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CpaBHHUTeJBbHas OLleHKA YCKOPEHHBIX 3¢ (peKTOB HUKINYECKOH MOI3y4ecTH B
cranu CD-304L B yc/ioBUSIX MepeMeHHOr0 M MOCTOSHHOTO HArpYy:KeHUii

A. X. Jlae-Copxa6u®, ®. Baxnan-Taxamn®

* Ucnamckuii yuuepcurer Asan, TeOpus, Mpan

® Te6pusckuii yuusepcurer, TeGpus, Upan

Ha ocnosanuu pe3ynvmamos ucnvlmanuii Ha 0OHOOCHOE PACMANCEHUE BbINOIHEHA CPAGHUMENbHAS
OYEHKA YCKOPEHHbIX YPPEeKMO8 YUKIUYECKOL NOAZyHecmu @ YCI0GUX NePeMEHH020 U NOCMOSHHO20
Haepyacerutl 01 aycmenumnou Hepacaseroueti cmanu 304L, wupoko ucnoniwv3yemoil 6 snepeemure u
Hepmexumuueckol NPOMbIULIEHHOCIIU U3-3d €€ NOBbIUEHHbIX XAPAKMEPUCTNUK CONPOMUGIeHUs
8vicoKOmeMnepamypHoll noasyvecmu u ycmanocmu. Oopasysl 015 UCHLINAHUL NOTYYEHbL U3 XOTOOHO-
MAHYMbIX HPYymMKos, mamepuan coomeemcemeyem cneyugpuxayuu ASTM A276-05A. Hcnvimanus
nposodunucy npu memnepamypax 687, 717 u 737°C 6 ycnosusx 3HAKONEPEMEHHO20 U NOCMOSHHO2O
Hazpyacenuil. Hzyuenvl s¢hgpexmol nepemeHHou HASPY3KU U 6PEMEHU BbLOEPHCKU HASPY3KU HA MeXda-
HUYecKoe nogedeHue Mamepudid U Xapakxmepucmuxu ycmarocmu u noazyyecmu. Ilonyuennvie
pe3yIbmamsvl NOOMEEPAHCOAION CUNbHOE B3AUMOGTUAHUE MEXAHUIMO8 NOJ3VHeCmu U YCMAIoCHL.
bvino ycmarnognieno, umo npu 8blCOKUX MEMNEpamypax nogpexcoeHue Mamepuana no Mexamusmy
noazyuecmu OOMuHUpyem 0adxice 8 ciyuae UCHbIMAaHULL ¢ 0YeHb KOpomKou evloepaickol. Kpome moeo,
ObLIO NOKA3AHO, YMO NPU YEETUUEHUU BPEMEHU B8bIOEPICKU YBETUUUBACTCA CKOPOCMb Oedhopmayuu
noasyyecmu U, cie008amenbHo, CHUNCAemcs 001208eYHOCMb 00pasyos. Pesyiomamsl 0okazvlearom,
Mo nepemMennbie Ha2py3Ku CYWEeCMEEeHHO YEeIUYUBAION CKOPOCMb 0epopmayui nOA3y4ecmu U CHu-
JHcarom 001208€UHOCHb NO CPABHEHUIO C NOCIMOAHHLIMU HACPY3KAMU, 00eCne usaiowumMy maxoul dice
YPOBeHb CPEOHUX HANPANCEHUIL.

Kniouesvie cnoea: xonognorsanytas ctanb 304L, HepkaBeromias cTailb, NEPEMEHHas Ha-
rpy3Ka, MOJ3y4YecTb, MAJOIMKIOBAs YCTAJOCTh U IOJI3Yy4eCTb, BBIACP)KKA IOCTOSHHOMN
Harpy3ku.

