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Short Fatigue Crack Growth at Different Maintenance Times for LZ50 Steel

B. Yang,
1

B. Q. Ma, Y. X. Zhao, and S. N. Xiao

State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China

1 yb@swjtu.cn

Based on the average fatigue life of LZ50 axle steel specimens without surface rolling, five

maintenance times were determined. Accordingly, five groups of specimens were turned and rolled at

above maintenance times and were fatigued using a replica technique. The results show that the

crack growth rate is much lower than that before rolling at a given dominant short crack size. The

effective short crack density of all specimens decreases significantly after maintenance. However,

with the postponement of surface maintenance, the highest effective short crack density for the five

studied groups of specimens increases continuously, while the average fatigue life decreases

gradually. A maintenance time effect function is presented to refine a short crack growth model

described previously. The revifined model can include a significant effect of the maintenance time on

short crack growth and predict its patterns at different maintenance times with exiting test results

for LZ50 axle steel.
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Introduction. With the increase in speed, transport capacity and traffic density of

railway vehicles, their key components have to withstand more heavy-duty service

conditions [1]. An important component of vehicle running gear is axle, which bears

complicated alternate loads during its operation, has the highest loading frequency, and

exhibits the most complex failure modes [2]. Any axle failures caused by fatigue damage

may result in train derailing, and the safety of railway operation will be gravely affected.

For components with a smooth surface subjected to alternate loading, the initiation,

coalescence and propagation of short fatigue cracks (SFC) normally occupy over 70% of

the total fatigue life [3]. For example, with a overhaul cycle of 100,000 km and a reliability

of 0.999, the critical size of a semi-elliptical crack in the load-relieving groove of RD2 axle

used in railway freight cars in China, is 1.23 mm, while the respective size of a

circumferential crack is only 0.94 mm [4, 5]. Therefore, it can be concluded that the fatigue

damage process in such axle occurs mainly at the SFC stage. To describe the SFC growth

behavior, numerous studies have been conducted and, accordingly, many SFC growth rate

models have been presented, such as the cyclic stress/strain-related model [6, 7], the

shearing strain model [8], the dislocation based model [9], the general Paris law model

[10], and the multi-microstructural barriers’ model [11].

The final processing method for the load-relieving groove of RD2 axle has once been

turning, the maintenance strategy for it being finish turning and surface rolling. However,

the impact of surface treatment time choice on the maintenance effect, i.e., the maintenance

time effect on the short fatigue crack growth behavior, is still an open issue.

LZ50 axle steel is widely applied in Chinese railway manufacturing industry, while its

production technology complies with the adopted the AAR M-101axle standard [12]. This

study is based on a series of fatigue tests of this material by the replica technique. Different

maintenance times are chosen for five groups of specimens. The influence of maintenance

time on SFC propagation, crack density, and fatigue life is investigated. The deceleration

behavior of crack growth at the microstructural crack (MSC) stage is observed in

specimens both before and after their surface treating. A revised multi-microstructural

barriers’ model is proposed to account for the maintenance time effect.
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1. Experimental Details.

1.1. Materials and Specimens. The material under study is LZ50 axle steel. Its

chemical composition is: 0.47 C, 0.26 Si, 0.78 Mn, 0.021 Al, 0.02 Cr, 0.028 Ni, 0.15 Cu,

�0.014 P, �0.01 S, and the remainder Fe by wt.%. The static mechanical properties at

room temperature are: 209750 MPa for the Young modulus, 656.43 MPa for the tensile

strength, 383.57 MPa for the yield strength, 54.71% for elongation, and 26.57% for the

cross-sectional area reduction. The heat treatment is double normalizing and subsequent

tempering, in accordance with the TB 2945-1999 railway standard of China. After heat

treatment, the microstructure of material consists of coarse ferrite particles and layered

pearlite particles. There is a banded structure, whereas the mean value of intervals between

two rich pearlite bands, d2, is about 109 �m with a high dispersion. Gathering effects exist

in both ferrite and pearlite structures. The average equivalent diameter for ferrite grains, d1 ,

is 14.6 �m [11]. The static microhardness for pearlite of LZ50 axle steel is 223.4 HV0.1

while that for ferrite is 191.4 HV0.1, which is quite expected, since microhardness of

pearlite usually exceeds that of ferrite. In total, 33 smooth axial hourglass shaped

specimens with 10 mm diameter were machined [11].

