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B cospemennbix uHdICEHEPHBIX PACHEMAX BAJICHOE MECHO 3aHUMAION paciemsl YCMAaioCmHOU 00120~
BEUHOCMU U OYEHKA HAOEIHCHOCMU OUHAMUYECKUX CUCIeM NpU Uux CiyuauHom Hazpyscenuu. IIpu
npogedenuy SMUX pacuemos HeoOXoOUMO 3HAMb NIOMHOCHb CHEKMPA HANPAXCEHUU Ol uccie-
dyemozo Komnonenma ounamuyeckou cucmemvl. CospemenHblll ypogeHs pazeumus KOMIbIOMEPHbIX
MEXHONO02UT U MeOPULl YUCTEHHO20 MOOETUPOBAHUS NO360AEm MOOEIUPOBANb NIOMHOCHb CHEKMPA
Hanpsxcenull OuHamudeckux cucmem. Ha ocnosanuu smozo npeonodicen Memoo YucieHHO20 MOOelu-
POBaHUsL 0I5l NPOCHO3UPOBAHUSL YCMANOCIMHOU 001208€4HOCIU OUHAMUYECKOU KOHCMPYKYUU, KOMOPbLIL
basupyemcst Ha MOOENbHBIX YPASHEHUAX 05l NAOMHOCIMU CHEeKMPA HANPSAICEHUN U YCMAIOCTHOU
odoneoseuHocmu. B kauecmee npumepa 6bINOIHEH GUPMYATbHLIN AHAIU3 YCMALOCMHOU 001206e4-
HOCMU U HaoedcHocmu 6oavuiecpysHozo 2py3o8o2o asmomoouns CW-200k. [loxkasanvl npumeru-
MOCb Memooa OJisk OYEHKU CYUeCmeyioumux OUHAMUYECKUX KOHCIMPYKYULL U €20 NepCneKmusHOCIb
018 OYeHKU YCAI0CMHOU 00J208EUHOCU PA3PAOATNBIBAEMbIX HOBbIX KOHCMPYKYUIL.

Knroueevie cnoea: cucrema co CJIy‘iafIHBIMPI KOJ'Ie6aHPIHMPI, IUIOTHOCTH CHEKTpa Hamps-
)KGHI/Iﬁ, MMPOrHOo3MpPOBaHUEC yCTaJ'IOCTHOﬁ JOJrOBCYHOCTH, BI/IpTyaHBHLIﬁ aHaJInu3.

Introduction. The fatigue life prediction and reliability analysis of dynamic systems
under random excitement are important topics in modern engineering design [1-8]. The
vibration characteristics of fatigue damage of beam-type structural components has been
researched [9, 10] and a computational and experimental assessment of the sensitivity of
structural materials to stress concentration under high-cycle asymmetrical loading has been
performed [11]. A numerical calculation of the frequencies of natural vibrations of beams
with a cross section varying linearly in height under different conditions of fixing their ends
is presented [12]. However, the stress power spectral density of a component in a dynamic
system must be known when one predicts its fatigue life and analyzes its reliability. A
traditional way is to measure the stress power spectral density, which has played an
important role in practice [4]. However, the stress power spectral density of a dynamic
system will change with the alteration of the structure and dynamic parameters of a system.
So the engineering application in this way is limited. Moreover, one is not able to obtain the
stress power spectral density of a new dynamic system before it has been designed. With
the rapid development of computer technology and numerical computation theories, it has
been possible to simulate stress power spectral density of dynamic systems. Based on this,
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the method of simulating stress power spectral density is put forward in this paper, and as
an example the fatigue life prediction and reliability analysis of CW-200k [4] vehicle truck
are made.

Computational Method of Stress Power Spectral Density.

Random Response Spectra of Dynamic System Computation [1, 2]. In general, the
vibration equation of a linear system can be written in matrix form as

M:(1)+C2(t)+Kz(t)= F(1), )

where M, C,and K are N XN symmetric matrices representing the masses, damping, and
stiffness of the system, z(¢), z(¢),and z(¢) are column vectors representing acceleration,
velocity, and displacement, respectively, and F(¢) is matrix of excitation function.

