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On the quasilinear Poisson equations
in the complex plane

Presented by Corresponding Member of the NAS of Ukraine V.Ya. Gutlyanskii

First, we study the existence and regularity of solutions for the linear Poisson equations AU(z) = g(z) in bounded
domains D of the complex plane C with charges g in the classes (D) Lf (D), p>1. Then, applying the Le-
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ray—Schauder approach, we prove the existence of Holder-continuous solutions U in the class W2 P (D) for the
quasilinear Poisson equations of the form AU(z)=h(z)- f(U(z)) with h in the same classes as g and continuous
Sfunctions f:R —R such that f(t)/t—0 as t — . These results can be applied to various problems of mathe-
matical physics.

Keywords: potential theory, quasilinear Poisson equations, semilinear equations, anisotropic and inhomogeneous
media, quasiconformal mappings.

1. Introduction. The study of elliptic partial differential equations in two dimensions by the
methods of complex analysis and quasiconformal mappings with applications to nonlinear elas-
ticity, gas flow, hydrodynamics, and other sections of natural science has been initiated by
M.A. Lavrentiev, L. Bers, L. Nirenberg, I.N. Vekua, B. Bojarski, and others (see, e.g., [1-5] and
the references therein). A rather comprehensive treatment of the present state of the theory is
given in the excellent book of K. Astala, T. Iwaniec, and G. Martin [6].

In series of our recent papers (see, e.g., [7, 8]), we have proposed another application of
the theory of quasiconformal mappings to the the study of semilinear partial differential equa-
tions of the form

div[A(2)Vu(2)]=f(u), zeD, DcC, (1)

the diffusion term of which is the divergence-form elliptic operator L(u), whereas its reac-
tion term f(u) is a non-linear function. Here, the symmetric matrix function A(z)={a;(2)},
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detA(z) =1, with measurable real-valued entries satisfies the uniform ellipticity condition
%|§|2<<A(2)&,§><K|&|2 ae. in D, 1<K<oo, (2)

for every &eR?. The set of all such matrix functions is denoted by M%*(D).

It was shown that, by the chain rule for the composition function u=Uo®, where o is
a quasiconformal mapping that agrees with the matrix function A(z), the following basic for-
mula holds:

div[A()V(U(0(2))]= J,(D)AU(0(2)), (3)

where J,(z) stands for the Jacobian of the mapping .
Namely, this formula (understood in the sense of distributions) takes place for all U e W]i)cz (G),
AeM ]2<X2(D) and quasiconformal homeomorphisms ®:D — G satisfying the Beltrami equation

0;(2)=u(z)m,(z) ae. in D, 4)
where its complex dilatation

gy —ayy —2idyy

= 5
M= et + ) ©)
satisfies the uniform ellipticity condition
1+K
< . 6
n@Is % (6)

Thus, the study of semilinear equations of the form (1) in domains D of a finite area can
be reduced in a suitable way to the corresponding investigations of the quasilinear Poisson
equations of the form AU =#h- f(U). The latter is the subject of the present paper.

Below, D denotes the unit disk {z € C:| z |< 1} in the complex plane C,Dp(zy) :={ze C:|z—z, |< R}
for zy € C and Re(0,00), Dp :=Dx(0).

2. Basic facts from the potential theory. For the sake of completeness, we repeat the funda-
mental results concerning the potential theory in a plane, given in [8], and strengthen some of them.

First of all, we recall that, by Corollary 1 in [8], if, for every Borel set B in C,

v(B):= [g(2)dm(2) (7)
B
where g:C — R is an integrable function with compact support, then
AN =g, (8)
where
Ny(@)=o- Jinl 2o lg(e)dmte) ©)
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in the distributional sense, i.e.,
[N, My(2)dm(2) = [w(2) g(2)dm(z) yeCF (. (10)
C C

Here, the function g is called a density of the charge v , and the function N, is said to be
the Newtonian potential of g .
Recall also the definition of the formal complex derivatives:

o ifo ol o 1o, 0] ., "
0z ox oyl a9z 2)ox oy T v

The elementary algebraic calculations show their relation to the Laplacian

2 2 2 2
A::82+82=4a_:4§ . (12)
ox” Jdy 0z0z  0zoz

Further, we apply the theory of the well-known integral operators

Tg(2)i=~ jg( YO | Tg(o) = Jg( yame)

defined for integrable functions with a compact support K and studied in detail.

The following theorem on the Newtonian potential strengthens Theorem 2 from [8]. It is
important to obtain solutions of a higher regularity to the Poisson equations (8), as well as to
the corresponding semilinear equations.

Here and later on, given a domain D in C, a function g: D — R is assumed to be exten-
ded onto C by zero outside of D .

