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Propagation of the fast magnetosonic wave through the generalized Budden barrier, which is formed by the ion-

ion hybrid resonance and the accompanying L-cutoff, is studied. Analytical expressions for the transmission, reflec-
tion and conversion coefficients are derived. It is shown that the non-zero reflection from the barrier arises in case of 
the wave incidence from the resonance side, and the conversion coefficient can reach the value 48.6% for the cutoff 
incidence case. The obtained results generalize the formulas of the Budden theory in case of the different fast wave 
wavelength at the opposite sides of the ion-ion hybrid resonance. 
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1. INTRODUCTION. BUDDEN THEORY 
The Ion Cyclotron Resonance Heating (ICRH) is 

widely used in modern tokamaks [1]. The ICRH an-
tenna, which is located either at the high field side 
(HFS) or at the low field side (LFS) of the trap, 
launches the fast magnetosonic wave (FW) into the 
plasma. The wave propagates to the plasma center, and 
is either absorbed at the fundamental and harmonic cy-
clotron resonance layers by ions, or is converted to the 
small-scale plasma mode at the ion-ion hybrid (IIH) 
resonance layer. The latter arises only in multicompo-
nent plasmas with two or more ion species with the dif-
ferent charge-to-mass ratio. In this regime, which is 
known as the mode conversion, the localized electron 
heating is observed [2]. The effective electron Landau 
damping of the converted mode occurs due to the up-
shift of the parallel wavenumber under the presence of 
the toroidal current in tokamaks [3]. Mode conversion 
regime is extensively studied within the last years since 
it has a number of important applications beyond heat-
ing itself [4]. To name just a few: it is used to study 
electron transport, generate plasma rotation and current 
drive, measure the plasma composition, as a mechanism 
of impurity pump-out, etc. The successful performance 
of such a heating scenario relies on the achievement of 
the effective conversion conditions. Thus, the numerous 
efforts have been made to understand the physics of the 
mode conversion. 

The propagation of the FW through the inhomoge-
neous in the  direction plasma is usually described by 
the wave equation 

      (1) 
where  is one of the electric field components of the 
wave, and  is the potential function which depends 
on the dispersion relation for the FW, 

. The latter is given by 

    (2) 

Here, ,  and  are the components of the cold plas-
ma dielectric tensor in the notation of Stix [5],  is the 

parallel (with respect to the magnetic field) refractive 
index. In the ion cyclotron frequency range the reso-
nance denominator condition  defines the ion-
ion hybrid resonance. Its frequency lies between the ion 
cyclotron frequencies of the ion species,  and . It is 
located near the cyclotron resonance of the minority 
ions, and shifts towards majority resonance with the 
minority concentration increase. The IIH resonance is 
accompanied by the left-hand polarized L-cutoff, which 
is defined by the condition , towards the LFS. 
Together they form the evanescence layer, where 

 (Fig.1). The hot plasma theory resolves the 
IIH resonance. The more sophisticated full-wave mod-
els show that at the IIH resonance layer the FW couples 
to the small-scale mode. 

 
Fig.1. The typical spatial dependence of the FW-

refractive index for the two-ion component plasma. 
The evanescence layer is formed by the ion-ion hybrid 

resonance and the accompanying L-cutoff 
The classical theory which describes the propagation 

of the FW through the isolated IIH cutoff-resonance pair 
is the Budden theory [6]. In this case the potential func-
tion is modeled by the following expression: 

   (3,a) 
where  is the wavenumber of the FW far from the 
resonance,  is the width of the evanescence layer,  
is the location of the IIH resonance. If we normalize all 
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the spatial variables on the FW wavelength, i.e. intro-
duce new variable , then the potential 
(3,a) is simplified and given by 

    (3,b) 
The dimensionless parameter  is called as 

the tunneling factor. Within the Budden theory it en-
tirely defines the scattering coefficients. The important 
feature of the considered barrier is the asymmetry of the 
scattering coefficients with respect to the side of the 
wave incidence. While the transmission coefficient 
equals to  regardless of the incidence side, 
the dependence of the reflection coefficient is essen-
tially different for the HFS and LFS cases. For the HFS 
incidence (resonance side) the wave is transmitted 
through the layer without any reflection. The rest of the 
energy is converted to the small-scale mode. In such a 
way providing the evanescence layer enough thick (by 
increasing the concentration of the minority ions) the 
effective mode conversion is obtained. This is not ap-
propriate for the case of the antenna location at the LFS 
(as for most of present-say tokamaks). In this case the 
reflection coefficient is equal to . For 
the thick evanescence layers it is the dominant process. 
The mode conversion coefficient,  
reaches its maximal value 25%, when the evanescence 
layer is semi-transparent one, . 

