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1. Introduction. Regular grids with even steps of the spatial coordinates in the whole computa-
tional domain are the most convenient for implementing numerical methods for the integration 
of equations of weather forecasts. However, computing a local numerical weather forecast based 
on the global general circulation models of the atmosphere will need an enormous increase in 
computation time exceeding reasonable limits. Moreover, as some regional weather details are 
well localized, it is reasonable to apply high-resolution grids locally.

Separate modeling of regional atmospheric processes, in which the boundary conditions are 
considered unchanged for the time interval calculation, for years was only of scientific interest 
(e.g., see [1, 2]), since the stated lateral boundary conditions lead to large errors and even to false 
numerical solutions. So, to reduce the forecast errors in the restricted area, one must add a buffer 
zone to expand the boundaries of the area to such an extent that the generated disturbance at 
the boundaries does not reach the computational domain. But increasing the area of solutions 
entails increasing the computer performance requirements and may lead to difficulties in the prac-
tical realization of such models.
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In the recent years, the regional modeling of atmospheric processes is implemented in view 
of the fact that the field of meteorological variables in a bounded domain is formed under the in-
fluence of a macroscale atmospheric circulation. Therefore, a bounded domain of solutions is 
seen as a part of the whole, and the non-stationary boundary conditions at its lateral bounda-
ries are formulated on the basis of data obtained from a bordering region. Thus, in practice, when 
solving the numerical weather prediction problem in a limited area, they make the grid more 
condensed to achieve the desired accuracy for solving the problem in the field of large gra-
dients of dependent functions. Particularly, in [3, 4], the authors analyzed the problems arising 
from the application of non-uniform grids to difference schemes of numerical integration of the 
equations of hydrodynamics and heat and mass transfer within a regional weather prediction 
model. So, the combined model consists of:

1) the global atmospheric general circulation model including simplified equations nu-
merically implemented on the coarse grid;

2) the regional model, which includes the complete equations of fluid flow, heat, and mass 
transfer numerically implemented on a fine grid.

The boundary conditions necessary for the regional model are identified with the solution to 
the global model that can be integrated together with the regional model, or in advance. This 
method of forecasting for the nested grids method was called the method of “one-way interac-
tion” [5], because the numerical results of the internal model do not affect the integration of 
the equations of the external model.

2. The Method of “One-Way Interaction”. In the analysis of the essence of the method of 
“one-way interaction”, it may seem that, from a computational point of view, there is no upper 
limit on the term of the regional forecast on embedded grids. Therefore, it was considered that 
the regional model containing the complete equations of fluid flow, heat, and mass transfer 
solved numerically on a fine grid will be the basis of operational weather prediction schemes in 
the near future. But in practice, non-stationary boundary conditions are determined by the ex-
trapolation in the models of “one-way interaction”. This leads to the emergence of errors spread 
into the area of solutions with the speed of external gravitational waves, which reduces signi-
ficantly possible terms of a weather forecast for a limited area. Consequently, in order to make 
the regional weather forecasts real, it is necessary to continue the study of the interaction of 
grids with different resolutions.

The issue of a correct formulation of boundary conditions in the case of the method of 
“one-way interaction” is difficult enough. In the books devoted to the study of the effect of dif-
ferent types of boundary conditions on numerical simulation results for non-uniform grids 
(see, e.g., [6]), it was shown that the optimal mathematical and computational boundary condi-
tions for the scheme with the “one-way interaction” should have the following properties:

boundary conditions must specify the main quasigeostrophic part of a solution, when the 
movement is directed into the region; the outlet of the solutions region should contain no ref-
lection in the form of a computing mode or gravitational waves;

fast gravitational waves generated inside the area should, if possible, go across the border 
or should not be reflected and reinforced by the boundary conditions.

Most of the boundary conditions applied in practice do not meet not only both require-
ments, but each of them separately.