Theorem 1. Let D be a bounded domain in C . Suppose that g € L'(D). Then N, e Wlf)q((C)

9°N, 82N
Jforall qe|1,2), and there exist the generalized derivatives by Sobolev £ and —5 and
020z 0z0z
82N =AN, =4 N, in C 13
I =M=t =8 ae in T (13)
Moreover, N, € L. (C) for all se[1,). More precisely,
I Ng lls <lgly-Nn &l Vse[t ), (14)

where || N ||; isin D, forall r € (0,%), and IIn & ||, isin Dg,, if DcDg.
If geIP(D) forsome pe(l,2], then N, eri’c”(C) and

N, eWpI(C) Vye(lq), where q=2p/(2-p)>2. (15)

In addition, the collection {N } is locally B -Hélder equicontinuous in C for all p € (0,1-2/q), and
the collection {N} of its first partial derivatives is strictly compact in LY(D) forallye (1, q), if the
collection {g} is bounded in I[P (D).
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Finally,if g & 17 (D) for some p>2, then Ny  Ch(C) with .= (p2)/ p. Furthermore, the col-
lection {N} is locally Hélder-equicontinuous in C wlth the given o, if {g} is bounded in [P (D).
Proof. Note that N, is the convolution y#g, where v(€)=In|&|. Hence, (14) follows

(e.g., by Corollary 4.5.2 in [9]). Moreover, g _ oy —*g and 8\|l:*<g :a—\l/*g (see, e.g., (4.2.5)
0z 0z oz 0z

in [9]). By elementary calculations,

0 1 1 0 1 1

—Inlz—wE=———, —In|z-—w==-——. 16

0z nlz-w| 2z- 85n|2 © 2z-w (16)
Consequently,

ON,(2) 1 ON,(2) 1=

0 183, ———=7T180) (A7)

Thus, the rest conclusions for g e L'(D) follow by Theorems 1.13—1.14 in [5].

Next, if ge (D) with pe(1,2], then N, e WIOCY((C) for all ye(,q), where g=2p/
(2-p)>2,by Theorem 1.27, (1.27) in [5] and, moreover N, e W10 P(C) by Theorems 1.36—1.37
in[5]. Inaddition, acollection {N} islocally  -Hélder- equlcontlnuous in C forall Be(0,1-2/9)
(see, e.g., Lemma 2.7 in [3]), and the collection {Ng} of its first partial derivatives is strictly
compact in L'(D) for all ye(1,q), if the collection {g} is bounded by the norm in L (D)
(see, e.g., Theorem 1.4.3 in [10] and Theorem 1.27 in [5]).

The last item of Theorem 1 was derived in Theorem 2 from [8].

Remark 1. Note, generally speaking, that N PX: Wli’c1 and N Px: C,if ge L1((C) (see, for in-
stance, Example 7.5 in [11], and the example in Remark 2 from [8]).

Corollary 1. Let D be a subdomain of D, g:D—R be in [(D) and in Lf) (D) for some
p>1. Then N, ergcp(D) and satisfies (13) a.e. in D . Moreover, N, erocq(D) Jor g>2,
and N is Iocally Hélder-continuous in D . Furthermore, N4 eC1 0L(D) with oo=(p-2)/p, if
g ELloc(D) Jor p>2.

In addition, the collection {Nz} is locally B-Hélder-equicontinuous in D for all Be
€(0,1-2/q), and the collection {N} ofztsflrstpartml derivatives is strictly compact in L (D)
forall ye(l,q), if a collection {g} is bounded in L'(D) and in L (D) forsome pe(1,2], where
q is defined in (15).

Finally, the collection {N} is locally o -Holder-equicontinuous in D with the given o, if a
collection {g} is bounded in L'(D) and in LY (D) for p>2.

Proof. Given zj, € D and 0 < R<dist(z),0D), N, =N, +Ngz with g, =g—gjand g =gy,
where y is the characteristic function of the disk D R(zoi. The first summand satisfies all de-
sired properties by Theorem 1, and the second one is a harmonic function in Dy(z,) (see, e.g.,
Theorem 3.1.2 in [12]). Thus, the first part follows. Under the proof of the rest part, the same
decomposition is applied. However, in the case we need the following 2 explicit estimates for
the second summand in a smaller disk D, (z,), r €(0, R),

29 gzd 2 de_ 18l
[Ny (22) =Ny, GDI<| [ = +j jm—zn
A
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and, since the function 7g, is analytic in D,(z,) and the function TgQ = E (for the real-va-
lued function g, ) is anti-analytic in ,.(z,), similarly,

dz | Am (R-r)?

