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Polyetheretherketone (PEEK) is a new type of special engineering plastic that has broad market

potentials due to its particular microstructure and mechanical properties. However, few data can be

found in the literatures devoted to the mechanical properties and machinability of PEEK, especially

in the superprecision field. For the first time, the microscopic mechanical properties and machinability

of glassfiber-reinforced PEEK (GF/PEEK), which is one typical derivative of pure PEEK, are

studied. The nanoindentation experiment was performed to analyze the microscopic mechanical

properties of GF/PEEK. The machinability was studied by single-point diamond turning (SPDT) on

the GF/PEEK surface, the roughness and form accuracy of the machined surface were obtained in

the following test. Experimental results indicate that GF/PEEK has good microscopic mechanical

properties and machinability.
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Introduction. Polyetheretherketone is a relatively new ultra-high performance thermo-

plastic with excellent high-temperature properties and exceptional characteristics of wear

resistance and high specific strength. Hence, PEEKs have been widely recognized as the

prospective materials for an extensive range of applications, such as the aerospace industry,

automobile manufacturing and medical field [1–4].

To meet the requirements of high-precision, heat-resisting and high-fatigue strength

in manufacturing, PEEK composite materials with further enhanced properties can be

obtained by reinforcing with glass or carbon fibers [5–7]. The glass-fiber-reinforced PEEK

(GF/PEEK), which is a typical derivative of PEEK, can also enhance the tensile and

bending strengths of materials [5].

There is a wide variety of studies on fiber-reinforced PEEK, but these are mainly

concentrated on several aspects, such as crystallization behavior [8, 9], morphology

analysis [10], and macroscopic mechanical properties [11–13]. However, only few papers

are focused on the micromechanical properties and machinability of fiber-reinforced PEEK.

PEEK is commonly manufactured by traditional methods of molding and processing

for thermoplastic plastics, such as extrusion molding, injection molding and compression

molding. The machined workpieces need additional post-processing to reach the super

surface roughness and form accuracy [5, 14]. Among the available ultra-precision machining

methods, the single-point diamond turning (SPDT) has been widely considered to be a

promising technique due to the superior advantage of generating higher surface quality with

only one processing step [15–17].

In this paper, the micromechanical properties and machinability for GF/PEEK are

studied to obtain a better understanding of its characteristics. One of the major concerns in

studying is to obtain the varying pattern for mechanical property and machining technology,

thus making the excellent properties of PEEKs maximally applied.

1. Experiment and Results on Determination of Micromechanical Properties.

Several GF/PEEK specimens were prepared in cylinder shapes with R � 8 mm, and the

surfaces were polished to make preparation for subsequent experiments. The morphology

of the obtained GF/PEEK specimen is shown in Fig. 1.

© S. J. JI, H. J. YU, J. ZHAO, F. S. LIANG, 2015

224 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 1



The micromechanical properties are studied by a series of nanoindentation experiments,

and the indenter of the adopted instrument is a triangular pyramid tip with 120� apex angle.

The parameters are presented in Table 1.

The experiments are performed at room temperature, and the purpose is to investigate

the relation between indentation depth h and load P. Five groups of nanoindentation

experiments with different maximum indentation depth, including 1, 2, 4, 6, and 8 �m, are

designed, and four test points in different locations are planned in each group. The

microscope image of GF/PEEK after nanoindentation experiments with 8 �m maximum

indentation depth is given in Fig. 2. Taking the average values of four test points as the

final dates, and the relation between measured indentation depth and load for different

maximum depths is indicated in Fig. 3.

T a b l e 1

Parameters Adopted

in the Nanoindentation Experiment

Parameter Value

Surface approach velocity (nm/s) 10

Peak hold time (s) 2

Poisson’s ratio 0.3 Fig. 1. The morphology of GF/PEEK.

Fig. 2. The microscope image of GF/PEEK after nanoindentation (8 �m maximum depth).

Fig. 3. Indentation depth vs. load for GF/PEEK.
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As shown in Fig. 2, the highlighted spots are glass fibers, and the triangular patches

are indentations. At the conditions of 8 �m maximum indentation depth, the GF/PEEK

surface still keeps an excellent integrity, and it can also be seen that the indented surface is

free of unwanted defects. From Fig. 3, it can be found that the load–depth curves have a

similar trend for different groups, and the existing small difference may attribute to the

inhomogeneous mixing for glass fibers among PEEK matrices. The results of nano-

indentation experiments demonstrate that the GF/PEEK has superior micromechanical

properties.