12 ISSN 1025-6415. Dopov. Nac. akad. nauk Ukr. 2020. № 3

V.A. Prusov , A.Yu. Doroshenko 

Since the traditional numerical solution of the problem of regional weather forecasting in 
the formulation of classical initial-boundary-value problem is associated with a lot of difficulties 
discussed above, we replace it with a similar problem satisfying the special requirements arising 
from the concept of “one-way interaction”. This may be explained with a simple example.

Let we need to find a function ( )tℜ  at the interval 1 jjt t t− � �  satisfying the differen-
tial equation

( )
d

F t
dt
=R   (1)

and additional conditions from the prehistory

( ) , 1, 2, ,j jt j Nℜ = ℜ =  ,  (2)

where jℜ  are the discrete values of the function ( )tℜ  given at the nodes jt t=  ( 1, 2, , )j N=   of 
the large-scale grid hϖ  with the grid step pitch 1j j jh t t −= − . In general, F  is a nonlinear ope-
rator. It is algebraic for ordinary differential equations and is spatial differential for partial dif-
ferential equations.

At first, we restrict ourselves to problem (1) — (2) in the case of an ordinary differential 
equation. The natural way to solve this problem is as follows. On the segment 1[ , ]j jt t− , we intro-
duce a small-scale grid hϖ  of points ( 0,1, , )k k Mζ = …  with the increment of 1 1k k k− −ζ ζτ = −  
provided that 0 1jt −ζ = , M jtζ =  and consider the differential equation not everywhere on t, but 
only on the interval 1[ , ]j jt t− . Replacing the derivative ( ) /kd dtℜ ζ  by its approximate value, for 
example, 1 1( ) / [ ( ) ( )]/ ( ) /k k k k k k kd dt + +ℜ ζ = ℜ ζ −ℜ ζ τ ≡ ℜ −ℜ τ , we move to the difference scheme

1 ( ), 0,1, , 1k k k kF k M+ℜ = ℜ + τ ζ = − .  (3)

The initial value of 0 1 1( ) ( )j jt − −ℜ ζ = ℜ = ℜ  is defined. Other successive values 0( )ℜ ζ =
1 1( )j jt − −ℜ ℜ= =  are found by solving the differential equation (3). That is, to solve the prob-

lem (1), (2), one can apply a difference scheme for the Cauchy problem.
It can be done also in a different way [4]. Taking a closer look at the statement of the prob lem 

(1), (2), one can see that finding the value of ( )tℜ  in the interval 1[ , ]j jt t−  is a task of interpola-
tion. Indeed, at the points jt t=  ( 1, 2, , )j N=  , we know the values of the function ( )j jtℜ ℜ=  
and values of the right side of Eq. (1) ( )jF t , i.e., its first derivative / ( )jjt td dt F t= =ℜ . Under 
the terms of problem (1), (2), one must find ( )tℜ  for the value of t  different from the values 
of the nodes jt t=  ( 1, 2, , )j N=  . Hence, we come to the method known as the interpolation 
“with multiple nodes” or Hermite polynomial interpolation.

3. A numerical method based on a prehistory and interpolation with multiple nodes for 
solving the non-stationary problem. The following will consider the general problem of interpo-
lation functions by a set of its several values (prehistory) and a derivative of the first order with 
the help of an algebraic polynomial. An appropriate representation of the polynomial interpola-
tion will be obtained, its uniqueness proved, and interpolation error estimated.

Suppose that in addition to the values of the function jℜ , its first order derivatives jℜ′  are 
given at the nodes of the grid under consideration so that the total of known data is 1 2n N+ = . 
Suppose, furthermore, the values of t  does not coincide with the grid points jt  ( 1, 2, , )j N=  , 
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where the values ( )a
jℜ , 0,1α =  are given. It is required, using the source data, to find a value 

( )tℜ , i.e. to solve the problem of interpolation. To do this, one must specify a rule by which, 
based on given values jt  and ( )( )a

jtℜ , 0,1α = , ( 1, 2, , )j N=  , we can calculate the approxi-
mate value of ( )tℜ .