Introduction. Many engineering parts, which find applications in power generation
and petrochemical plants, operate at high temperature under mechanical loads. In practice,
level of operating temperature or the mechanical load may vary with time. Therefore,
different mechanisms of failure can occur, which depend on the nature and history of
termomechanical loadings. The important failure mechanisms from this point of view are as
follows:

(1) fatigue, which is usually faced when the engineering part operates at temperatures
below 0.57,,.;; (T.;; 1s melting temperature in Kelvin) and at alternating load with low
stresses. Engineering components are often subjected to fatigue loading under stress-
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controlled conditions. The existing models describe the fatigue of engineering components
including the Goodman equation [1, 2], the modified Goodman equations [1, 3], the
Smith—Watson— Topper parameter [4], the Walker parameter [5], and Dowling equation [6];

(ii) creep, which occurs at high temperatures (above 0.57,,,;,) under mechanical loads.
Creep implies a time-dependant plasticity: after a sufficient elapse of time, either the
viscoplastic strain becomes so large that the original shape of the structure is altered, or the
creep rupture occurs. Creep is critical in a number of applications, for example, components
used in power-generating systems and chemical plants, where the service temperature is
high. Different models have been proposed, which explain creep behavior of materials [7];

(iii) elastic shakedown behavior, in which plastic deformation takes place during
running in (contact between solid surfaces), while the steady state is perfectly elastic due to
residual stresses or strain-hardening. Plastic shakedown behavior is one, in which the
steady state is a closed elastic-plastic loop, with no net accumulation of plastic deformation.
Except for the initial loading cycles, during which plastic strains may occur, no further
deformation increment occurs on the application of loading cycles. Shakedown will occur
when the ratcheting fails to occur [8];

(iv) ratcheting behavior is one in which the steady state is an open elastic-plastic loop,
with the material accumulating a net strain during each cycle. The accumulation of cyclic
deformation is called ratcheting and is defined as a cycle-by-cycle accumulation of plastic
strain with the application of cyclic load characterized by constant stress amplitude with a
nonzero mean stress. After a sufficient number of cycles, the total strain (displacement)
becomes so large that the original shape of the structure is altered, thereby making the
structure unserviceable. The development of cyclic plasticity models for prediction of
ratcheting strain has received a considerable attention in the past decades, and many models
have been suggested. The models by Chaboche and by Ohno and Wang, both based on the
Armstrong and Frederick nonlinear kinematic hardening rule, are among the earlier models
often cited [9-13].

In practice, most of the engineering components are subjected to the combination of
these types of loadings. Therefore, it is important to study the mechanical behavior of
materials or even engineering components and the interaction of these mechanisms under
the combined thermomechanical loadings. Many engineering components, such as gas
turbine blades, operate at high temperature under alternating loads with a low frequency.
This type of loading, which is known as “low cycle fatigue-creep,” is the subject of many
research studies, especially during the last decade [14—17]. Due to the viscoplastic behavior
of the materials at high temperature, shakedown or ratcheting should not be excluded in
these studies.

The interaction of damage mechanisms due to the fatigue and creep is an important
factor that limits the life of engineering parts. Ignoring the mutual interaction between these
mechanisms may lead to erroneous lifetime predictions. Conservative predictions, however,
unnecessarily increase the cost of production and maintenance of such systems. Therefore,
a realistic assessment of lifetime is critical for the prevention of failures. In some studies,
the ASME code method has been used for predicting the creep—fatigue life [14, 15]. This
method is not exact, insofar as it’s basis is strictly phenomenological, with no mechanistic
component [14]. Many investigators have examined creep-fatigue crack initiation and
propagation modes in general. Some of them focused on studying the effect of specific
parameters, such as hold time or creep stress effect, environment, orientation, geometry,
and material parameters [18—21]. For example, Kaae [21] has carried out low-cycle fatigue
tests on alloy 800H in the temperature range of 22-760°C. Alloy 800 is an austenitic
Fe-Ni—Cr alloy with higher Ni and Cr contents than conventional stainless steels. It is
widely used for many high-temperature applications in such areas, as petrochemical
processing, electrical power generation, and solar energy systems. In their tests, the axial
strain was cycled between equal positive and negative values.