1.2. Maintenance Simulation. The machining technology for the load-relieving

groove of RD2 axle in practice and the maintenance simulation parameters of present

research are described in detail in the earlier study [13]. The purpose of finish turning is to

remove possible surface cracks, while rolling is meant to strengthen the surface of the

load-relieving groove or the specimen. It can be seen that the simulation technology meets

the maintenance requirements of a real RD2 axle. After surface rolling, the Vickers hardness

of specimens increases from 201.68 to 222.90 HV0.1. Meanwhile, the absolute values of

axial and circumferential compressive stresses for specimens after surface rolling are higher

by 170 and 101 MPa, respectively, than those before rolling [13].

1.3. Replication Tests. In short crack research, the replication technique is a widely

applied fatigue test method [14]. By utilizing this technique, present tests were performed

under a stress-controlled sine wave mode on a Rumul 250 kN high-frequency fatigue test

machine at room temperature in air environment. The symmetrical cyclic stress amplitude

was 230 MPa. To study the relationship between crack propagation and microstructure,

specimen surfaces were etched by 4% nitric acid alcohol, so that their metallographic

structure was exposed.

Firstly, all specimens without maintenance were tested according to the replication

technique. Secondly, when the number of loading cycles attained the preset maintenance

time, the test was interrupted and specimens were dismounted. Thirdly, the above specimens

were turned and surface-rolled in compliance with the simulation technology. Finally,

specimens after maintenance were mounted on the test machine again and fatigued at

230 MPa by the replication method to their final failure.

Preliminary test results have indicated that the average fatigue life of specimens

without maintenance is 137,705 cycles [11]. To investigate the maintenance time effect,

surface treatment times for five groups of specimens were determined according to this life

estimation. That is, turning and surface rolling were applied when life fraction, f, was 0.0,

0.3, 0.5, 0.6, and 0.7, respectively. Specimens were indexed according to their maintenance

time, i.e., S0.0, S0.3, S0.5, S0.6, and S0.7.

Noteworthy is that the axle diameter will be slightly reduced after maintenance, which

will lead to the higher local stress level even under the same service loading conditions.

Since this study is focused on the influence of surface treatment time and maintenance

technology on short fatigue crack behavior, the increase in stress amplitude caused by size

reduction at a constant test load can make this analysis more complex. Therefore, in this

study, the test load was recalculated based on the specimen actual diameter after maintenance

to ensure that the replication test is conducted at the stress level of 230 MPa.
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2. Description of Short Crack Behavior. Previous work performed by the authors

has indicated that the surface rolling process and the choice of maintenance time would

strongly influence the short crack behavior in the aspects of crack growth rate, short crack

density, and fatigue life [15]. To facilitate the understanding of these impacts, a brief

description is given as follows.

2.1. Dominant Short Crack Growth Rate. Using the approach of the effective short

fatigue crack criterion [16, 17], the relations between dominant short crack (DSC) growth

rate, da dN , and crack size, a, for five different surface rolling times can be derived:

(1) For five groups of specimens, the growth rate sharply decelerates once or twice

during the crack growth process. The ferrite grain boundary and the pearlite banded

structure restrain the growth of short cracks. These inherent resistances of material do not

change with maintenance time.

