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Propagation of the fast magnetosonic wave through the generalized Budden barrier, which is formed by the ion-
ion hybrid resonance and the accompanying L-cutoff, is studied. Analytical expressions for the transmission, reflec-
tion and conversion coefficients are derived. It is shown that the non-zero reflection from the barrier arises in case of
the wave incidence from the resonance side, and the conversion coefficient can reach the value 48.6% for the cutoff
incidence case. The obtained results generalize the formulas of the Budden theory in case of the different fast wave
wavelength at the opposite sides of the ion-ion hybrid resonance.
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1. INTRODUCTION. BUDDEN THEORY

The Ion Cyclotron Resonance Heating (ICRH) is
widely used in modern tokamaks [1]. The ICRH an-
tenna, which is located either at the high field side
(HFS) or at the low field side (LFS) of the trap,
launches the fast magnetosonic wave (FW) into the
plasma. The wave propagates to the plasma center, and
is either absorbed at the fundamental and harmonic cy-
clotron resonance layers by ions, or is converted to the
small-scale plasma mode at the ion-ion hybrid (IIH)
resonance layer. The latter arises only in multicompo-
nent plasmas with two or more ion species with the dif-
ferent charge-to-mass ratio. In this regime, which is
known as the mode conversion, the localized electron
heating is observed [2]. The effective electron Landau
damping of the converted mode occurs due to the up-
shift of the parallel wavenumber under the presence of
the toroidal current in tokamaks [3]. Mode conversion
regime is extensively studied within the last years since
it has a number of important applications beyond heat-
ing itself [4]. To name just a few: it is used to study
electron transport, generate plasma rotation and current
drive, measure the plasma composition, as a mechanism
of impurity pump-out, etc. The successful performance
of such a heating scenario relies on the achievement of
the effective conversion conditions. Thus, the numerous
efforts have been made to understand the physics of the
mode conversion.

The propagation of the FW through the inhomoge-
neous in the = direction plasma is usually described by
the wave equation

Y+ Qa)y =0, (1)
where ¥ is one of the electric field components of the
wave, and Q(x) is the potential function which depends
on the dispersion relation for the FW,
Qz) = (W2/C2)7L2L:FW . The latter is given by
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Here, S, L and R are the components of the cold plas-
ma dielectric tensor in the notation of Stix [5], 7 is the

parallel (with respect to the magnetic field) refractive
index. In the ion cyclotron frequency range the reso-
nance denominator condition S = nﬁ defines the ion-
ion hybrid resonance. Its frequency lies between the ion
cyclotron frequencies of the ion species, €11 and £22. It is
located near the cyclotron resonance of the minority
ions, and shifts towards majority resonance with the
minority concentration increase. The IIH resonance is
accompanied by the left-hand polarized L-cutoff, which
is defined by the condition L = nﬁ, towards the LFS.
Together they form the evanescence layer, where
ni’FW < 0 (Fig.1). The hot plasma theory resolves the
ITH resonance. The more sophisticated full-wave mod-
els show that at the IIH resonance layer the FW couples
to the small-scale mode.
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Fig.1. The typical spatial dependence of the FW-
refractive index for the two-ion component plasma.
The evanescence layer is formed by the ion-ion hybrid
resonance and the accompanying L-cutoff

The classical theory which describes the propagation
of the FW through the isolated IIH cutoff-resonance pair
is the Budden theory [6]. In this case the potential func-
tion is modeled by the following expression:

Qr(z) = k(1 - A/(z — 15)), (3.2)
where ka is the wavenumber of the FW far from the
resonance, A is the width of the evanescence layer, xs
is the location of the ITH resonance. If we normalize all
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the spatial variables on the FW wavelength, i.e. intro-
duce new variable & = ka(z — zg), then the potential
(3,a) is simplified and given by

Qp(€) =1-1/¢. (3.b)