ISSN 0556-171X. IIpobaemwr npounocmu, 2015, Ne 6 109



A. H. Daei-Sorkhabi and F. Vakili-Tahami

Sabour and Bhat [18] have investigated the creep-fatigue interaction for aircraft
components. They have proposed innovative mathematical models to predict the operating
life of these components, specifically gas turbine blades that are subjected to creep-fatigue
at high temperatures.

Since most of engineering components, which work at high temperature, operate
under alternating load, it is important to know their behavior at this condition. On the other
hand, most of the available data for creep are at constant load or stress. Therefore, it
expedient to estimate the creep life-time and deformation of the parts at alternating load
based on the experimental data obtained at constant stress. This particular issue is the major
aim of the present paper. For this purpose, by using a series of uniaxial creep tests under
alternating load, the behavior of cold-drawn 304L stainless steel (CD 304L SS) at high
temperature has been determined experimentally. Uniaxial creep tests have been carried out
at 687, 717, and 737°C under constant and alternating loads. The effects of alternating load
and the hold time on the mechanical behavior of the material have been studied to
investigate the mutual effect of two damage mechanisms.

1. Creep-Fatigue Damage. The most common method to calculate creep-fatigue
damage is based on the linear superposition of these damages, which leads to the linear
life-fraction rule, which forms the basis of the ASME Boiler and Pressure Vessel Code,
Section III, Code Case N-47 [22]. This approach combines the damage summations of
Robinson for creep and of Miner for fatigue as follows [18]:

N t
EN*f+E;=D, (1)

where N, / N, is the cyclic portion of the life fraction, in which N is the number of cycles
at a given strain (or stress) range and N , is the pure fatigue life at that strain (or stress)
range. The time-dependent creep-life fraction is #/¢, , where ¢ is the time at a given stress
and temperature, and ¢, is the time to rupture at that stress and temperature, and D is the
cumulative damage index. Failure is presumed to occur when D = L If Eq. (1) is valid, then
a straight line of the type shown in Fig. 1 between the fatigue and creep life fractions
should be expected [18]. The linear behavior shown in Fig. 1 is the ideal type, which can be
depicted by Eq. (1). However, the true behavior of most materials is non-linear which can
be approximated using a bi-linear model as shown in Fig. 1. Most materials manifest a
drastic lifetime reduction under the combined effect of creep and fatigue damages. For
example, as it can be seen in Fig. 1, when the N /N = 0.4, the t/ ty value calculated via
Eq. (1) is expected to be 0.6. However, due to accumulation of creep damage with loading
cycles, a more realistic lifetime is predicted by the bi-linear model as #/¢, = 0.35. On the
other hand, when the number of cycles is too low (N /N £ <0.2), the fatigue damage is
negligible, and therefore the lifetime becomes closer to the ideal value obtained from the
linear equation.

The life-fraction rule given by Eq. (1) has no mechanistic basis and is therefore,
material-dependent. It also assumes that tensile and compressive hold periods are equally
damaging, whereas most of the experimental results show minor damage levels in
compression. Other effects, such as the strain softening or hardening behavior, the effect of
prior plasticity on subsequent creep, and the order of loading, have not been accounted for
by this rule, which therefore, in general, provides only approximate results. In spite of these
limitations, this rule of damage summation is very popular because it is easy to use and
requires only a standard fatigue S—N diagram and creep stress-rupture curves. To overcome
the above shortcomings, it is necessary to carry out creep tests under alternating load, in
which the specimen is exposed to a high temperature for a long period. This type of tests
has been carried out in this research, in order to obtain results that are more realistic.
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Fig. 1. Creep rupture/low cycle fatigue damage interaction curve for 1Cr—Mo-V rotor steel at 450°C
[18].