(2) DSC of unrolled specimens grows much faster than after rolling at the same DSC

size, which can be attributed to different surface conditions. Rolling increases both the

surface hardness and the absolute value of residual compressive stresses. Thus, fatigue

characteristics of unrolled material are not improved, and the respective constraint force for

crack initiation and growth is relatively low.

2.2. Effective Short Crack Density. Effective short crack density is defined as the

average number of short cracks per unit area in the initial zone of DSC at MSC stage [11].

At the physically short crack (PSC) stage, the observation regions transfer to the two zones

ahead of DSC tips. A higher density indicates the formation of microstructural conditions

for short crack growth, and also reflects the strengthening of the SFC collective effect, as

well as the inherent difference of the local microstructure [18].

A detailed introduction on the changes in effective short crack density with respective

fatigue life fraction for S0.0 to S0.7 specimens can be found elsewhere [15]. It is clear that

crack density of specimens after maintenance is much less than that of specimens with no

surface treatment. Turning and rolling treatments effectively inhibit the collective initiation

of short cracks. Crack density of all specimens under study shows the same overall trend,

i.e., it increases at MSC stage, decreases at PSC stage, and attains the peak value at the

transition point between these two stages. The DSC size according to the density peak

value is about the mean value of intervals for rich pearlite bands. In order to empasize the

difference of the density before and after maintenance more, Fig. 1 gives two typical

replication photos of specimens in both kinds of surface processing states at the transition

points between MSC stage and PSC stage. The number of microcracks in specimens before

maintenance (Fig. 1a) is much larger than that in specimens after repair (Fig. 1b) at the

same stage of the fatigue process [18]. It can be concluded from the above discussion that

the rich pearlite banded structure is the strongest microstructural barrier, rather than the

ferrite grain boundary. The postponed repair time will lead to strengthening of the SFC

collective effect, so that local microstructure conditions become more and more advantageous

for the DSC growth.

Short Fatigue Crack Growth at Different Maintenance Times ...

ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2015, ¹ 1 133

a b

Fig. 1. Typical replication photos (�500) for specimens in two surface processing states: (a) before

maintenance; (b) after maintenance.



2.3. Fatigue Life. Fatigue life is the most direct indicator of the maintenance effect.

To calculate the prolonged-life rate (defined as the ratio of the total number of cycles to the

standard life and indicated by M), the average fatigue life of 137,705 cycles was used as

the standard life. Surface turning and rolling treatments significantly extend the fatigue life.

The prolonged-life rates for S0.0 to S0.7 specimens are 6.41, 5.23, 5.06, 4.88, and 4.49,

respectively [15].

The maintenance time choice is critical for the life extension effect: the later surface

treatment is performed, the weaker the life extension effect may be. This can be attributed

to the following factors. Firstly, the fatigue damage accumulated in the material before

maintenance cannot be eliminated entirely, so it gets more and more aggravated with

delayed maintenance time. Secondly, to remove the existing surface cracks as thoroughly as

possible, the thickness of removed layers has to be increased with the postponement of the

surface treating time. Thus, the specimen diameter and cross section are also reduced. If

short cracks of the same size initiate in two specimens, the local stress in ther specimen

with a smaller diameter will be relatively higher.

3. Revised Short Crack Growth Model.

3.1. Brief Introduction to Multi-Microstructural Barriers’ Model. The multi-micro-

structural barriers’ model was proposed by Yang and Zhao [11]. This model encorporated

the effective short fatigue crack criterion and used the characteristic sizes of the material

microstructure d1 and d2. In adition, a resistance coefficient function was introduced to

describe the periodic impact of microstructural barriers on the short fatigue crack behavior.

The multi-microstructural barriers’ model can be defined as

da

dN
G A W a W f d dt t i i i
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n m
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where a is DSC size, N is the number of cycles, G0 is the minimum value of crack

growth rate in the first microstructural barrier period, di is the characteristic micro-

structural barrier size, i is the subscript to specify the type of barriers, i.e., d1 for the

average equivalent diameter of ferrite grains and d2 for the mean value of intervals

between two rich pearlite bands, A and m are the respective material constants, and

f di i( )� is the resistance coefficient function, which accounts that the closer DSC tip is to

the barrier, the stronger is the constraint force. The calculation method for parameters in

Eq.(1) has been described elsewhere [11].