The Budden theory implies the inhomogeneity of the 
magnetic field. In a real situation due to the decrease of 
the plasma density to the edge, the dispersion of the FW 
is more complicated than that described by (3a). The 
FW wavenumber at the HFS decreases (Fig.1), and even 
the additional R-cutoff at the HFS can appear. In the 
present paper the generalized Budden barrier is consid-
ered, for which the FW is assumed to have different 
wavelength at the cutoff and resonance sides. The ana-
lytical formulas for the scattering coefficients are de-
rived. Comparison with the Budden results is presented. 

2. GENERALIZED BUDDEN POTENTIAL 
This section describes the scattering properties of the 

generalized Budden barrier. It is convenient to normal-
ize all the spatial variables to the FW wavelength at the 
LFS (cutoff) side. Then, the potential is written simi-
larly to (3b): 

    (4) 

Its spatial dependence is shown in Fig.2. The pa-
rameter  is the ratio of the FW wave-
length at the cutoff and resonance sides. 

For both sides of the problem the analytical solution 
of the wave equation  in terms of the confluent hy-
pergeometric (Whitakker) functions can be written. For 
region  the solution is written as  

    (5) 
where the functions  and  are given by 

    (6) 
 

and   is the Kummer’s function, 
 is the second independent solution of the 

Kummer’s equation. The definition and properties of 

these functions can be found in [7]. 
In region , the solution of (4) is represented as 

follows: 
   (7) 

where , , , and  
    (8) 
           

 

 
Fig.2. Plot of the generalized Budden potential, which 

describes the propagation of the FW through  
the isolated cutoff-resonance pair 

In order to find the global solution of (4) one needs 
to match the coefficients  and  of the solu-
tions (5) and (7). Therefore, three conditions, which 
connect the coefficients, should be formulated. The first 
two are obtained from the solution matching at the point 

. It implies the continuity of the solution function 
 and its first derivative . Using the expansion 

of the Kummer’s functions for small arguments one 
obtains: 

      (9) 

 

where  is the Digamma function [7]. 
The last matching equation depends on the considered 
side of the wave incidence. For the HFS incidence, con-
dition 

       (10,a) 
ensures that at the opposite side only the transmitted 
wave exists. Similarly, for the case of the LFS inci-
dence, condition 

   (10,b) 

suppresses the non-physical right-travelling term (pro-
portional to ) at the HFS. Condition (10,a) or (10,b) 
is called as the radiating boundary condition. Its explicit 
form is derived using the asymptotic expansion of (6) 
and (8) for large arguments of the independent variable. 

Using the matching conditions (9) and (10), the scat-
tering coefficients can be easily calculated. For conven-
ience, we introduce the following parameters: 

   (11) 

         (12) 
In case of the Budden barrier with  the parameter 

 is infinitely large. 
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The interesting feature of the generalized Budden 
barrier is the fact that the transmission coefficient does 
not depend on the incidence side like for the classical 
Budden case. This feature represents the fundamental 
reciprocity principle [8]. The transmission coefficient is 
equal to 

   (13) 

For , the formula (13) reduces to the famous Bud-
den result, . 

In contrast to the Budden theory the non-zero reflec-
tion occurs for the HFS incidence case. The reflection 
coefficient is equal to 

    (14) 

Fig.3 shows the reflection coefficient  as a 
function of  for different values of the tunneling factor. 
In the vicinity of  the parabolic dependence of 

 is clearly seen. This part of the curve is described 
by the following approximate formula: 

(15) 

where the small parameter  is introduced. 
Thus, the Budden case with zero reflection is the excep-
tional one. For any  the non-zero reflection from 
the barrier occurs. 

 
Fig.3. Dependence of the reflection coefficient  
versus  for different values of the tunneling factor 
The reflection coefficient for the LFS incidence case 

is given by 

    (16) 

where  stands for the complex conjugate of . 
Another distinctive feature of the Budden barrier is 

the upper limitation of the conversion coefficient for the 
LFS incidence at the level . The conver-
sion coefficient is calculated from the energy conserva-
tion law, , using (13) and (16). Fig.4 
shows the dependence of the conversion coefficient 

 as a function of the tunneling factor for different 
values of the parameter . It is clearly seen that for 

 the conversion coefficient is less than the Budden 
result. Vice versa, for  the mode conversion coef-
ficient exceeds the Budden level. After some algebraic 
manipulations, the approximate analytical formula for 
the conversion coefficient  is derived. It can be 
presented as a sum of two terms 

    (17) 

where the correction function  is defined as 

 

 (18) 

 
Fig.4. Mode conversion coefficient  as a function 

of the tunneling factor for different values of  
The first term in  is the Budden result. The sign 

of the second term is determined by the sign of . As 
shown in Fig.5, the correction function is positively 
defined. Thus, for  the correction term in  is 
positive, and the mode conversion coefficient exceeds 
the result of Budden. 