2. Material and Experimental. Type 304 stainless steel is the most widely used alloy
of the austenitic stainless steel group. It is a variation of the basic 18-8 grade, type 302,
with a higher chromium and lower carbon content. Lower carbon minimizes the chromium
carbide precipitation due to the welding and its susceptibility to intergranular corrosion.
Type 304L is an extra low-carbon variation of type 304 with a 0.03% maximum carbon
content that eliminates carbide precipitation due to the welding. As a result, this alloy can
be used in the “as-welded” condition, even in severe corrosive environment. 304L has
slightly lower mechanical properties than type 304. The maximum temperature to which
304 and 304L can be exposed continuously without appreciable scaling is about 899°C. For
intermittent exposure, the maximum exposure temperature is about 816°C. The hardness of
type 304L does not increase considerably by heat treatment; and it can be annealed by
heating to 1038—1121°C followed byrapid cooling. Cold worked parts can be stress relieved
at 399°C for 1/2 to 2 h [23].

In the current research, creep test specimens have been obtained directly from new
austenitic 304L stainless steel cold drawn bars, which have been solution, annealed at
1050°C. The material conforms to ASTM A276-05A specifications. Chemical composition
of this material is given in Table 1.

rebted Chemical Composition of 304L Stainless Steel in Weight Percent
Composition C Si Mn P S Cr | Mo | Ni Cu N \%
Standard 0.019] 0.41 | 1.75 |0.036|0.006|18.28 | 0.34 | 8.04 | — | 0.04 | -
Tested (CD 304L SS)|0.025| 0.42 | 1.80 {0.035|0.015|17.80| 0.27 | 8.10 | 0.76 | — | 0.19

Here both the standard values [23] and those, which have been obtained from
quant-metric measurements for the specimens under investigation, are given. The test
specimens have been machined out from the bars according to the ASTM E8M-04 [24]
with gauge length of 100 mm and diameter of 10 mm (see Fig. 2).

2.1. Test Machine. Uniaxial creep tests have been carried out using 5000 kg,
AMSLER creep test machine according to the ASTM E139 [25] standard. Its lever-arm
loading ratio is 25:1 with load accuracy of +0.5%. The temperature range of the furnace or
chamber of the machine is up to 1000°C with the accuracy of 0.5°C. The testing machine
also provides displacement—time graphs with the accuracy of =1.0 um. The maximum
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Fig. 2. Uniaxial creep test specimen according to the ASTM E8M-04 [24] with gauge length of 100
mm and diameter of 10 mm. (Dimensions are in mm.)

extension of the specimen is 10 mm (see Fig. 3). To apply alternating load, the capability of
this machine is improved by using a moving weight (1000 kg) along the lever-arm (Fig. 4).
The speed and location of this weight, as well as the frequency of the alternating load, can
be pre-programmed using a computer-controlled electronic system. Using this system and
additional alternating axial load of 0 to 10,000 N can be applied to the specimen.

Fig. 4. Alternating moving load along the lever-arm of uniaxial creep test machine.
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2.2. Test Conditions. In order to investigate the creep and creep-fatigue behavior of
the material, three groups of tests are carried out:

(i) constant load creep, where the uniaxial load and temperature are constant during
the tests;

(i1) creep-fatigue, where the temperature level is constant but the uniaxial load is
alternating with very short hold time;

(iii) alternating load creep, where the temperature level is constant, but the uniaxial
load is alternating with relatively long hold times.

Although the operating temperature for engineering components manufactured from
304L is usually below 650°C in industry, but to reduce the testing times to an achievable
limit, the tests have been carried out at higher temperature levels of 687, 717, and 737°C, in
view that the creep mechanism is the same, since these temperatures are below the
recrystallization level [26]. Also, to avoid the initial plastic deformation, in all tests, the
maximum stress is below the yield stress of the material at the same temperature.

3. Results.

3.1. High Temperature Mechanical Tests. To study the high temperature mechanical
behavior of cold drawn 304L, a series of tensile tests at high temperatures have been
carried out and the results are given in Table 2.

Table 2
Mechanical Properties of CD 304L SS
Test No. T,°C S,.¥ MPa S,,* MPa S., MPa
1 25 675 425 310*
2 517 430 346 198**
3 617 370 299 170%**
4 687 300 252 138%*
5 717 268 228 123%**
6 817 158 117 T2%*

* obtained experimentally; ** obtained using Eq. (2).