It is known that if the function ℜ  on the interval a t b� �  of small length has derivatives 
of a sufficiently high order, then their behavior on a small portion of it is not very different 
from the geometric representation of an algebraic polynomial. This follows from the fact that 
the function ℜ  in the considered interval can be represented by the Taylor formula with a 
small error term. Therefore, the interpolation of the function by an algebraic polynomial should 
give good accuracy by taking a sufficient number of sites close to the point of interpolation t .

Construct an algebraic polynomial ( )nP t  of the degree n  satisfying the conditions

( ) ( )( ) ( ), 0,1, 1, 2, ,a a
n j jP t t j N= ℜ α = = …  (4)

We prove that there is only one interpolation polynomial ( )nP t  satisfying conditions (4). 
The interpolation conditions (4) represent a system of linear algebraic equations for the coef-
ficients 0 1, , , na a a  of the polynomial

1
0 1( ) n n

n nP t a t a t a−+ + +=  .  (5)

The number of equations of this system is equal to the number of unknowns and is equal 
to 2N . Therefore, it suffices to show that the homogeneous system

( )( ) 0, 0,1, 1, 2, ,a
n jP t j N= α = = … ,  (6)

has only the trivial solution 0 1 0na a a= = = = . The condition (6) for a fixed j  and 0,1α =  
means that the number jt  is a root of the multiplicity n  of the polynomial ( )nP t . Thus, the po-
lynomial ( )nP t  has just no less than 1n+  roots on [a, b]. Since the degree of ( )nP t  is equal to n , 
this polynomial is identically zero, all its coefficients are equal to zero, the homogeneous system 
of equations (6) has a unique solution 0 1 0na a a= = = = , and there is only one polynomial (5) 
satisfying the conditions (4).

The heterogeneous system (4) is uniquely solvable for any right-hand side. Since the values 
of ( )( )a

jtℜ , 0,1, 1, 2, ,j Nα = = …  includes only the right side of system (4), the coef fi cients 

ja  of the polynomial ( )nP t  are expressed linearly through the value of ( )( )a
jtℜ , i.e.,

1

( ) ( ) ( )
N

n j j
j

P t L t t
=

ℜ′= ∑ .  (7)

We now find explicit representation of formula (7) with the help of the residual

( , ) ( ) ( )n nr t t P tℜ = ℜ − .  (8)

It occurs, when replacing the function ( )tℜ  with the interpolation polynomial ( )nP t , and 
is called the error of interpolation or residual member of the interpolation formula. Obviously, 
this error is zero at the nodes of the interpolation. We now estimate the error at an arbitrary 
point [ , ]t a b∈ .
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Theorem 1. Let nodes jt  ( 1, 2, , )j N=   and a point t  belong to the segment [ , ]a b , and let 
the function ( )tℜ  have a continuous derivative of order 1n+  on [ , ]a b . Then there exists a point 
ξ  on the segment [ , ]a b  such that the following equality holds for the interpolation error ( , )nr tℜ :

( 1) 2

1

( )
( , ) ( ) ( ) ( )

( 1)!
,

N
nn

n j
j

n
t

t t t t
n

r +

=

Ψ
ℜ ℜ ξ Ψ −

+
= =∏ .  (9)

Proof. Consider the auxiliary function

( ) ( ) ( ) ( )n ns s s K sP= ℜ − − Ψ ,  (10)

where [ , ]s a b∈ , K  is a constant. Let us evaluate ( , )n tr ℜ  at a given point [ , ]t a b∈ , which is 
not a node of interpolation. We choose the constant K  from the condition ( ) 0s = . It is 
enough to put

( ) ( )
( )

n

n

t P t
K

t

ℜ −
=

Ψ
.

The function ( )s  has at least 2n+  zeros on [ , ]a b , namely, at the points t and jt  ( 1, 2, , )j N=  . 
The derivative of the first order ( )s′  by the theorem of Rolle has at least one zero within each 
interval between adjacent points 1 2, , , Nt t t , t . The number of zeros will be N . Moreover, 

( )s′  has n  roots of the multiplicity one at each point jt  ( 1, 2, , )j N=  . Thus, ( )s′  has, given 
the multiplicity, of at least 1n+  zeros on [ , ]a b . Similarly, the second-order derivative ( )s′′  
has at least n  roots, etc. The derivative ( 1) ( )n s+  vanishes at least once on [ , ]a b . Thus, there 
exists a point [ , ]a bξ ∈ , where ( 1) ( ) 0n s+ = .