1 ZfaTde _1 ligl

NG, (22) =Ny, (2ol < £ EREAE

A
Here, we denote, by N g, » ANY of the first partial derivatives of N g (see (11)):

9 2.9 .(a

0 .
P I a2

take relation (16) into account, and calculate the given integrals over the segment [z, zo| € D, (z,)
of the straight line going through z;, z, €D, (z).

3. On the solvability of quasilinear Poisson equations. In this section, we study the sol-
vability problem for quasilinear Poisson equations of the form AU =Af(U). The well-known
Leray—Schauder approach allows us to reduce the problem to the study of the corresponding
linear Poisson equation from the previous section.

Theorem 2. Let h:C — R be a function in the class L[’ (C) for p>1 with compact support.
Suppose that a function f:R — R is continuous and

m@:o. (18)

t—oo

Then there is a continuous function U :C — R in the class ng’cp (C) such that

AU(Z)=h(2)[U(2)) ae. (19)

and U = N4, where g :C — R is a function in L” whose support is in the support ofh and the up-
per bound of llgll, dependsonly on ||hl|, and on the functzon . Moreover, U € Wl 2(C) for some
q>2,andU is locally Holder-continuous. Furthermore Ue C HCywith a=(p-2)/p,if p>2.

In particular, U e C; L JX(C) forall o=(0,1),if A is bounded in Theorem 2.

Proof. If || 2 ll,=0or || S 1l.=0, then any constant function U in C gives the desired solution
of (19). Thus, we may assume that || &],%0 and || /||.#0. Set fe(s)=max|/(¢)], seR" :=[0, ).

<s
Then the function f, :R* - R" is continuous and nondecreasing. Moreover, fi(s)/s—0 as
s — o by (18).
By Theorem 1 in [8], we obtain a family of operators F(g;): Lj)(C) — L (C), L} (C) is the
subspace of I”(C) with supports in the support of #,

F(gt)=1h f(N,) Vte[01] (20)

which satisfies all groups of hypotheses H1-H3 of Theorem 1 in [13]. Indeed:

H1. First of all, F(g;t): L} (C) forall t€[0,1] and g€ L} (C), because, by Theorem 1 in [8],
the function f(N,) is contmuous and

1 F(g O, <IAll, f(MIIgl,)<e= VTe[01],
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where M is the constant from estimate (19) in [8]. Thus, by Theorem 1 from [8] in combination
with the Arzela—Ascoli theorem (see, e.g., Theorem 1V.6.7 in [14]), the operators F(g;t) are
completely continuous for every T €[0,1] and even uniformly continuous in the parameter t €[0,1].
H2. The index of the operator F(g;0) is obviously equal to 1.
H3. By Theorem 1 in [8], we have, for solutions of the equations g = F(g;1):

lgll, <llZll, £(MIgl,),
ie.,

f(MIIgII) 1
Migll, Mllhll

(21)

Hence, | g||, is bounded in the parameter t€[0,1] by condition (18).

Thus, by Theorem 1 in [13], there is a function ge L} (D) with F(g;1)=g, and, by Theo-
rem 1, the function U := N, gives the desired solution of (19)

Theorem 3. Let D beadomamm D, h:D—R bein r (D)NL! (D), p>1,andlet {:R—>R
satisfy the hypothesis of Theorem 2. Then there is a weak solution U: D — R of the quasilinear
Poisson equation (19) in the class C (D)lei)’Cq (D) for some q>2 which is locally Hoélder-con-
tinuousin D .

Proof. Let D, be an expanding sequence of domains in C with D_kc D, k=1,2,..., exhaus-

ting D, ie. U Dk =D. Let us extend & by zero outside of D . Set hy, = hyy,, where ¥, is a cha-

racteristic functlon of D, in C,and U, = =Ng, , where g, corresponds to #, by Theorem 2. Now,
by Corollary 1, the family of functions {N, } is Holder-equicontinuous on each D,,, m=1,2,....

Moreover, by Theorems 1 and 2, as well as by the Holder integral inequality, we have
1

1——
1Ny y <86 DN 8l g <7 P¥AAT Il (22)

for small enough € > 0 such that D, < D;, where the function ¥: R" — R depends only on f. Hence,
pr-1

foreach k=1,2, ..., thereisapoint z, € D, with| N, (z,)|<c=m P (|| All,)-IIn|&]l , /me?,
Sk L (ID)“_E)

because, by (22), the mean integral value of | N g (z3)| over the disk D, cannot be greater than
the given number ¢ . Combining the latter fact with Hélder-equicontinuity of the sequence

, k=1,2,...,oneach D,, m=12,..., we obtain also its boundedness. Thus, by the Arzela—
Ascoh theorem (see, e.g., Theorem IV6 7 in [14]), the family of functions {N, } is compact on
each D,,, m=1,2,.