From Eq. (1), the frequency response matrix is obtained by taking the Fourier
transform as follows [3]:

H(w)= F(0)[K- 0*M+ joC] !, ®)

where H(w)= F(z(t)/F (F(1)).
Therefore, the power spectral density matrix of system can be deduced as

G.(0)=H T (0)G, (0)Hw), ?3)

where H'” (w) is conjugate transpose matrix of H(w) and G, (w) is input power spectral
density matrix of a system.

If the time difference 7 exists in the excitation process, according to the time
difference property of the Fourier transform, G, (w) may be expressed as

1 e T2 ,TIOTI3 L T 0TIk
JoTy) —JjoT)3 —Jjotsy,
e 1 e e
Gxix/ (@)=G, (@) : : : : : ’ “
ej('()Tnl ej('UTnZ e_j(IUTnfa - 1

Similarly, the acceleration amplitude of the system response is given by
- Dmax 4 12
z= 3[fwm 0*G, (a))dw} . )

The Unit Load Stress Matrix Computation. In a linear elastic system, the stress state
of the structure may be expressed as

o(x, y, 2z, 1)=S(x, y, ) b" (1), (6)

where S(x, y, z) is defined as unit load stress matrix. Vector b(¢) is the load state vector.
The load state vectors may be expressed as

b(z)= (F(z), M(2))= (Wz(2), Vz(1))= Jz(2), (7

where F(z)= (F;(t), F,(¢), ..., F,(¢)) is called the forces in the translation sense,
M(z)= (M, (¢), M,(¢), ..., M, ()) is called the moments in rotation, J = (W, V)T is
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called linear operator or coefficients’ matrix, and z(¢) is vector representing the response
of each degree of freedom.

According to the theory of correlation function [3], the correlation function matrix of
stress state of stationary random process can be written as

R, (1)=E[o(t)o” (t+7)]=S(x, y, 2)E[b(t)b" (t+1)IST (x, », 2)=
=S(x, y, 2)JE[z()z" (t+1)]ITST (x, 3, 2)=S(x, y, 2)IR_(@)ITST (x, y, 2),  (8)

where E represents mathematical expectation.
Therefore, the stress power spectral density matrix can be obtained by taking Fourier
transform as

1 pw . 1 po .
G,(0)= Ef_sz(r)e‘f‘”dr=S(x, ¥ z)JLnf_szme‘f“”dr]JTsT(x, v, 2)=

=S(x, y, 2)IG, (@)I"S" (x, 3, 2). ©)
Then the stress square deviation is
D, =R, (0)= f_wGs (w)do. (10)

If z(¢)=[z1(¢), z,(¢), ..., z, ()] represents response vector matrix of a system,
then the response spectra will be of the form

Gz]z] (w) Gz]zz(w) Gzlzn(w)

Gzzzl ((1)) Gzzzz(w) Gzzz (Cl))
G.(0)= : : : ;n : (11)

Gznzl ((1)) Gznzz(w) Gznzn(a))

Now, the relationship between the response spectra of the system and stress power
spectral density of a structure is established. Based on this formulation, one is able to
estimate fatigue life and analyze the reliability of the structure.

The Fatigue Life Prediction of the CW-200k type Truck.

The Stress Power Spectral Density Computation of the CW-200k Type Truck of a
Passenger Vehicle. The stress power spectral density of the frame of a truck can be
researched in the vertical vibration of six-degree-of-freedom system because in high speed
railways track is either straight or has a big radius. The dynamic model of vehicle is as
shown in Fig. 1.

The equations of motion was obtained as follows:

mez,+2Cyz,—Crzp —Crzpy+2Kyz, —Kyzp —Kyzpy =0,
Jc(;)c +2C212¢C _Czlébl +C2[Zb2 +2K2]2(pc _Kzlzbl +K2]Zb2 = O,
myzp —Crz, —Colp. +(2C, +Cy)zy — Kz, —Kylp, + (2K, + K )zpy =

=Cy(n +1)+ K1 (7 +ny),
myzpy —Crz.+Colp. +(2C, +Cy)zpy — Koz, +Kylp, + (2K, + K )zpy =

=Ci (N3 +n4)+K (n3+14),
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Ty @1 +2C1 Py +2K1112<Pﬁ1 =CL (0 —n2)+K L (i —12),