The dimensionless parameter 1 = ka A is called as
the tunneling factor. Within the Budden theory it en-
tirely defines the scattering coefficients. The important
feature of the considered barrier is the asymmetry of the
scattering coefficients with respect to the side of the
wave incidence. While the transmission coefficient
equals to 7g = e 77 regardless of the incidence side,
the dependence of the reflection coefficient is essen-
tially different for the HFS and LFS cases. For the HFS
incidence (resonance side) the wave is transmitted
through the layer without any reflection. The rest of the
energy is converted to the small-scale mode. In such a
way providing the evanescence layer enough thick (by
increasing the concentration of the minority ions) the
effective mode conversion is obtained. This is not ap-
propriate for the case of the antenna location at the LFS
(as for most of present-say tokamaks). In this case the
reflection coefficient is equal to Ry = (1 — Ti)% For
the thick evanescence layers it is the dominant process.
The mode conversion coefficient, Cg = Tg(1 — 1)
reaches its maximal value 25%, when the evanescence
layer is semi-transparent one, 77 = ln(2)/7 = 0.22,

The Budden theory implies the inhomogeneity of the
magnetic field. In a real situation due to the decrease of
the plasma density to the edge, the dispersion of the FW
is more complicated than that described by (3a). The
FW wavenumber at the HFS decreases (Fig.1), and even
the additional R-cutoff at the HFS can appear. In the
present paper the generalized Budden barrier is consid-
ered, for which the FW is assumed to have different
wavelength at the cutoff and resonance sides. The ana-
lytical formulas for the scattering coefficients are de-
rived. Comparison with the Budden results is presented.

2. GENERALIZED BUDDEN POTENTIAL

This section describes the scattering properties of the
generalized Budden barrier. It is convenient to normal-
ize all the spatial variables to the FW wavelength at the
LFS (cutoff) side. Then, the potential is written simi-
larly to (3b):

= . 4
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Its spatial dependence is shown in Fig.2. The pa-
rameter ¥ = ALrs/AgFs is the ratio of the FW wave-
length at the cutoff and resonance sides.

For both sides of the problem the analytical solution
of the wave equation (1) in terms of the confluent hy-
pergeometric (Whitakker) functions can be written. For
region £ > 0 the solution is written as

y(&) = C1f1(8) + Ca2f2(8), @)
where the functions f1(£) and f2(€) are given by
J1(8) = €RE M (1 + ik; 2; —26€), (6)

() = LU (1 + ik 25 —2i8),
and k =1/2. M(a;b;z) is the Kummer’s function,
U(a;b;z) is the second independent solution of the
Kummer’s equation. The definition and properties of

these functions can be found in [7].
In region £ < 0, the solution of (4) is represented as
follows:

Y(§7) = B1F1(€7) + BaFa(€7), ()
where £ =&, 0" =n/v, k" = 7*/2, and
F(&%) = e & M(1 + ik*; 2, —2i€"), ®)

Fy(€7) = 7€ U (L + ik*; 2; —2i€").
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Fig.2. Plot of the generalized Budden potential, which
describes the propagation of the FW through
the isolated cutoff-resonance pair

In order to find the global solution of (4) one needs
to match the coefficients C1, C3 and B, B2 of the solu-
tions (5) and (7). Therefore, three conditions, which
connect the coefficients, should be formulated. The first
two are obtained from the solution matching at the point
& = 0. It implies the continuity of the solution function
y(2) and its first derivative ¥’ (). Using the expansion
of the Kummer’s functions for small arguments one
obtains:

_ . L(k)
Cy = WWBZ: (9)
Cl B LN (L Z(’Y_l)i =
= + TR (k) — (k™) + p Invy| = By,

where ¢(z) = I"(z)/T'(2) is the Digamma function [7].
The last matching equation depends on the considered
side of the wave incidence. For the HFS incidence, con-
dition
C1=0 (10,a)
ensures that at the opposite side only the transmitted
wave exists. Similarly, for the case of the LFS inci-
dence, condition
i e TH /2 @eﬂk‘*/Z =90
n* T(—ik*) 2
suppresses the non-physical right-travelling term (pro-
portional to ciﬁ*) at the HFS. Condition (10,a) or (10,b)
is called as the radiating boundary condition. Its explicit
form is derived using the asymptotic expansion of (6)
and (8) for large arguments of the independent variable.
Using the matching conditions (9) and (10), the scat-
tering coefficients can be easily calculated. For conven-
ience, we introduce the following parameters:

; oying parame
v=1 (;") — <;Z) + 2(7” ) e,

2mmi 1
(12)

Tl o
In case of the Budden barrier with v — 1, the parameter
s is infinitely large.