From (10), we have

( 1) ( 1)( ) ( )n n
ns K s+ += ℜ − .

Since ( )n sΨ  is the polynomial of degree 1n+  with leading coefficient 1, we have ( )n sΨ =
( 1)!n= + . Therefore, in view of the condition ( 1) ( ) 0n s+ =  and the expression for K , we obtain 

the following representation for the error of interpolation:

( 1)( )
( ) ( ) ( )

( 1)!
nn

n
s

t P t
n

+Ψ
ℜ − ℜ ξ

+
= .

From this, it follows that (9) holds.
Without loss of generality, assume that the function ( )tℜ  is analytic in the closed end area of 

H  bounded by ℘  and containing [ , ]a b . Then the Cauchy formula

1 ( )
( )

2
t

t d
i t℘

ℜℜ = ξ
π ξ −∫   (11)

allows us to reduce the construction of an interpolation polynomial ( )nP t  to the problem of 
finding a polynomial (1/ ( ), )nP t tξ −  for a fairly simple linear fractional functions 1/ ( )tξ − , 
where ξ  is taken as a parameter over which the integration is carried out in (11).
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We investigate the dependence of the error of interpolation

2
1

1 1 1 1 1
, , ( )

( )

N

n n j
j

r t P t L t
t t t t t=

⎛ ⎞ ⎛ ⎞
= = −⎜ ⎟ ⎜ ⎟ξ − ξ − ξ − ξ −⎝ ⎠ ⎝ ⎠ ξ −∑   (12)

on ξ . Equation (12) is an expansion of a rational function into simple fractions. It is obvious 
that the point tξ =  for the error is a first-order pole with thr residue equal to one. The common 
denominator of all the terms in the expression for error (12) is equal to ( ) ( )ntξ − Ψ ξ . Thus, the 
error (1/ ( ), )nr t tξ −  can be represented as

1 ( , )
,

( ) ( )n
n

t
r t

t t

⎛ ⎞ Ω ξ=⎜ ⎟ξ − ξ − Ψ ξ⎝ ⎠
,  (13)

where ( , )tΩ ξ  is a polynomial in ξ  of degree not higher than 1n − .
The polynomial ( , )tΩ ξ  on the right side of (13) does not depend on ξ  and is equal to 

( )nΨ ξ . Indeed, when tξ  , the following equality holds:

1
1

1 I

I
I

t
t

∞

+
=

=
ξ − ξ∑ .

It follows from (13) that the error is linearly dependent on the interpolated function. Con-
sequently, we have

1
1

(1 ),
, n

I

n I
I

r t t
r t

t

∞

+
=

⎛ ⎞
⎜ ⎟⎝ ⎠

=
ξ − ξ∑ .  (14)

Since the functions ( 0,1, , )kt k nϕ = =   are interpolated exactly, we have

( , ) 0, 0,1, ,I
nr t t I n= =  .

Thus, the first 1n+  terms in sum (14) disappear, and expansion (14) begins with a member 
1 2( , ) /I I

nr s s+ +ξ . It follows that the degree of the numerator ( , )sΩ ξ  in (13) in ξ  is by 2n+  
units less than that of the denominator. But the degree of the denominator is equal to 2n+ . 
Thus, ( , )sΩ ξ  is of zero degree and does not depend on ξ , i.e., ( , ) ( )t tΩ ξ = Ω .