Standard high-cycle fatigue tests at room temperature have been carried out to obtain
the endurance limit of the material. Since the endurance limit of steels are proportionally
related to the ultimate tensile strength [27], by knowing the latter at high temperatures, the
former can be estimated. Hence, the endurance limit at high temperatures (S, ); have been
estimated using Eq. (2) based on the endurance limit at room temperature (S, )r—ssc and
ultimate strength of the material §, at high and room temperatures, which have been
obtained experimentally,

(Su )T
(S, ))r=25c

S = ( )(Se )r=25°C- @)

3.2. Constant Load Creep Tests. Table 3 presents the experimental data for constant
load creep tests. In this table, the stress o= F)/4, is obtained using the constant load
(Fy) and initial cross section of the specimen (4). In all tests, the stress is below the yield
stress of the material at the same temperature. Creep failure in engineering components can
be regarded in two ways: when the time to rupture, ¢,, has been reached or the time,
! ereep strain=C%-» at Which the creep strain reaches a critical level of C%. In most of the
engineering components, the latter condition plays a major role; and therefore, it has been
used in this study. Since the maximum extension of the specimen is 10 mm (total strain of
10%) in the creep-testing-machine, all the tests have been carried out until the true creep
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strain of 3% has been reached or = 7 e, srgin=39- At this amount of deformation, most
of engineering components would be regarded as failed. The summary of the creep test
results is given in Table 3.

Also, the minimum creep strain rate, &, for each test has been given in this table.
Figures 5 and 6 show the variation of the creep strain with time at 717 and 687°C,

respectively. The results given in Table 3 and Figs. 5 and 6 show that by increasing the
stress or temperature, time to reach the 3% creep strain decreases significantly.

Table 3
Constant Load Creep Test Results for CD 304L SS at High Temperatures
Test No. T, °C 0’* MPa Icreep strain=1% 9* tcreep strain=3% ’* éss ’ %o/h
7 737 86.5 27 65 3.65-1072
8 717 142.0 1.5 4.25 9.36-107"
9 717 112.0 11 25 9.41-1072
10 717 86.5 185 327 3.81-1073
11 717 56.5 3671 NA** 265-107%
12 687 142.0 68 132 131-1072
13 687 86.5 1390 NA** 561-107%

* obtained experimentally; ** not available (the test has been stopped before reaching 3% strain).

9 T
| | 1 ‘ Temperature=717 °C
@ (O T s seswpe
| = a: Stress= 56.5 MPa

? ~ — e — - — —_—
- ' — b: Stress= 86.5 MPa '
S | | |
E | | —c: Stress= 112 MPa |
o I E— S e —
59 | [ —d: Stress= 142 MPa |
B 4 AR |
2
S | | )

3 | | ;

2+ - - ¢ ¢ _r 1 1 i_ o T B —

N IV R g I o S O R

| | |
0 1 T T 1 T T T T T T T T
0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360
Time (h)

Fig. 5. Creep strain variation of CD 304L SS for constant load creep tests at 717°C.

3.3. Creep Tests at Alternating Loads. Table 4 presents the experimental data for
creep tests at alternating loads. In this table, the following parameters have been used to
define the test conditions:

O max = F max / AO ’
min — F min / AO >
Om= (Omax 0 min )/2’

04 = (0 max = 0 min /2,

Q

(€))
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T lth::rnating Load Creep Test Results for CD 304L SS at High Temperatures
Test T, max > O i > t,, | Creep strain = 1% | Creep strain = 3% €
No. °C MPa MPa S Total N, Total N, m/(m/s)
time (h) | cycles | time (h) | cycles

14 717 142 31 2 45 1306 115 3338 219-1072
15 717 112 1 2 292 8477 513 14893 | 2.07-1073
16 717 112 1 1800 33.1 32 80.6 78 3.12-1072
17 717 112 1 2700 29 19 73.5 54 334-1072
18 717 112 1 3600 25 12 55 27 4.49-1072
19 687 142 31 2 1332 38670 | NA** | NA** | 134.1074

* obtained experimentally; ** not available (the test has been stopped before reaching 3% strain).