(10,b)
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The interesting feature of the generalized Budden
barrier is the fact that the transmission coefficient does
not depend on the incidence side like for the classical
Budden case. This feature represents the fundamental
reciprocity principle [8]. The transmission coefficient is
equal to

: 2
I - o™/ ,
Tyrs =T1irs =c¢ ™7 -

1_e¢ ™ 1+ s| (13)
For v = 1, the formula (13) reduces to the famous Bud-
den result, 7g = ¢~ ™",

In contrast to the Budden theory the non-zero reflec-

tion occurs for the HFS incidence case. The reflection
coefficient is equal to

1
Rups = ——-
1+ s]

Fig.3 shows the reflection coefficient Rprs as a
function of v for different values of the tunneling factor.
In the vicinity of v = 1 the parabolic dependence of
Ryurs is clearly seen. This part of the curve is described
by the following approximate formula:

e o
Qﬁirl~1f%f%wwwm
where the small parameter ¢ =+ -1 is introduced.
Thus, the Budden case with zero reflection is the excep-
tional one. For any ~ # 1 the non-zero reflection from
the barrier occurs.
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Fig.3. Dependence of the reflection coefficient Ryys
versus 7y for different values of the tunneling factor

The reflection coefficient for the LFS incidence case
2

is given by
1
1-Tirs (1 + g*> ) (16)

where s* stands for the complex conjugate of s.

Another distinctive feature of the Budden barrier is
the upper limitation of the conversion coefficient for the
LFS incidence at the level Cpax = 25%. The conver-
sion coefficient is calculated from the energy conserva-
tion law, C =1 — R — T, using (13) and (16). Fig.4
shows the dependence of the conversion coefficient
CLrs as a function of the tunneling factor for different
values of the parameter 7. It is clearly seen that for
v > 1 the conversion coefficient is less than the Budden
result. Vice versa, for v < 1 the mode conversion coef-
ficient exceeds the Budden level. After some algebraic
manipulations, the approximate analytical formula for
the conversion coefficient Crpg is derived. It can be
presented as a sum of two terms

Crrs = Ce(n) — F(n) - ¢,

Rips =

(17
92

where the correction function F'(77) is defined as

(1l — 273
Py = 13 | UL 2TR)
J‘-TB 2 je NN
~ - @D Rew /)| (18)

0.0 — 0.2 — 0.4 . ’ 06 ' 08 ' 10 .
Fig.4. Mode conversion coefficient Cyys as a function
of the tunneling factor for different values of vy

The first term in (17) is the Budden result. The sign
of the second term is determined by the sign of €. As
shown in Fig.5, the correction function is positively
defined. Thus, for v < 1 the correction term in (17) is
positive, and the mode conversion coefficient exceeds
the result of Budden.
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Fig.5. Plot of the correction function F(n) defined
by (18)

Next, we are interested in the question, what is the
highest level of the conversion coefficient that can be
achieved for the arbitrary 7y value. We have calculated
numerically the value of the maximal conversion coeffi-
cient Cy .y for the given value of . The results are

shown in Fig.6.
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Fig.6. Dependence of the maximal conversion
coefficient Cy,.x as a function of 7y (LFS incidence).

For v < 1, Cax exceeds the classical Budden result



The highest value Cp.. =~ 48.6% 1is reached for
~ =2 0.06 at =~ 0.13. It is nearly twice greater than the
classical Budden result.

The dispersion of the FW, which is shown in Fig.1,
is calculated for (*He)H plasma with the concentration
of *He ions X[*He]=4%. The parameters chosen are
typical for the JET tokamak *He heating experiments:
f=37MHz, B¢=3.6T, k~=3.5m", ne=2.5-10" cm>,
Ry=2.96 m, a=0.9 m. For the conditions considered the
parameter 7y is equal to v ~ 0.9. The scattering coeffi-
cients calculated using the formulas for the generalized
Budden barrier differ from the results of the classical
theory just by a few percent. Thus, the presented ap-
proximate formulas (17) and (18) give the value of the
conversion coefficient Crpg with a high accuracy for
the wide range of experimental parameters.