3.2. Unified Short Crack Growth Model. If the maintenance process is performed

when loading cyclic number is N r , the unified short crack growth model for the stages

before and after surface treatment can be described as

da

dN
F a F ar� �( ) ( ) . (2)

Functions F a( ) and F ar ( ) correspond to short crack growth rates before and
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The residual stress and the hardness of surface vary with the application of maintenance

techniques. Furthermore, the accumulated fatigue damage and the microstructural barriers

also affect the behavior of initiation and propagation of short fatigue cracks. Hence, the

model parameters for specimens before maintenance are no more applicable for description

of crack growth after repair, but should be re-calculated based on corresponding test data.

Table 1 lists parameters of the dominant short crack growth rate model for typical

specimens of LZ50 axle steel at different repair times. Figure 2 illustrates the test data of

typical specimens at different maintenance time and the respective predicted curves. It is

clear that the present unified short crack growth rate model possesses a good fitting effect

to the test data. Moreover, it can reflect the periodic influence of main microstructural

barriers on the SFC growth behavior. Comparison between crack growth rate at the same

crack driving force show that after maintenance the SFC propagation has sharply decelerated,

i.e., the surface turning and rolling tratments effectively suppressed the crack growth.
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T a b l e 1

Parameters of Dominant Short Crack Growth Rate Model for Typical Specimens

of LZ50 Axle Steel at Different Maintenance Times

Repair

time

Stage d dr1 1 ,

m

G G r01 0 1 ,

m/cycle

A Ar1 1 m mr1 1 � �1 1r

f � 0 Before – – – – –

After 613 10 6. � � 3 38 10 11. � � 2 09 10 10. � � 1.15 0.69

f � 0 3. Before 6 63 10 6. � � 2 29 10 10. � � 5 75 10 10. � � 0.38 0.76

After 7 76 10 6. � � 7 92 10 12. � � 9 32 10 10. � � 1.25 0.62

f � 0 5. Before 9 77 10 6. � � 3 56 10 10. � � 4 73 10 9. � � 0.51 0.66

After 7 78 10 6. � � 9 96 10 12. � � 5 52 10 10. � � 1.47 0.52

f � 0 6. Before 6 6 10 6. � � 2 94 10 10. � � 5 46 10 9. � � 0.48 0.79

After 6 78 10 6. � � 4 19 10 11. � � 6 33 10 10. � � 1.54 0.64

f � 0 7. Before 8 4 10 6. � � 517 10 10. � � 174 10 9. � � 1.46 0.67

After 8 27 10 6. � � 121 10 10. � � 5 33 10 10. � � 1.30 0.62

d dr2 2 ,

m

G G r02 0 2 ,

m/cycle

A Ar2 2 m mr2 2 � �2 2r

f � 0 Before – – – – –

After 6 69 10 5. � � 2 59 10 10. � � 6 28 10 11. � � 1.12 0.57

f � 0 3. Before – – – – –

After 5 85 10 5. � � 6 96 10 10. � � 8 37 10 11. � � 1.43 0.50

f � 0 5. Before – – – – –

After 6 05 10 5. � � 146 10 9. � � 5 84 10 11. � � 1.34 0.53

f � 0 6. Before – – – – –

After 6 0 10 5. � � 8 95 10 11. � � 3 57 10 11. � � 1.32 0.42

f � 0 7. Before 5 57 10 5. � � 4 82 10 10. � � 3 45 10 10. � � 1.22 0.56

After 4 49 10 5. � � 8 65 10 10. � � 199 10 11. � � 1.38 0.45
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3.3. Modified Multi-Microstructural Barriers’ Model. According to Section 2.3, the

prolonged-life rate M decreases from 6.41 to 4.49 due to the postponed maintenance time.

