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FINITE-DIMENSIONAL REDUCTIONS OF CONSERVATIVE
DYNAMICAL SYSTEMS AND NUMERICAL ANALYSIS. 1

CKIHYEHHOBHMIPHI PEIYKIII KOHCEPBATHBHHX
MHHAMIYHHAX CHCTEM I YUCEJIBHHAM AHAJIS. I

The paper deals with the infinite-dimensional Liouville — Lax integrable nonlinear dynamical systems
for which a problem of finding an appropriate set of initial conditions for corresponding to such their
typical solutions as the solitons and travelling waves is studied. An approach for solving the problem is
developed which based on the exact reduction of the given nonlinear dynamical system on its finite-
dimensional invariant submanifolds and the ssquel investigation of the system of ordinary differential
equations obtained by means of qualitative analysis. The effectiveness of the proposed approach is
demonsirated on examples of Korteweg — de Vries equation, modified nonlinear Schridinger equation
and some hydrodynamical model.

BunuaoTees msckinenionnmMipii irrrerposni aa Jlakcom — Jliyeiianes neninifio gumasiend cHeTes,
J1A ARHE POATJIANAETLCA SUSAMA M0 AAXOMASIILA MIIOMHIHN MOYATKOBHX 3HAYEIL, AKHM Bifmosina-
10T TAKD THAOR TX poasn’ A3KH, AK COATTOINN POAR" £3KH TA POSE" A3KH BHIYEALY GDEYYOT XBHM. 3anpo-
MOHODAITD MK 10 po3R" AN AT SAMAYD, CYTh AKOMO NOJIATAE B pefyriil snxinmel neninifnol
mppamiunol cueTemH na 11 ckitvenmossmipni inpapisimi NIAMIOrORHAK T8 B NOAANLINOMY Jl0cHin-
e 34 OOMOMOreo METONIR AKkicuol Teopil grdepelnliaLiHX PiBIANEL CUepRAlHy cHeTeM, Bdek-
THRILCTE 32APONOHOBANSTO MILXOIY NpoLeMOleTpoRG 1A npHknagl plenamns Koprepera — ge Opi-
a1, nesminifioro mouchixoranoro pisaina peninrepa Ta opuiel rigpomuiasiviog Mogemi.

Introduction. The problem of finding an appropriate set of initial conditions for the
infinite-dimensional Liouville — Lax integrable dynamical systems leading to such
typical solutions as the travelling waves and solitons has been important problem for
numerical analysis of integrable equations [1].

In this paper we make an attempt to develop a regular method of finding various
types of initial conditions by employing the method of reductions of the infinite-
dimensional integrable systems on finite-dimensional invariant submanifold [2].

The reduced set of equations on a submanifold consists of a pair of Hamiltonian
systems integrable in the classical Liouville sense. The first system is associated with
the vector field d/dx on the finite-dimensional submanifold and its solutions define a
set of initial conditions for the given infinite-dimensional integrable equation. The
other finite-dimensional Hamiltonian system corresponds to the vector field d/dt on
the submanifold and defines the time evolution of the initial data due to the dynamics
of the infinite-dimensional system. The phase portrait of the dynamical system
corresponding to the vector field dfdx provides necessary information for identifying
the initial conditions for the solitons and travelling waves.

The method can be applied for the numerical analysis of not only the Liouville —
Lax integrable dynamical systems but also to the conservative nonlinear dynamical
systems possessing several conserved quantities.