CONCLUSIONS

The paper describes the propagation of the FW
through the generalized Budden barrier. The assumption
that the wavelength of the FW is equal to both sides of
the barrier is neglected. The analytical solution of the
wave equation in terms of the confluent hypergeometric
functions is derived. The scattering coefficients are
found for both cases of the wave incidence. The detailed
analysis of the scattering coefficients is performed. It is
shown that the obtained results generalize the formulas
of the classical Budden theory. Particularly, it is shown
that the non-zero reflection from the barrier occurs for
the HFS incidence. For the LFS incidence the conver-
sion coefficient can reach the value 48.6% that is nearly

twice greater than the maximum within the Budden the-
ory.
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PACIIPOCTPAHEHUE BBICTPOIl MATHUTO3BYKOBOW BOJIHbBI
YEPE3 OGOBIIEHHBIN BAPBEP BAJIJ/IEHA

E.A. Kazakoe, U.B. Ilaénenko, U.A. I'upka

Pemrena 3amaga pacnpocTpaHeHHs OBICTPOf MarHUTO3BYKOBOH BOJIHBI Yepe3 0000menHsit 6aprep bannena, xo-
TOPBINA 00pa30BaH MOH-MOHHBIM THOPHIHBIM PE30HAHCOM M CBsi3aHHOW ¢ HUM L-oTceukoi. [lomydeHbl aHanuTHYC-
CKHUE BBIPAKCHHUS T KO3 PHUINECHTOB POXOKIACHHUS, OTPAKECHUS U KOHBepcuu. [loka3aHo, 4TO UMEET MECTO HEHY-
JICBOE OTpaKEHHE OT Oapbepa B ciIydae MaJCHUS BOJHBI CO CTOPOHBI Pe30HaHCa, a KOI(Q(UIIMECHT KOHBEPCHH MOXKET
JIOCTUTATh BENMYUHBI 48.6% TpH MaJICHUN BOJIHBI CO CTOPOHEI OTCeUKH. [1omydeHHbIC pe3ynbTaTsl 0000mmatT dhop-
MyJIBI TOpUH bajieHa Ha ciyvail pa3InIHOM JUTMHEI BOJHBI IO Pa3HbIC CTOPOHBI OT HOH-HOHHOTO THOPUIHOTO pe-
30HaHCa.

MOIMUPEHHS IIBUJIKOI MATHITO3BYKOBOI XBHJII
KPI3b Y3ATAJILHEHUM BAP’E€P BAIJIEHA

€.0. Kazakoes, 1.B. Ilasnenxo, 1.0. I'ipka

Po3B’s13aH0 3amady mpo MOIIMpPEHHS IIBHAKOI MarHiTO3BYKOBOI XBWIII Kpi3b y3araipHeHHH Oap’ep bamnena,
SKWHA yTBOPEHHUI 10H-IOHHUM TiOpHIHUM pe30HaHCOM Ta L-BiICiuKoro, IO MOB’s3aHA 3 HUM. 3400yTO aHATITHYHI
BUpPa3H JUIst Koe(DilliEHTIB MPOXOPKEHHS, BITOUTTS Ta KoHBepcil. [lokaszaHo, 1110 Mae Miclie HEHYJIbOBE BiZIOUTTS Bij
Oap’epy IJIsl BUIIQJIKY MaIiHHS XBHJI 31 CTOPOHH PE30HAHCY, a KoeilieHT KoHBepcii Moe csiraTi BennunHu 48.6%
3a YMOBM TaJiHHS XBHJII 31 CTOPOHM BificiukH. 3100yTI pe3yibTaTH y3araibHIOIOTh (opmynu teopii bajgnena na
BHIIAJIOK Pi3HOT TOBKWHU XBUIIL IO Pi3HI OOKH BiJ] i0H-IOHHOTO TiOPUIHOTO PE30HAHCY.
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