. ). ) . (12b)
JpPp2 + 2017y +2K [Ty = Cily (3 =14 )+ K 11 (113 =14),
and Egs. (12) are written in matrix form as
[M]{Z}+[CHZH+[K iz} = [Cy M+ K, 1, (13)

where {z} is displacement vector, {z}=[z, @®,. zy1 O Zp2 Pp2 ]T, {n} is the

input vector, 7}=[n; 7, N3 N 4]T , [M], [C],and [K] are 6X 6 symmetric matrices

representing the mass, damping, and stiffness of a vehicle system, respectively, and [C, ]
and [K y] are matrices of coefficients. They correspond to the CW-200k type truck and 25
type passenger rail vehicle.

z
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Fig. 1. The vertical vibration model of vehicle.

The expression for the track spectrum is given by [4]

G ()= 4,97
T (0P +QY )+ (02 +Q2) (14)

The track spectrum come from the Office for Research and Experiments of the
International Union of Railways (ORE B176), the high level ORE parameters are as
follows: Q, = 08246 rad/m, Q, = 00206 rad/m, and 4, = 108-10~® m-rad.

As a result of symmetry of the structure and the force, the whole model of the side
frame of truck and the loading model are shown in Fig. 2a and b, respectively.
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Fig. 2. The model of the CW-200k type truck (a); loading model of the CW-200k truck (b).
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In figure, P is the vibration force that come from the air rings located between the
center of side frame and car body, F is the vibration force that come from spring and
damper of axle box, and f; and f, represent the distribution loads of the inertial force
and inertial moments caused by vibration acceleration. In order to know the position of
weak link of the frame, a stress chart (Fig. 3) is derived by locating the unit load (1 kN) in
the center of side frame. From the chart, we find the weak link of the side frame, as shown
in Fig. 2.

G, MPa
0.35

0 o~ \

0.25 \/

02 ~d
0.15
0.1

0.05
0

0 200 400 600 800 1000 1200
Distance to the middle point of side beam (mm)

Fig. 3. The principal stress for unit load.

According to Eqs. (6) and (7) and Fig. 2b, the stress function of the weak link is

obtained as
o(t)=S8(xg, o, zo Mz(t) (15)

and
S('x()’ y()>Z())=(T‘1>T35T37T27T39T3>T35T3)> (16)

where
Ty =L /W., T,=L/W,, Ty =L/W,

Li=4=3L,—12[l,, Ly=—4+3,/L+/5, L=5-1,
and W,, is called the section modulus of the weak link,
2= Zp1s Zp1s Zp1s Pots Pots Pois M1 M) A7)

[m,, /4
/2
K, /2
Ty /4
= Ciby/2 B
K112/2
-C,/2

—-K, /2]

where my, is the mass of the truck, J, is the moment of inertia of the truck, C; and K,
are damping and stiffness located on the axle box, respectively. According to Eq. (11), the
response spectra of the truck may be written as
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Gz Oz Oz Ozupn O0m Oien Oy Oz
Gz Gizy Oz Opn Oipgn Giwen Oim Oz
Gopzyr Ozpzy Ozpz Ozppn Ozpin Ozpen Gz szm,
G.(0)= g?m%m g?blz.m g?blzbl g‘?bl‘%bl g?mf’m g?bﬁﬂbl g?bl’?l g‘;“iblnl ’
Ph1Zp1 Ph1Zp1 Ph1Zp1 Pp1Ph1 Pp1Pb1 Pp1¥Pb1 Prin1 Ppin1
Govizer Gopizn Oomzni Gpuin Gopin Goness Gopin Gppm
Giizor Oz Gz O Gion Giiene i G,
_Gnlébl G’?lébl G’?lzbl G’71¢b1 G’?l‘/’ﬂl G’h‘/’bl G’71’71 G’71’71 i
(19)

substituting Eqgs. (16), (18), and (19) into Eq. (9) and substitution of the parameters of the
truck then numbering computation, the SPSD G, (w) of the weak link can be obtained. As
an example of stress power spectral density that the train runs at a speed of 180 km per
hour is given in Fig. 4.

G(w)-10*, (MPa Y/em™!
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Fig. 4. Stress power spectral density (SPSD).