9 r . . .
8 Temperature=687 °c
T ~—— =g Stress— 86.5 MPa = —
L6 L= E:lresa— 142 Mm —
g
g 5 —— = —T —
2 din's \J
By IS N N R -
2
°s |
” T
' B
u I 1

48 72 96 120 144 168 192 216 240 264 288 312 336 360

Time (h)
Fig. 6. Creep strain variation of CD 304L SS for constant load creep tests at 687°C.

F 3

Load

lip I

]
]
[ Time
]

- I

Fig. 7. Schematic diagram of load—time variation used to apply alternating loads.

where F,. and F;, refer to the maximum and minimum applied loads also, o,, and
o, refer to average and alternating stress. Since, most of the engineering components
operate at tensile stress, and knowing the fact that the creep damage is mostly due to this
type of loading, in all tests the minimum stress is above 1 MPa to avoid any compressive
load. In addition, all tests are load controlled as shown schematically in Fig. 7. In this
figure, definition of parameters such as load-increasing time, ¢,,, load-decreasing time, ¢,
and holding time, ¢,, are presented. In all tests ¢, =¢, = 60 s.
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Fig. 8. Variation of the creep strain with time for alternating load tests under different hold times.
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Fig. 9. Variation of the creep strain with time for constant (average and maximum) and alternating
load.

Figure 8 shows the variation of the creep strain with time for alternating load tests at
717°C. The stresses for alternating load-tests change between 1 to 112 MPa. This figure
shows that by increasing hold time, creep strain rate increases significantly. To compare
different behaviors of the material, the results for constant load creep tests with 112 MPa
(maximum stress) and 56.5 MPa (average stress) are also included in Fig. 9.

The summary of the test results is given in Table 4. As it can be seen, in all tests, the
specimens reach the creep lifetime limit (creep strain of 1 or 3%) without facing fatigue
fracture. For example, in test No. 14, in spite of the fact that the hold time is very short (two
seconds), even after 3338 cycles, fatigue fracture has not occurred and during this period
which lapsed 115 h, the creep strain has reached 3% limit. The same trend has been
observed in test No. 15, and after 14,893 cycles, the creep lifetime criterion being satisfied
without facing fatigue fracture.

4. Discussion. To evaluate the level of creep-fatigue damage of the tests, the ASME
Code Case N-47 has been used. This code is based on the use of interaction diagrams such
as that shown in Fig. 1 for the material under consideration. The estimation of the total
damage is also obtained by the use of Eq. (1).
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As it can be seen in Table 4, tests Nos. 14, 15, and 19 have very short hold times (two
seconds) and therefore they can be considered as fatigue tests at high temperature. Based on
the Manson—Coffin equation [16], the pure fatigue damage is related to the number of
cycles and the range of strain change in each cycle or N = B(Ae )", where B and m are

material constants. Hence, by increasing Ag, the fatigue damage will increase. It can be
seen in Fig. 10 (also in Table 5) that the strain range Ae at each cycle for tests with ¢, =2
s remains almost constant (for example from 0.06 to 0.07% for 687°C, maximum stress of
142 MPa, minimum stress of 31 MPa) but their average values are increased by increasing
temperature (for example compare the strain rang for test No. 14 and 19) or mean stress
0,, (compare test No 14 and 15). Therefore, it can be concluded that both increasing
temperature and mean stress level will lead to a shorter fatigue-life. Fatigue-life for each
test can be calculated using either Manson—Coffin equation, or fatigue life diagrams for
304L material [18]. The estimated fatigue-lives given in Table 5 have been obtained using
diagrams provided in ASME Code Case N-47 and for these tests, they are equal or above

10° cycles. Therefore, the fatigue damage value, EN ; /N - is very low. Also in Table 6,

the amount of creep damage, E t; / t are given, in which the creep lifetime is

creep strain=1%>
considered to be the life to reach 1% creep strain. It can be seen that due to the high
temperature and stress level for these tests, the creep damage is much higher than the
fatigue one, despite very short hold times. Clearly, by increasing hold time, the role of
creep damage will increase and this failure mechanism will be the dominant one.