The paper is organized as follows. In Section 1 we formulate the basic concepts of
the method by Bogoyavlensky and Novikov of finite-dimensional reductions of the
Liouville — Lax integrable dynamical systems [2]. In Section 2 these ideas are applied
for the numerical study of the Korteweg — de Vries equation. The finite-dimensional
reductions of the modified nonlinear Schriddinger equation and the analysis of the
corresponding Hamiltonian equations are presented in Section 3. Section 4
demonstrates the applicability of these ideas to one hydrodynamical model possessing
four conservative quantities. We conclude the paper with a discussion of our results
and perspectives for the future work,

1. Finite-dimensional reductions. Let the dynamical system
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u; = K[u] (1)

be given on the manifold M < C*)(R/2x; R") of smooth 2n-periodic functions.
We denote by K: M — T(M) the Fréchet smooth tangent vector field on the
manifold M representing the dynamical system (1).
Let D(M) be the space of Fréchet smooth functionals on M. We shall define the
operator grad: D(M) — T° (M) by
&F

adF = —
& Bu

for Fe (M), where &(-)/8u is the Euler variational derivative

5 o5 -1*(1)" a()
w - 2V %) 50
The Poisson bracket of any pair of functionals F, G € D({M) iz a functional {F,
Glge D(M) defined by
L
{F.G}p = (grad F, 0 grad G) = j (grad F, © grad G) dr, @
Xa

where B is a skew-symmelric operator 6: ]”{M} — T(M) chosen in such a way, that
the Poisson bracket (2) satisfies the Jacobi identity

{{F,GYa.H}a+{{G. H}os, F}a+ {{H.F}3,G}a = 0

forall F, G, He D(M).

Therefore, the operator 8 7" (M) — T(M) determines a symplectic structure on
the manifold M.
It is known [3, 4] that the symplectic structure determined by the operator ©:

T" (M) — T(M) is invariant with respect to the phase flow of a dynamical system (1)
if and only if

Ly = 0, ) (3
where Ly is the Lie derivative along the vector field K: M — T(M).

An operator possessing this property is called a Noetherian operator.
The explicit form of the expression (3) reads

B *
ay _ o =0 4
& K" —-K'8 ; (4)

where K': T(M) = T(M) is the Fréchet derivative of the vector field K: M — T(M)
and K" : 7" (M)— T" (M) is the adjoint operator to K': T(M) — T(M) with respect
to the former bilinear formon T (M) = T (M),

If (4) holds for vector fields like S e T(M) forall g e T'(M'}. then the Jacobi
identity for the Poisson bracket (2} is satisfied automatically [3].

Similarly to (3), a functional @ e T (M) is related to a conservation law of the
dynamical system determined by the vector field K: M — T(M) if and only if ¢’ =

=¢'* and
Lx{p = 0,

or, in explicit form,
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do e
df-l-ﬁ’q:—'l.‘}. i (5)

The equations (4) and (5) can be solved by using some special agymptotic methods
developed in [4, 5].
The typical features of a Liouville — Lax integrable dynamical system are the

existence of two noneguivalent solutions to the equation (4), 8 and E, defining two
symplectic structures on the phase space and the existence of an infinite hierarchy of
conserved quantities

Xp+in
Hi= [ #Hjuldx (6)
Xy
with ;:=grad i, ie Z,, satisfying the equation (5).
All conserved quantities are in involution to each other with respect to the Poisson
brackets (2) defined by any compatible [3, 4] operators 8 and m:
{H; H;i}a = 0 = {H}, H}q,

forall i,je Z,, and the dynamical system (1) is representable in the bi-Hamiltonian
form

ug = K[u] = —0grad H = —nygrad H,
with the Hamiltonian functions H# and H being elements of the hierarchy of
conservation laws (6) or linear combinations of a finite number of conserved quantities.
The set of fixed points of an invariant functional L, e TH{M), Ne Z,, is a finite-
dimensional submanifold My c M invariant with respect to the dynamics of (1} and

all other vector fields, generated by the hierarchy ().
The invariant submanifold My < M can be represented as follows:

My = {ue M:grad £,[u]=0},

where £, is a Lagrangian function chosen for instance like
N=1 xp+im
Ly=Hy+ Y qH= [ Lylu)dx,
J=0 X
and ¢;e R, j= 0, N-1, are arbitrary constants. There exists a natural set of the

canonical (Hamiltonian) variables on the manifold My c M.
The system

grad Ly[u] := %"% =10 (7

is a Lagrangian dynamical system but it can be represented also in the form of the
canonical Hamiltonian equations [6] defining the Liouville integrable dynamical

system (vector field) d/dx:

d_‘?i - YRR
dc ~ op

(8)
dx dg;

where
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o= 8Lyl o ok (d Y SLylu)

qr=u T - e 5l = JEE;E_]} (EJ _-ﬁ—”u TE
i=1, N(N), N(N)=1/2dimM,, and the Hamiltonian function A{" e D(My) is
of the form