The Fatigue Life Prediction of the Side Frame of The CW-200k Type Truck. After
the stress power spectral density are obtained, based on it, the distribution density of stress
peak can be deduced as [5, 6]

V=R"S

f9)= 2nR\R

—5?2
exp| L |s (20)
where
R=f0 G, (w)dw, R”=f0 — G, (0)do,

S is random stress when average value is zero. Generally, the fatigue curve can be
described by

S"N =C, 21

where S is reversed stress amplitude, N is number of cycles to failure, and m and C are
material constants of the structure.
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According to the Miner cumulative-damage law [7, 8], the fatigue life computational
equation can be obtained as follows:

-1
. S Sl’ﬂ
Tf={f0f((3dS} : 22)

From statistics, the fatigue life of structure accords with log normal distribution. In the
light of this, the fatigue life equation in different reliabilities can be deduced as

N(R)= exp{\/ln[1+172(N)] O '[I-R(N)]|+InN — % In[14+7> (N)]}, (23)

where
1| 2
RN )= 1= @ InN—1In(N/ 21+17 (N)) , 24)
In(1+%~(N))

N(N)=o0y /uy is called change coefficient, u, and o, are average value and
standard deviation, and N is the life when the reliability is 50%. Its value is equal to 7'f.
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Fig. 5. The fatigue life curve of the side frame of the CW-200k type truck for different reliabilities
[(®) P=50%; (W) P =90%; (A) P=99%; (@) P =99.9%].

In this paper, we computed the fatigue life of a side frame for four reliability, when
the train runs at 60 to 200 km/h, as shown in Fig. 5.

Conclusions. A method for calculating the stress power spectral density of a general
linear dynamic system on the basis of the unit load stress matrix is put forward. The
relationship between the stress power spectral density of dynamic components and the
response spectra of dynamic system is established, and the corresponding formulas are
derived. It is very important for the numerical emulation in dynamic fatigue design and
reliability fatigue life prediction by computer. The dynamic response computation and fatigue
life prediction of the CW-200k type vehicle truck are developed using the method and the
high level ORE track spectrum.

The proposed method is suitable not only for the running dynamic system but also for
new design dynamic systems.
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Pe3ome

VYV cydacHUX 1H)KEHEPHUX PO3paxyHKaX BaKIMBE MiCIle 3alMarOTh PO3paXyHKH BTOMHOI
JIOBTOBIYHOCTI ¥ OI[iHKa HAJIHOCTI JUHAMIYHUX CHCTEM IPH iX BHUIIAJKOBOMY HaBaH-
TaxeHHI. [T MpoBeeHHS X PO3paxyHKIB HEOOXiMHO 3HATH TYCTHHY CHEKTpa HANPYTH
JUTSL TOCIIJDKYBAHOTO KOMITOHCHTa TUHAMI4HOT cuctemMu. CydacHUH pIBCHb PO3BUTKY
KOMII'FOTePHHAX TEXHOJIOTIH 1 TEOpi YMCIIOBOTO MOJICIIOBAHHS JO3BOJIIE MOJCITIOBATH
TYCTHHY CIICKTpa HANpyr JMHAMIYHUX CHUCTeM. Ha OCHOBI LbOTO 3alpONOHOBAHO METO/I
YHCIIOBOI'O MOJICIIIOBAHHS ISl IPOrHO3YBAHHS BTOMHOI JJOBIOBIYHOCTI JHHAMIYHOT KOHCT-
PyKLii, o 0a3yeThCsl HA MOJENBHUX PIBHSHHAX VIS TYCTHHU CIIEKTpa HAIpyr i BTOMHOI
JOBTOBIYHOCTI. SIK TpWKIaJ BUKOHAHO BIPTyalbHUHA aHalli3 BTOMHOI JOBTOBIYHOCTI 1
HAIIHHOCTI BEJIMKOBAHTAXHOTO rpy30Boro aBromo0iist CW-200k. TTokaszaHo 3acTocyBaHHS
METOJLy JUISl OL[IHKH ICHYIOUHX JUHAMIYHUX KOHCTPYKIIiH Ta Oro MepCIeKTUBH ISl OI[IHKA
YTOMHOI JIOBIOBIYHOCTI PO3pPOOJIIOBAHUX HOBUX KOHCTPYKIIIH.
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