in magnitude. Such extended knees of the distribution
functions can be observed in laboratory experiments
(additional heating in tokamaks, afterglow gas discharge
with metastable atoms), as well in magnetoshperic
plasmas.

However, the distribution tail is under heated in
comparison to the Maxwellian. Its formation is de-
scribed by aforesaid formulas in the region
& >> &, t >>1 having wave-like character.
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Fig.2. Logarithm of the steady-state non equilibrium

distribution function vs. squared velocity (arbitrary
units). The computations were carried out for the source

located at & =36 for theintensity o =10

2.2. HEATING BY THE SOURCE OF HOT IONS

Now let pass to the classical problem of electron and
ion temperature relaxation considering a system of elec-
tron and ion LFP equations, with H(f)=0,

T,()+T,(1)=2T,,. We use two asymptotic parameters
p=m,/m <<1 and &(¢t)=pI,/T, <<1 for analytical
analysis. We introduce the self-similar variables
£, (&) =V, f(V*/v2,1) then the equation for the
electron function reads:
R W
dt 705 p
dT,
T1/2_e 3/2 .
A
For the temperature changing we have
dr, 2 T
1) e =2 10,0 =T, [dE fu(&0) |
dt 3 0
The remarkable property of the above equation is
that the electron distribution is independent of the ion

distribution and depends only on the ion energy.
T; > T, The hot ions interact primarily with cold elec-
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trons at & ~ 0. From asymptotic analysis (singular per-

turbation theory) it is obtained that the perturbation of

the electron distribution function in a cold region has a
character of a boundary layer with a width of ~ &(¢)*"* .

The electron function achieves its maximum absolute
deviation from its local (in time) Maxwell distribution at

£=0:
fEn=e” [1+2.96 (T, -T)/T].
The applicability condition of the known formula for
temperatures I/ > T=C(T,—T)) is <<l that is hundred
times less rigorous than the condition p<<l. From nu-

merical simulation the condition is estimated as £ <0.1.

Note, from the formula the time dependence of the tem-

perature is 7 ~ t*'3 . The relative deviation of the elec-

tron distribution G(&,¢) = f,(v,t)/ f,,(v,¢) from the
equilibrium is much larger in the tail region. It has a
wave character with a stable front, which propagates in
high velocity region being described by the above for-
mulas in the case without heating. For hot electrons

T,>T. the electron tail is cooling while relaxation in
the high energetic region having the same character of a
propagating wave with v3/- ~t (Fig.3).
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Fig.3. The graph of the deviation of the electron func-
tion @ for different time instants
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Fig 4. The graph of the function G(v,t)
for different time instants
Now we consider the example when the initial elec-
tron and ion distribution functions are O(v—1) and

(v —0.5), correspondingly, and the ion function is con-

stant in time. For this case the plots demonstrate the
comparison of the numerical simulation results with
analytical results. First, the spreading of the function G
in high velocity region is presented (Fig.4). From the
time, when the parameter ¢ <0.05 the curves do not
change their slope. Then the dependence of the energy,

the wave front velocity and the width front on time is
given (Figs.5-7). As can be seen the analytical and nu-

merical results are a good match.
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Fig.5. The electron energy dependence on time

The deviation of the width front at the beginning is
understandable: the system “remembers the initial
state”. Another example considered here is interaction
of RF waves with plasma that is simulated by the quasi-
linear operator (usually 2D in velocity space) acting
within corresponding resonant region

H(f)zgil/z[qu'fg]ga Dql¢0 l'fflﬁfﬁfz.
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Fig.6. The plot of the front width on time
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Fig.7. The wave front velocity dependence on time
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Fig.8. The function G(&,t) for the different time mo-

ments in a case of the quasi-linear operator action with-
in the energetic region 0.05< &£ <0.75
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For this case Fig.8 demonstrates the numerical result
of the temporal tail formation that has a character of a
propagating wave with the slope slightly changing in
time because of constant heating.

The same behavior of the distribution function tails

seems valid for any localized in the momentum space

heat source having time dependence as T'(¢) ~ t*/>.

2.3. HEATING AND ACCELERATION BY DC
ELECTRICAL FIELD

The problem of runaway electrons is connected with
the solution of the 2D in the velocity space LFP equa-
tion with the DC electrical field action. The influence of
an electrical field which is small in comparison with

that of Dreiser y=E/E, <<l is taken into account as
follows

o lot=1(f1)+y-f/ov,.

In the direction of the electrical field the distribution
has the enhanced tail and it is depleted in the opposite
direction so the density of particles is preserved. During
the process of constant heating the thermal region of the
distribution function is close to the Maxwell distribution
because the parameter y is small. Otherwise the maxi-

mum of the distribution corresponds to the velocity

1 ©
V= Id,ujdvv3,u SACA R

10
For the numerical simulation the boundary condition
f(v,t) >0 for v—> o0 is used, so that the numerical
distribution function is equal to machine zero. Fig.9
shows the electron distribution function that formed
under the DC field action when the initial temperature
rises two times, y =0.01. The distribution has an accel-

erated tail in the electrical field direction up to the criti-
cal velocity v, =y~''? (12 /v ~100). Further the
curve slightly changes the functional dependence. Thus

even with the additional transport term in the LFP equa-
tion the tail of the electron distribution is under heated.