717 C, Hold Time= 2 s, Maximum Stress=112 MPa, Minimum Stress=1 MPa
r %717 C, Hold Time= 2 s, Maxumun Stress=142 MPa, Minimum Stress=31 MPa
-4 (687 C, Hold Time= 2 s, Maximum Stress=142 MPa, Minimmum Stress=31 MPa

01 +—— +——| +—+—
'|.'|'|.'||
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g' -r - -
MI : |"|
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[ As (%)] for each cycle
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Fig. 10. Variation of strains for each cycle with time for three alternating load tests.

Moreover, comparison of the results for tests Nos. 15-18 shows the effect of holding
time on the material creep behavior. Although the stress and temperature levels for these
tests are the same, but due to the increasing hold time, creep strain rate has increased
significantly and therefore the creep lifetime is reduced. For example, for test No. 15 with
Uh =28, tireep strain=3% 1S 513 h, but for test No. 18 with 7, =3600s, ¢
reduces to 55 h.

The test results can be compared using the power law form of constitutive equation to
estimate the steady state creep strain rate:

creep strain=3%

ey =Co", “

ISSN 0556-171X. IIpobaemwr npounocmu, 2015, Ne 6 117



A. H. Daei-Sorkhabi and F. Vakili-Tahami

Table 5
Fatigue Damage Evaluation in Tests with a Short Hold Time of 2 s

Test T, O max » O min » t, N;, Ae, Fatigue Fatigue
No. °C MPa MPa s cycles mm/mm | life N,, | damage
cycles 2 N, / N,
14 | 717 142 31 2 1306 | 864-107* 10 |1306-107°
15 | 717 112 1 2 8477 | 754-107* | above 10° |8.477-107°
19 | 687 142 31 2 38670 | 635-107* | above 10° [3.867-107>
Table 6
Creep Damage Evaluation in Tests with a Short Hold Time of 2 s
Test T, O max» O pin > t, Creep strain = 1% Creep
No. °C MPa MPa s N, t=1,N,, ’ damage
cycles h at max Eti/ Lereep strain=1%
stress, h
14 717 142 31 2 1306 0.73 1.5 0.49
15 717 112 1 2 8477 471 11.0 0.43
19 687 142 31 2 38670 21.48 68.0 0.32

where & is the creep strain rate (in h_l), o is stress (in MPa), C and n are material

constants. Comparison of the results for test No. 11 in Table 3 and test No. 15 in Table 4
highlights the significant effect of alternating load on the creep strain rate and lifetime of
the material.

Comparative analysis of the results for tests Nos. 10 and 11 in Table 3 and tests Nos.
14 and 15 in Table 4 also demonstrates the effect of average stress level on the creep
lifetime of the material under alternating load. For example, by increasing the applied
constant stress from 56.5 to 86.5 MPa, creep strain rate increases by a factor of 14.377 and
time for 1% creep strain reduces by factor of 0.05. This trend can also be seen in comparing
the results for tests with alternative stress.

The effect of holding time on creep strain rate can be observed by comparing the
results for tests No. 15 to No. 18. For example by increasing hold time from 2 to 3600 s,
steady state creep strain rate increases by a factor of 21.69 with decrease in time to reach
1% creep strain rate by a factor 0.09.

Conclusions. A set of constant and alternating load creep tests have been carried out
to predict creep behavior of cold-drawn 304L SS. The test results show the difference in
creep behavior of the material under constant and alternating loads.