Finally, since the value tξ =  for (1/ ( ), )nr t tξ −  is a simple pole, minus 1, we have ( ) ( )nt tΩ = Ψ  
and

( )1
,

( ) ( )
n

n
n

t
r t

t t

Ψ⎛ ⎞
⎜ =
ξ − ξ − Ψ⎟⎠ ξ⎝

.  (15)

Taking (11) — (15) into account, we obtain a representation of error ( , )n tr ℜ  in the form 
of a contour integral

( )1 1 ( )
( , ) ( ) ,

2 2 ( ) ( )
n

n n
n

t
r t r t d d

i t i t℘ ℘

Ψ⎛ ⎞ ℜ ξℜ = ℜ ξ ξ = ξ⎜ ⎟π ξ − π ξ − Ψ ξ⎝ ⎠∫ ∫ .  (16)
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The resulting integral expression is the basis for finding the required interpolation po-
lynomial

( ) ( ) ( , )n nP t t r tℜ − ℜ= .  (17)

The residue function ( ) ( ) /[( ) ( )]n nt tΨ ℜ ξ ξ − Ψ ξ  at the point tξ =  is, obviously, ( )tℜ . 
Calculate the residue at the pole jtξ = , 1, 2, ,j N=  . For values of ξ  close to the values of jt , 
the following expansions in power series hold:

( )

0

1
( ) ( ) ( )

!
I I

j j
I

t t
I

∞

=
ℜ ξ = ℜ ξ −∑ ,

1
0

1 1 ( )
( ) ( ) ( )

I

I
j j I j

t
t t t t t t

∞

+
=

ξ −= − =
ξ − − − ξ − −∑ ,  (18)

( )

0

( )
( )

j j I
jI

n I

t
C t

∞

=

ξ −
= ξ −

Ψ ξ ∑ .

Representing the function ( ) /[( ) ( )]ntℜ ξ ξ − Ψ ξ in the form of:

( ) 1 ( )
( ) ( ) ( )

j

n j n

t

t t t

ξ −ℜ ξ ℜ ξ= ⋅ ⋅
ξ − Ψ ξ ξ − Ψ ξ ξ −

,  (19)

find the rest of it by multiplying the power series (18).
Expressions (17), (18), and (19) and the equality ( ) ( )j jt F tℜ =′  according to (1) lead to the 

desired interpolation polynomial

2

2 2
1

( )
( )

( ) ( )[ ]

N

n
j j j

t
P t

t t t=

ℵ= ×
− ℵ′∑

( )
1 ( ) ( ) ( ) ( )

( )
j

j j j j
j

t
t t t t t F t

t

⎧ ⎫⎡ ⎤ℵ⎪ ⎪× − − ℜ + −⎢ ⎥⎨ ⎬ℵ⎢ ⎥⎪⎣⎩ ′ ⎦

′

⎪⎭

′
,  (20)

where

1

( ) ( ) ( )
N

n j
j

t t t t
=

ℵ = Ψ = −∏ .

Above, we assumed that the function ( )tℜ  is analytic in the closed end area of H , bounded 
by ℘  and containing [ , ]a b . But (20) contains only the values ( )( )a

jtℜ , 1, 2, ,j N=  , 0,1α = . 
Thus, formula (20) remains true for any function ( )tℜ  with finite values of ( )( )a

jtℜ , 1, 2, ,j N=  , 
0,1α = .
The interpolation polynomial (20) for 3N =  and 1[ , ]j jt t t−∀ ∈  is simplified to a polyno-

mial of the fifth degree:
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2 2
1 1

3 2 2 2
1 1 1

3 1
1( )

4 4
( )j j j

j j j
j j j j j j

t t t t t t
P t F

t t t t t
t t

t
− −

− − −
− − −

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −
= + ℜ + − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

2 2
2

1 1 1
1 1 2

[ ( ) ]j j
j j j

j j j j

t t t t
t F

t t t t
t−

− − −
− − −

⎛ ⎞ ⎛ ⎞− −
+ ℜ + − +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 (20a)

2 2
2 1 1

1 2 1 1

3 1
1 (

4 4
)j j j

j j j
j j j j j j

t t t t t t
t F

t t t t t t
t− − −

− − − −

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −
+ − ℜ − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

.