¥ .
Mo g} = Y, (pr - Lyfu),

satisfying the equation

dhy!
— = —{grad Lylu], u,),
where (-, -) denotes the scalar product in the Euclidian space EV :=(R" (., -1

The expression (7) holds on the submanifold M. This implies that the function
ki) remains constant as its arguments change according to the system (7).

Any solution to the corresponding Hamiltonian system which belongs to My can
be used as an initial condition for the given infinite-dimensional dynamical system (1).
The time evolution of the integral curves of the vector field d/dx is defined by a
finite-dimensional vector field d/dr on M, that is an exact reduction of the
dynamical system (1).

It can be shown (see [5]) that d/d¢ is also a Liouville integrable Hamiltonian
vector field with the canonical Poisson structure and the Hamiltonian function h;? =

& T(My) determined by the equation

i
“_:.:*_ = —(grad Ly[u), K[u]).

The Liouville integrability of the vector field d/dr implies [1] the existence of the
quasiperiodic dynamics of the solutions starting from some of the integral curves of the
vector field o dx.

We shall demonstrate in the sequel how the phase plane analysis of the dynamical
system (8) associated with some integrable or only conservative infinite-dimensional
dynamical systems makes it possible to find the initial conditions for such solutions as
the solitons and travelling waves that propagate without changing in shape.

2. The Korteweg — de Vries eguation, We shall start -with the most popular
equation of the theory of integrability — the Korteweg — de Vrits (KdV) equation:

Ly + Uy + Burn, = 0. ()]
Let the phase space of (9) be an 2r-periodic manifold. It is known that the phase

space associated with the KdV equation possesses a pair of symplectic structures
defined by the following implectic Noetherian operators

8= i =9, 1 =2 +2ud+29u (10}

The first three terms of the infinite hierarchy of conservation laws for the KdV
equation are

Ip+in Ip+in 2 Ip+In 1
o 2
Hy= [ wdx, Hy= | Sdx, Hy = (_Eu,, +u3) dx. (11)
*u X o

The bi-Hamiltonian representation of (%) is
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w==Bgrad Hy = =mgrad H,.
Let us reduce the dynamics of the KdV equation on the submanifold M; of critical
points of the following Lagrangian function:
rpt2n

Ly = Hy+eHy +Hy = J- Loy [u]dx.
*u

The submanifold M; < M is constituted by all solution of the equation of the form
(7) the explicit form of which is

)+ Cqld+ g+ 3% = 0. (12)

The equation (12) can be written in a form of the canonical Hamiltonian equations
by using the following canonical coordinates:

g =g, P:Ea_fqiu@=_u"

and the Hamiltonian function

MY = ag+2pt+2q + &,
2 2
satisfying the equation (8).
Therefore, the Hamiltonian equations defining the vector field d/dx on the
submanifold M; are

d
L - qragiit, L=op (13)

There are two fixed points on the phase plane with the coordinates (pg, g¢) = (0,
(=3 % +/ci —12¢)/6) and the corresponding eigenvalues of the linearized problem
are Ay p==(c3 —12¢))"* and Ay 4= (3 —12¢)"%.

For the specific values of the constants ¢, =0, ¢; =4 there is the hyperbolic fixed
point at (pg, gp) = (0,—4/3) and the elliptic one located at (0, 0).

There are one-dimensional stable and unstable manifolds and the homoclinic
separatrix to the hyperbolic fixed point on the phase portrait. The trajectories inside the
homoclinic separatrix are periodic in x and can be used as the initial conditions for the
periodic KdV equation. ' :

The time evolution of these initial profiles can be found by integrating the canonical
Hamiltonian system of equations defined by the Hamiltonian function hﬁ” e D(My)
(10) and associated with the vector field d/dr on the submanifold M ;. The
calculation show that A" and }é” are linearly dependent: fé” =0y hé".