1. It has been shown that at high temperature and at stress levels below the yield point
at the associated temperature, the specimens have reached creep lifetime limit (creep strain
of 1 or 3%) without facing fatigue fracture. For example, in test No. 14, in spite of the fact
that the hold time is very short (two seconds), even after 3338 cycles, fatigue fracture has
not occurred and during this period which lapsed 115 h, the creep strain has reached 3%
limit.

2. The results highlight the major impact of the alternating loads in increasing creep
strain rate and reducing the creep lifetime when compared with the constant load tests at the
same average stress. For example, in test No. 11, at 717°C and constant stress of 56.5 MPa,
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creep life for 1% strain is 3673 h, whereas for test No. 15 with alternating load (56.5 MPa
mean stress and 55.5 MPa alternating stress, two second hold time) creep life for 1% strain
is 292 h or 12.6 times shorter. Hence, estimating creep lifetime for alternating loads based
on the average stress will lead to erroneous result.

3. It has been shown that by increasing the hold time, the creep strain rate increases
and consequently, the creep lifetime is reduced.

4. The results show that due to the high temperature and stress level for these tests, the
creep damage is much higher than the fatigue damage despite very short hold times.

Pe3ome

Ha ocHoBi pe3ynbraTiB BUIPOOYBaHb HAa OAHOOCHOBHH PO3TAT BHKOHAHO IOPIBHSIBHY
OLIIHKY MPUCKOPEHUX e(EeKTiB HUKIIYHOI MMOB3Y4OCTI B yMOBAaX 3MIHHOIO 1 MOCTIHHOTO
HATPYXKCHHU ISl ayCTEHITHOI HepkaBitowoi crami 304L, mupoko BHKOPHCTOBYBaHOI B
eHepreTulll Ta HahTOXIMIYHOT IPOMHUCIOBOCTI Yepe3 ii MiABUIIEHHX XapaKTePHUCTHK OMOPY
BHCOKOTEMIIEPATypHOI MOB3Y4OCTi 1 BTOMH. 3pa3Ku Ul BUIIPOOYBAaHb OTPUMAHO 3 XOJIOIHO-
TATHYTHX TPYTKiB, Marepian Bimmosigae crenudikamii ASTM A276-05A. BunpoOyBauHs
MpoBOMIIKCS TIpu Temrepatypax 687, 717 1 737°C B ymoBax 3MIHHOTO ¥ MOCTIHHOTO
HaBaHTaKCHb. BuBueHO e(heKTH 3MIHHOTO HaBaHTA)KEHHS Ta Yacy BUTPUMKH HA MEXaHIUYHY
MOBEAIHKY Marepially 1 XapakTepHCTHKH BTOMHM M moB3ydocTi. OTpuMaHi pe3yibTaTH
MiATBEPKYIOTh CHIIBHUI B3a€MOBIUIMB MEXaHI3MiB ITOB3y4YOCTi i BTOMH. Byrno BcTaHOB-
JICHO, IO MPHU BUCOKUX TEMIeparypax IOIIKO/PKEHHs Marepially 3a MEeXaHi3MOM IOB3Y-
YOCTi TOMiHY€ HaBiTh y BUIPOOYBAHHAX 3 QyXKe KOPOTKOIO BUTpUMKOIO. Kpim Toro, Oymo
NOKa3aHo, 10 TP 30UIbIICHHI Yacy BUTPUMKH 30UIBIIYETHCS IIBUIAKICTH nedopmarii
MTOB3YYOCTI 1, OTKE, 3HWKYETHCS TOBTOBIUHICTH 3pa3KiB. Pe3ynbraTu JOBOIATH, IO 3MiHHI
HABAaHTKECHHSI ICTOTHO 30UIBLIYIOTH MIBUAKICT JedopMariii HOB3y4OCTi i 3HWKYIOTh JOBrO-
BIYHICTb Yy HOPIBHSHHI 3 NMOCTIHHUMH HaBaHTa)KCHHSAMH, 110 3a0€3MeuyloTh TaKui caMui
PIBEHb CEepeaHiX HaIpYKEHb.
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