2. Experiment and Results on Machinability. The study of machinability for

GF/PEEK is very essential and urgent for the wide application in some high-precision

fields. To obtain a surface with high quality, SPDT technique is used to research the

machinability of this thermoplastic plastic GF/PEEK. In addition, the feed rate adopted in

SPDT is the microscale, and the study in Section 2 can demonstrate that the press in

microscale cannot destroy this surface.

The machining experiment is carried out on a two-axis (X- and Z-axis) ultra-precision

lath NANOFORM 250. Figure 4 displays a photograph of the main section of the

experimental setup. During the cutting process, the GF/PEEK workpiece is fixed on the

spindle through the air chuck and rotated with the spindle at a certain speed. The different

cutting depth and speed can be achieved through the movement of X- and Z-axis. The

parameters of chosen diamond tool are listed in Table 2, and the geometry of employed

diamond tool is presented in Fig. 5.

A simple flat surface is manufactured, and the spindle speed and feed rate are chosen

to be S � 1500 rpm and F � 1 mm/min, respectively. The surfaces are observed and

measured by the TAYLOR HOBSON, which is a high-precision commercial instrument for

the measuring of surface form, and mainly used to measure the form accuracy and surface

roughness of the surface. The measurement is the typical contact measurement, and the

operation is carried out by scanning a diamond stylus with a radius of 2 �m in the radius

direction of the machined surface. Figure 6 shows the outer shape of machined GF/PEEK

surface and the schematic diagram of the measurement process.

T a b l e 2

Parameters of Chosen Diamond Tool

Parameter Radius

(mm)

Rake angle

(deg)

Clearance angle

(deg)

Included angle

(deg)

Value 0.5 0 10 120

Fig. 4. Main section of the experiment setup. Fig. 5. The diamond tool geometry.
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To compare the cutting effect of before and after the process, the blank surface and

machined surface are measured by TAYLOR HOBSON, and the obtained raw profiles are

firstly given in Fig. 7a and b, respectively. As indicated in Fig. 7, the machined surface has

greatly enhanced the surface smoothness, as compared with the blank surface.

Fig. 6. Machined GF/PEEK surface and schematic diagram of the measurement process.

a

b

Fig. 7. The raw profiles of GF/PEEK surface: (a) blank surface; (b) machined surface.

ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 1 227

Mechanical Properties and Machinability ...



Based on the analysis module of the instrument for the raw profile, the analyses of

form accuracy for blank surface and machined surface are displayed in Fig. 8. As indicated

in Fig. 8a, the measuring form accuracy of blank surface is 18.3 �m in peak to valley (PV)

value, while PV for machined GF/PEEK surface drops to 3.4 �m according to Fig. 8b.

Furthermore, the analyses of surface roughness for blank surface and machined surface are

shown in Fig. 9. The surface roughness (Ra) of blank is 1.77 �m, while the surface

roughness of the machined surface is only 0.53 �m, as shown in Fig. 9b, which is not the

superior level for the surface roughness in ultra-precision machining. The results may be

attributed to the inhomogeneous mixing for glass fibers among PEEK matrices since the

hard and brittle glass fibers may preclude the cutting and increase the cutting difficulty. The

measurement results demonstrate that the ultra-precision machining strategy SPDT is

suitable for the machining of thermoplastic plastic GF/PEEKs to generate a high-quality

surface, and the GF/PEEK has an excellent machinability.

Conclusions. In this paper, the micromechanical properties and machinability of

glass-fiber-reinforced polyetheretherketone (GF/PEEK) are analyzed to expand the

application area. A series of nanoindentation experiments are conducted on the GF/PEEK

surface to investigate the micromechanical properties. The results illustrate that the

load-depth curves have a similar trend under different indentation depth conditions, which

b

Fig. 8. The form accuracy of GF/PEEK surface: (a) blank surface; (b) machined surface.

a
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demonstrates that the GF/PEEKs have excellent micromechanical properties. A flat surface

is fabricated with SPDT to analyze the machinability of GF/PEEK in ultra-precision

machining. From the measurement results, a microstructured surface with the form

accuracy PV � 3.4 �m and surface roughness Ra� 0.53 �m is obtained, which indicates

that the GF/PEEKs also have an exellent machinability.
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