One easily demonstrates the travelling wave propagating without change of shape.

In fact, the exact analytic solution in terms of the Weierstrass elliptic function for the
enoidal waves associated with the periodic KdV equation [2, 5]

dq
_r-,ru, = }
7w V24 + 020" +26ig +B

awith w=u(x—cat), ¢; € R, being the wave velocity and B € R being a parameter,
satisfies the set of equation (13).
The most interesting observation is that the homoclinic orbit to the hyperbolic fixed

point on the phase portrait of the dynamical system d/dx provides the initial condition
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FINITE-DIMENSIONAL REDUCTIONS OF CONSERVATIVE ... 225

for the soliton solution of the KdV equation on the infinite domain with the boundary
conditions of Schwarz type.

The propagation in time of the soliton is obtained (7] by integrating numerically the
dynamical system d/d.

3. The modified nonlinear Schrédinger equation. Our next example deals with
the finite-dimensional reductions of the modified nonlinear Schrédinger equation
=i - 2y
Wi = W = (¥ '4_'3}'1} = K(u) (14)
Y "'4"'.;: T {W };

where (y, ¥*)e M c c™(R/2rn: C*.
The dynamical system (14) is exactly Liouville — Lax integrable [4].
The following implectic Noetherian operators

. [{} a] . [ gy £+14ra"w']
2 0off —i+y'Tly oyl

define two compatible Poisson brackets on the space of functionals D(M).
The system (14) possesses an infinite hierarchy of conserved quantities the first
three terms of which are

Ir

In+tin Ip+tin 1. a2
H, = j iy dx, H; = j (-—h}r’\p; +L;F—-] dx,
o Ao
ap+in 2 W
Hy = f (E‘F"Fﬂ o ?-Wﬂw:t i W—\;\.}fl = E(W.W}s) dx.
*u

All conserved quantities are in involution with respect to the pair of the Poisson
brackets defined by the operators 8 and 1: 7 (M) = T(M).

Therefore the corresponding tangent vector fields K;:=-8gradH;, ie Z,, are
mutually commuting.

The reduction procedure for the nonlinear modified Schrédinger equation (14) on
the submanifold of critical points of the first two conserved quantities leads to a two-
dimensional Hamiltonian system which doesn’t exhibit an interesting dynamics.
Therefore we should consider the next submanifold given as a set of critical points of
the following high order Lagrangian function:

‘f’i = C|H|+G-2H2+H3.

Applying the same reduction procedure as in the previous section we obtain the
four dimensional system corresponding to the vector field o/ dx:

d d
E’;L = @ — & + 3gia, er = —pa.

(15)
% = ag — c2digs + 3qi43, % =—p.

The system (15) is a set of the canonical Hamiltonian equations with respect to the
Hamiltonian funetion

[
B? = aags + pip2 - Fala + Gia,
and the canonical coordinates are
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Q=Y &=, p = - P = -V

We shall analyse the phase portrait of the system (15) for some fixed values of the
parameters, in particular, we take ¢; =—3, ¢ =0. The origin of the phase plane {g,,
Pisd2.P2)=(0,0,0,0) is a hyperbolic fixed point.

The following curves in the four-dimensional phase space

1
PL=pa=0 g =*x=

are the manifolds of the elliptic fixed points.

The typical solutions g;(x) that can be used as the initial conditions for the
infinite-dimensional system (14) can be easily depicted. The time evolution of these
initial profiles are obtained by integrating the set of the Hamiltonian equations
corresponding to the vector field d/dt on the submanifold M.

As in the previous example, the periodic initial profiles lead to the travelling waves
propagating without change in the shape. The homoclinic separatrix to the hyperbolic
fixed point (0, 0, 0, 0) provides the soliton-type initial condition.