 
Fig.5. Plot of the correction function  defined 

by (18) 
Next, we are interested in the question, what is the 

highest level of the conversion coefficient that can be 
achieved for the arbitrary  value. We have calculated 
numerically the value of the maximal conversion coeffi-
cient  for the given value of . The results are 
shown in Fig.6.  

 
Fig.6. Dependence of the maximal conversion  

coefficient  as a function of  (LFS incidence). 
For   exceeds the classical Budden result 
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The highest value  is reached for 
 at . It is nearly twice greater than the 

classical Budden result. 
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The dispersion of the FW, which is shown in Fig.1, 
is calculated for (3He)H plasma with the concentration 
of 3He ions X[3He]=4%. The parameters chosen are 
typical for the JET tokamak 3He heating experiments: 
f=37 MHz, BB0=3.6 T, kz=3.5 m , n-1

e0=2.5·10  cm , 
R

13 -3

0=2.96 m, a=0.9 m. For the conditions considered the 
parameter  is equal to . The scattering coeffi-
cients calculated using the formulas for the generalized 
Budden barrier differ from the results of the classical 
theory just by a few percent. Thus, the presented ap-
proximate formulas (17) and (18) give the value of the 
conversion coefficient  with a high accuracy for 
the wide range of experimental parameters. 

CONCLUSIONS 
The paper describes the propagation of the FW 

through the generalized Budden barrier. The assumption 
that the wavelength of the FW is equal to both sides of 
the barrier is neglected. The analytical solution of the 
wave equation in terms of the confluent hypergeometric 
functions is derived. The scattering coefficients are 
found for both cases of the wave incidence. The detailed 
analysis of the scattering coefficients is performed. It is 
shown that the obtained results generalize the formulas 
of the classical Budden theory. Particularly, it is shown 
that the non-zero reflection from the barrier occurs for 
the HFS incidence. For the LFS incidence the conver-
sion coefficient can reach the value 48.6% that is nearly 

twice greater than the maximum within the Budden the-
ory. 
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РАСПРОСТРАНЕНИЕ БЫСТРОЙ МАГНИТОЗВУКОВОЙ ВОЛНЫ  
ЧЕРЕЗ ОБОБЩЕННЫЙ БАРЬЕР БАДДЕНА 

Е.A. Казаков, И.В. Павленко, И.А. Гирка 
Решена задача распространения быстрой магнитозвуковой волны через обобщенный барьер Баддена, ко-

торый образован ион-ионным гибридным резонансом и связанной с ним L-отсечкой. Получены аналитиче-
ские выражения для коэффициентов прохождения, отражения и конверсии. Показано, что имеет место нену-
левое отражение от барьера в случае падения волны со стороны резонанса, а коэффициент конверсии может 
достигать величины 48.6% при падении волны со стороны отсечки. Полученные результаты обобщают фор-
мулы теории Баддена на случай различной длины волны по разные стороны от ион-ионного гибридного ре-
зонанса. 

ПОШИРЕННЯ ШВИДКОЇ МАГНІТОЗВУКОВОЇ ХВИЛІ 
КРІЗЬ УЗАГАЛЬНЕНИЙ БАР’ЄР БАДДЕНА 

Є.О. Казаков, І.В. Павленко, І.О. Гірка 
Розв’язано задачу про поширення швидкої магнітозвукової хвилі крізь узагальнений бар’єр Баддена, 

який утворений іон-іонним гібридним резонансом та L-відсічкою, що пов’язана з ним. Здобуто аналітичні 
вирази для коефіцієнтів проходження, відбиття та конверсії. Показано, що має місце ненульове відбиття від 
бар’єру для випадку падіння хвилі зі сторони резонансу, а коефіцієнт конверсії може сягати величини 48.6% 
за умови падіння хвилі зі сторони відсічки. Здобуті результати узагальнюють формули теорії Баддена на 
випадок різної довжини хвилі по різні боки від іон-іонного гібридного резонансу. 