Finally, when 2N =  and 1[ , ]j jt t t−∀ ∈ , we have the third-degree polynomial

2
1

2 1 1 1
1 1

( ) 1 2 ( )j j
j j j

j j j j

t t t t
P t t t F

t t t t
−

− − −
− −

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
= + + − +⎢ ⎥⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

R  (20b)

2
1

1 1

1 2 ( )j j
j j j

j j j j

t t t t
t t F

t t t t
−

− −

⎡ ⎤⎛ ⎞ ⎛ ⎞− −
+ + ℜ + −⎢ ⎥⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

.

One can make sure that the last formula gives correct results at 2 31, , ,t t tℜ = . At 4tℜ = , the 
maximal error maxr  in the range (0,1)  is max 0,0625r = − . At the same time, by the Bessel formula, 

maxr = –0.5625 with the same number of given ( )jtℜ  values.
We indicate the main advantages of these interpolation formulas built on the basis of prede-

termined values of the function and its derivative ( )( )a
jtℜ , 1, 2, ,j N=  , 0,1α = :

they are more accurate than any of the formulas that use only the value of ( )jtℜ ;
when interpolating inside the interval 1( , )N Nt t−  we do not need the data outside of the right 

border of the segment of interpolation, so they can be used for the rightmost interval;
values of the function ( )jtℜ  and its derivative ( )jtℜ′  can be set on an irregular grid jt .
Conclusion. The results obtained in this paper indicate that solving problems of the type (1), 

(2) for ordinary differential equations can be carried out effectively by the interpolation (the 
methodology is developed in [7]). Here, we give an outlook of numerical methods developed by 
the authors for effective regional solutions of boundary-value problems with a prehistory on the 
basis of the “one-way interaction” approach. Within this approach, we construct our own method 
for filling the data, given on the macroscale grid nodes, in the mesoscale network based on the 
spline interpolation and a precise (the fourth order of accuracy) numerical method for the ap-
proximation of the first- and second-order derivatives in differential equations. The method is 
implemented within the paradigm of the formalized design of parallel programs [8].
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ЕФЕКТИВНИЙ ОБЧИСЛЮВАЛЬНИЙ МЕТОД 
ДЛЯ МЕЗОМАСШТАБНОГО ПРОГНОЗУВАННЯ ПОГОДИ

Розглянуто математичні задачі, пов’язані з чисельним розв’язуванням рівнянь для прогнозних моделей 
регіональної циркуляції атмосфери. Описано методологію ефективного регіонального вирішення крайо-
вих задач з передісторією на основі підходу “однобічної взаємодії”. У рамках цього підходу запропоновано 
метод заповнення даних з вузлів макромасштабної сітки у мезомасштабну сітку на основі інтерполяції 
сплайном і точного чисельного методу (четвертого порядку точності) для наближення похідних першого 
та другого порядку диференціальних рівнянь. Тим самим розв’язування задач для звичайних диференці-
альних рівнянь може ефективно здійснюватися шляхом інтерполяції.

Ключові слова: мезомасштабне прогнозування погоди, диференціальні рівняння, інтерполяція.
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ЭФФЕКТИВНЫЙ ВЫЧИСЛИТЕЛЬНЫЙ МЕТОД 
ДЛЯ МЕЗОМАСШТАБНОГО ПРОГНОЗИРОВАНИЯ ПОГОДЫ

Рассмотрены математические задачи, связанные с численным решением уравнений для прогнозных мо-
делей региональной циркуляции атмосферы. Описана методология эффективного регионального ре-
шения краевых задач с предысторией на основе подхода “одностороннего взаимодействия”. В рамках это-
го подхода предложен метод заполнения данных с узлов макромасштабной сетки в мезомасштабную 
сет ку на основе интерполяции сплайном и точного численного метода (четвертого порядка точности) для 
приближения производных первого и второго порядка дифференциальных уравнений. Тем самым ре-
шение задач для обыкновенных дифференциальных уравнений может эффективно осуществляться путем 
интерполяции.

Ключевые слова: мезомасштабное прогнозирование погоды, дифференциальные уравнения, интер поляция.