4. A hydrodynamical model. The following hydrodynamical system of equations
was used in [7, 8] for the description of the surface evolution of thin fluid jets and fluid
sheets:

y = Ve = Ul

v, = —(u),

} R (16)

Warious types of the dynamics of the system (16) were described in [7, 8] by means
of numerical methods based on the pseudospectral in space and Runge — Kutta in tme
technigue. The surface instability of fluid sheets were studied as well as a wide range
of the quasiperiodic solutions.

We shall demonstrate in this section that a class of the travelling wave solutions can
be obtained by using the finite-dimensional reduction approach.

The system (16) is conservative. It possesses the following conserved quantities

Xg+in Xp+in

H = _I- ndx, !'-'II = J. v,
Xp A
Xp+in
Hy= | wvdsx, (17
*g
Xp+2w

Hy= 2 [ }+uhvd
g

It was shown in [9] that the dynamical system (16) is Hamiltonian with respect to
the canonical Poisson bracket defined by the operator

(5 o)
8 =
d 0
and the Hamiltonian function H = H,:
(. 0,)7 = — 0 grad Hy [u, v].
It was also shown in [9] that the dynamical system (16) possesses the Lax type
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representation: it is equivalent to the following operalional expression

I =LP-PL
where
L=v'3+u, (18)
2
FP=ud+ [uu_,‘..‘. —%] (19

The exact integrability of the dynamical system (16) remains still an open question:
the first order Lax operator (18) doesn't yield an infinite hierarchy of conserved
quantities and no solitary wave solutions can be found in an infinite spatial domain due
to the triviality of the Lax spectral problem.

Nevertheless, since the conserved quantities (17) are in involution to each other
with respect to the canonical Poisson bracket, the approach used in the previous
sections can be applied to the dynamical system (16).

Let us consider the finite-dimensional reductions of the dynamical system (1) on the
submanifold M, of critical points of the following Lagrangian function

Ig+2n
L= | Llwvlds = c(H +H)+cyHy +c3Hs.
R
The equation (7) defines the Lagrangian dynamical system and the constraint
2esu+epfv+ey=0.
One choice of the canonical Hamiltonian variables g and p on the submanifold
My iz
_ 6L,u, v]
e i

By using the equations like (7), (8) one can obtain the Hamiltonian functions h{™
and A{"” determining the Hamiltonian vector fields d/dx and d/dr on Mj:

2
b .,.(ﬁ__q)g P

g=1n = 3l

4y 4eq dcy g

3 2
oy 1_(5&_.&1) Laal
& s_cz_,?” 2, 82?7 8t g

We integrated the corresponding Hamiltonian equations numerically by using the
Runge — Kutta method for the following numerical values of the parameters: ¢ = I,

= "'.||4+”E1, C3=1.

The phase portrait of the Hamiltonian dynamical system

dg _ o

dx ap
dp _ _ 3"
dx dg '

corresponding to the vector field d/dx can be plotted via a simple integration.

There are two fixed points in the phase space of the system d/dx: the hyperbolic
point with coordinates (-, 0) and the elliptic one located at (=, 0). The physically
realistic solutions corresponding to the subdomain of positive values of g are periodic
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in x. Some typical solutions defining the initial conditions for the infinite-dimensional
dynamical system (16) can be easily extracted.

Notice that the independent and dependent variables can be rescaled to obtain [-
periodicity of any curve. We studied the dynamics due to the Hamiltonian dynamical
system

dg _ oK

e ap

a[ﬂ
@ _ 9
dx dg '

corresponding to the vector field d/dx and found the time evolution of the initial data.

The solution has the form of a small amplitude travelling wave. The absence of a
homo- or heteroclinie orbit to a hyperbolic fixed point on the phase space nevertheless
doesn't indicate that the soliton solutions to the dynamical systern (16) don’t exist.

Since the system (16) is a natural generalization of the well known Burgers flow
possessing both dissipative and soliton like solutions, the corresponding Cauchy data at
which solutions are solitonic should be treated via the reduction method based on the
well known Moser's mapping approach, devised in [5]. This trend of our studying the
system (16) we are going to perform in detail in & work under preparation,
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