Wlthout loss of generality, we may assume that p € (1, 2] . Then, by Corollary 1, the Newtonian
potential {N gk}’ m=1,2,..., is in the class W1’q for some g>2, and the family {Ng } is also
compact on each D, , m=1,2,... by the norm of L?. Consequently, the sequence {N, } is com-
pactoneach D,, m=12,. by any norm ||-|| of W' too (see, e.g., Theorem 2.5.1 in [15])

Next, let us apply the so-called diagonal process. Narnely, let U, k=1,2,..., be a subse-
quence of {N g that converges uniformly to a function U:D; — R by the norm ||-|| on the
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domain Dy. Of course, we may assume that || U,ED ~Ulle<1/k,as well as || Ug) -Ul|<1/k for
all k=1,2,.... Similarly, a subsequence U,ff) of US) with respect to the domain D, is defined.
Let us continue the process by induction and, finally, consider the diagonal subsequence
U, = U,(nm) ,m=1,2,... of the sequence N .

It is clear by the construction that Ukm |p converges to a function U:D— R locally uni-

formly and also in ngcq (D), g>2.Thus, Ue C(D)ﬁWlf)’Cq (D), and, consequently, U is locally
Hoélder-continuous in D . Moreover, U is a weak solution of Eq. (19) in the domain D . Indeed,
by (10) and the definition of generalized derivatives, we have that U,, satisfy the relations

[(VU,(2), Vy(@)) dm(2) + [hy(2) (U, ()W (2) dm(2)=0 Wy e CF (D).
D D

Passing to the limit as m — o, we obtain the desired conclusion.

This work was partially supported by grants of Ministry of Education and Science of Ukraine,
project number is 0119U100421.
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ITPO KBA3UITHIMHI PIBHAHHS [TIYACCOHA
B KOMILJIEKCHIM IIJIOIINHI

BuBueHo icHyBaHHS 1 peryssipHicTb po3B’st3kiB juist JiniiiHux piBHsHb Ilyaccona Buny AU(z)=g(z) B obOMme-
’keHuX obmactsix D xoMmiuiekcHoi miomunn C i3 3apsgaMu g B KIacax L1(D)ﬁl‘ﬁ>c(D) , p>1.3 Bukopuc-
tarHsM Tiaxony Jlepe—Illaynepa noBeneHo icHyBaHHS HelepepBHUX 3a leibiepoM po3B’s3kiB U B KJaci
“’lin(D) A4 KBasininiinux pisuanb Ilyaccona suny AU(z) = h(z)- f(U(z)) 3 h i3 TOrO caMoTO KJacy, 1o i
g, Ta HerepepBHUMU QYHKIIAMU [ :R — R TakuMu, 1o f(t)/t —>0 1pu ¢ — 0. OTpUMaHi pe3yasTaTi MO-
JKyTb OYTH 3aCTOCOBaHI 110 PISHOMAHTIHNX 3a/1a4 MATEMAaTHYHOT (hi3UKH.

Knrouoei crosa: meopis nomenyiany, keasininitini piensnus Ilyaccona, nanieniniini pieHAHHS, AHI30MPONHI Ma
HeoOHopioni cepedosuuya, Keasikongpopmii 6idobpasicens.
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O KBABUJIMHEMHBIX YPABHEHUSIX [TYACCOHA
B KOMIJIEKCHO IIJIOCKOCTU

Wsyyeno cymecTBoBaHKe U PEryIspPHOCTD PelleHni A1a tuHeiinux ypasHennit Ilyaccona suna AU(z) = g(z)
B OIPaHUYEHHBIX 00JAcTaX D KOMILTEKCHOM mtockoctu C ¢ 3apsyiaMu g B KJaccax L1(D)m Lﬁ) (D), p>1.
C npumenenuem nozaxoza Jepe—Illayznepa nokasaHo cyiecTBOBaHKe HEIIPEPBIBHBIX 10 [€nbaepy pemennii U B
KJracce WI(Z)'C?’(D) MUl KBasuauHelHbix ypasnenuii Ilyaccona suna AU(z)=h(z)- f(U(z)) ¢ h u3 TOro xe
KJlacca, UTO U g, U HelIPepPbIBHBIMU QYHKIMAMU f:R — R TakuMu, uTo f(¢)/t —0 1pu ¢ — . [lomyuen-
HbIE Pe3yJIbTaThl MOTYT ObITh IIPUMEHEHDI K Pa3/IYHBIM 33/[a4aM MaTeMaTHIeCKOi (hH3UKH.

Kmoueswie cnosa: meopus nomenyuaia, keasuiunetinvie ypasuenus Iyaccona, nonyrunetinole ypasuenus, ami-
somponivie u HeoOHOPOOHbLE CPEDbL, KBASUKOHMOPMHDIE OMOOPANCEHUSL.
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