0 :
E/E,=0.01
<[—:>[<E0>=2

o 50t
=)
5
~*.100}
11=-1,-0.06, 0.0, 0.89, 1
159, 50 100 150 200 250

V2
th
Fig.9. The graph of the electron distribution function for
2D case for different u=cos(V E)

3. SELF-SIMILAR SOLUTIONS

WITH ACCELERATED TAILS
Unlike the cases considered above the situation
changes drastically when coefficient of quasi-linear dif-
fusion increases with velocity increasing. We consider a
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special class of functions Dq,=D0~§p_3/ T,

where D, is the normalization constant and 5/2>p>0

is an adjustable parameter, for which it is possible to
construct a self-similar solution in high velocity region

55/2—17
f(f - OO) ~ eXp|:— m:|

Here the variable & =v*/v; is changing in time.
Two cases ought to be specified: for p=3/2 the so-
lution is the Maxwellian and for p=5/2 we have a

power-law tail 1 — &%, The time dependence of the

temperature is as the above 7'(¢) ~ >/ .

In numerical modeling the initial distribution is ap-
proximated on the mesh in the usual way, that is, it dif-
fers from zero at one point. Very rapidly, the solution
acquires a quasi equilibrium form in the thermal veloc-
ity region at the instant f, ~ 1 that corresponds to the
collision time. In this region the distribution functions
are close to each other throughout the entire relaxation
process for different coefficients of quasi-linear diffu-
sion. The main difference is observed in the region of
the distribution tails for & >>1. For the case p=3/2 the
solution is Maxwellian. Numerical results show that at
the beginning the tail has Coulombian character and
then since the time ¢ ~1/ D, it spreads into super ther-

mal region following the diffusion action (Fig.10).
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Fig.10. The graph of the function G(¢&,t)
Jor the quasi-linear coefficient D, =0.0015
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Fig.11. Temporal evolution of the electron distribution

function for p=3/2. In agreement with analytic results,

the distribution function approaches Maxwellian distri-
bution (dotted line)
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KHHETHUKA ®OPMUPOBAHUA ©®YHKINU PACIIPEJAEJEHUSA 3JIEKTPOHOB
N EE CAMOIIOJIOBHE B ITIPOIECCE HAI'PEBA

H.®. Illomanenxo

Bo MHOrMX BaKHBIX CilydasiX MEpPEHOC IUIa3Mbl HEOOXOJMMO PaccMaTpUBAaTh KUHETHYeCKH. B Gosee obuiem
cMmBbIcie peuieHus: ypaBHeHus Jlanmay-®oxkkepa-Ilnanka, sBISIOMErocss OOHUM U3 KIIOUEBBIX KOMIIOHEHTOB KHHE-
THYECKOTO YPaBHEHHS TUIA3MbI, MIPEACTABIIAIOT 00Jiee MIMPOKUHA HHTEPEC: OT (PU3MKH TUIA3MbI 10 TUHAMUKU 3BE3]I.
MeI uccnenyeM B3aUMOCBSI3b HETMHEHHOTO CTOJKHOBUTENILHOTO OMNEPATOpa C Pa3iMuyHbIMHU COCTaBISIOIIMMU Ha-
rpeBa: OJTHOKOMIIOHCHTHAS! KUHETHKA, TOPSYUE HOHBI, TIOCTOSHHOE JJICKTPUICCKOE TI0JIC U KBa3HIMHEHHBINA quddy-
3WOHHEIH OIlepaTop, KOTOPBIA MOAEIHUPYeT B3auMmoeiicTeue BU-BonH ¢ mma3moit. [TomydeHHBIe B paboTe aHATUTH-
YECKUE ACUMIITOTHYECKUE PE3YNbTAThl MOATBEPKIAIOTCS C BBICOKOW TOYHOCTBIO YMCIEHHBIM MOAETUPOBAHUEM HE-
JMUHEWHOTO KHHETHYECKOTO YPaBHEHUS M HA00OPOT.

KIHETUKA ®OPMYBAHHS ®YHKIIII PO3IOALTY EJJEKTPOHIB
TA Ii CAMONIOAIBHICTD Y ITPOLIECI HATPIBY

1.®. Ilomanenxo

VY 6ararthOX BaXKJIMBUX BHIAJKaX TPAHCIOPT IUIa3MK Tpeba po3rsiAaTH KiIHETUYHO. Y OUIbII 3arajbHOMY pO3y-
MiHHI po3B’s3ku piBHsHHA Jlannay-Dokepa-Ilnanka, sike € OAHUM 3 KIIFOUOBUX KOMIIOHEHTIB KIHETUYHOTO PiBHSIHHS
TUIa3MH, CTaHOBIATH OUTBII IIMPOKY IIKaBiCTh: BiA (i3MKH IUIa3MH 0 TUHAMIKHM 3ipoK. MM IOCHiIMMO B3aeMoO-
3B 130K HEJIHIHHOTO CTOJKHOBUTEIBHOTO OIEPaTOpa 3iITKHEHb 3 PI3HUMH CKJIaJOBUMH HArpiBy: OJTHOKOMIIOHEHTHA
KIHEeTHKA, rapsAvi 10HH, TIOCTIHHE CJICKTPUYHE TOJIC Ta KBa3UliHiiHWA audy3iiiHuiA onepaTop, KUl MOJCIIOE B3a€e-
Moziro BU-xBuib 3 turazmoro. Otprmani y poOO0Ti aHATITUYHI aCHMIITOTHYHI Pe3yNIbTaTH IiATBEPDKYIOTECS 3 BHCO-
KOIO TOYHICTIO YHCIIOBHM MO/ICIIOBAHHSAM HENIHIIHOTO KIHETUYHOTO PiBHSAHHS Ta HABIAKH.
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