It is easy to conclude that in the extreme case of f � 1, specimens would be damaged

without any surface treatment and the prolonged-life rate would be equal to 0. Therefore,

the maintenance time effect function can be constructed as

M f K D f C( ) ( ) ,� � �1 (5)

where K , D, and C are the material constants. As mentioned above, in case of f � 1 and

M � 0, Eq. (5) can be reduced to

M f D f C( ) ( ) .� �1 (6)

Values of D and C for the present data are 6.411 and 0.475, respectively.

To extend the applicable scope of the previous model and utilize the test data

effectively, the maintenance time effect function can be introduced to modify the multi-

microstructural barriers’ model. With the given DSC size, the growth rate of a specimen

without maintenance is higher than that of a rolled specimen. After the same number of

loading cycles, DSC increment of the latter specimen is larger. Transformation of the

prolonged-life rate into the crack growth rate variation is depicted in Fig. 3, which shows

the process of data modification. It is seen that, after shifting the test data of specimens

without maintenance by the factor of 6.41, the growth rates for unrolled specimens and

S0.0 specimens overlapped. Similar results can be obtained by reducing the growth rate of

unrolled specimens by the value of M , according to the maintenance time (Fig. 4).

Therefore, a modified multi-microstructural barriers’ model can be expressed as

da

dN M f
G A W a W f d dt t i i i

i

n m
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Thus, after the test data on specimens without maintenance is obtained, the equation

controlling the crack growth rate for specimens with any maintenance time can be derived

from Eq. (7). This modified model can be quite convenient for assessment of the remaining

fatigue life and evaluation of the structural safety. However, the repair process enhances
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e

Fig. 2. Dominant short crack growth rate curves for typical specimens of LZ50 axle steel at different

maintenance times: (a) f � 0; (b) f � 0 3. ; (c) f � 0 5. ; (d) f � 0 6. ; (e) f � 0 7. .
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crack propagation at the PSC stage, as compared to the unrolled specimen, which issue

requires a further investigation.

4. Discussion. The two primary microstructural barriers to short fatigue crack growth

in LZ50 axle steel are ferrite grain boundary and rich pearlite banded structure. The DSC

growth rate twice manifest a drop at the MSC stage due to the above microstructural

barriers. The crack growth rates in specimens after surface turning and rolling are

significantly lower than those in specimens before maintenance.

The effective short crack density values exhibit an initial rise, followed by a drop, for

all five groups of specimens. After maintenance, the density values are significantly

a b

Fig. 3. Data comparison between finish-turned specimens before/after data the initial (a) and

modified (b) repaired specimens of LZ50 axle steel.

a b

c d

Fig. 4. Comparison between modified data on finish-turned specimens and data on specimens of

LZ50 axle steel at different maintenance times: (a) f � 0 3. ; (b) f � 0 5. ; (c) f � 0 6. ; (d) f � 0 7. .
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reduced. Surface rolling effectively restrains the initiation of collective short cracks.

However, this effect is weakened if the maintenance time is postponed.

The maintenance process significantly prolongs the fatigue life, because the turning

treatment removes the existing short cracks from the material surface, while rolling

improves the fatigue performance of the new surface. However, postponed implementation

of maintenance inhibits elimination of the accumulated fatigue damage. Moreover, the

required increase in the cutting thickness also increases the actual local stresses.

Conclusions. A short crack growth model is proposed, which is based on modification

of the multi-microstructural barriers’ model and adequately describes the deceleration

behavior of growth rate during the whole SFC propagation process. By introducing a

maintenance time effect function, the model can predict the growth rate in specimens with

any maintenance time based on the available test data on specimens without maintenance.

The proposed model can be instrumental for the assessment of remaining fatigue life and

the structural safety evaluation.
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