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Abstract. Analytic function methods in the complex plane for plane
potential fields inspire searching analogous effective methods for solving
spatial and multidimensional problems of mathematical physics. Many
such methods are based on mappings of hypercomplex algebras.

An idea of an algebraic-analytic approach to elliptic equations of
mathematical physics means a finding of commutative Banach algebra
such that differentiable functions with values in this algebra have com-
ponents satisfying the given equation with partial derivatives. An use of
differentiable functions given in commutative Banach algebras combines
the preservation of basic properties of analytic functions of a complex
variable for the mentioned differentiable functions and the convenience
and the simplicity of construction of solutions of PDEs.

The paper contains the review of results reflecting the formation and
the development of the mentioned approach.

2010 MSC. 30G35, 35J05, 31A30.

Key words and phrases. Laplace equation, biharmonic equation,
axial-symmetric potential, Stokes flow function, commutative Banach
algebra, monogenic function, analytic function, Cauchy–Riemann condi-
tions, Cauchy integral theorem, Cauchy integral formula, Morera theo-
rem, Taylor expansion, Laurent expansion.

1. Introduction

Defining a stationary potential solenoid field in a simply connected
domain of the three-dimensional real space R3, the vector-function V
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satisfies the system of equations divV = 0 , rotV = 0 , that have the
following expanded form:

∂v1
∂x

+
∂v2
∂y

+
∂v3
∂z

= 0 ,

∂v3
∂y

− ∂v2
∂z

= 0 ,
∂v1
∂z

− ∂v3
∂x

= 0 ,
∂v2
∂x

− ∂v1
∂y

= 0 ,

(1.1)

where V := (v1, v2, v3) and vk := vk(x, y, z) for k = 1, 2, 3 are real scalar
functions of Cartesian coordinates x, y, z.

For a potential solenoid field there exists a scalar potential function

u(x, y, z) such that V = gradu :=
(
∂u
∂x ,

∂u
∂y ,

∂u
∂z

)
, and u satisfies the

three-dimensional Laplace equation

∆3u(x, y, z) :=

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u(x, y, z) = 0 . (1.2)

It is evident that in the case of plane field, where v3 ≡ 0 and the
functions v1, v2 do not depend on z, the system (1.1) turns into the clas-
sical Cauchy–Riemann conditions for components of complex potential
F (x + iy) = v1(x, y) + iv2(x, y) being an analytic function of complex
variable x+ iy. Moreover, every analytic function F (x+ iy) satisfies the
two-dimensional Laplace equation

(
∂2

∂x2
+

∂2

∂y2

)
F (x+ iy) ≡ F ′′(x+ iy) (12 + i2) = 0

due to the equality 12 + i2 = 0 for the unit 1 and the imaginary unit i
of the algebra of complex numbers.

Analytic function methods in the complex plane for plane potential
fields inspire searching analogous effective methods for solving spatial and
multidimensional problems of mathematical physics. Many such methods
are based on mappings of hypercomplex algebras.

2. Hypercomplex analysis: origination and initial

applications

2.1. A noncommutative algebra of quaternions

Apparently, W. Hamilton [22] made the first attempts to construct an
algebra associated with the three-dimensional Laplace equation (1.2) in
that sense that components of hypercomlex functions satisfy Eq. (1.2).

W. Hamilton [22] constructed a noncommutative algebra of quater-
nions with the basis {1, i, j, k} and the multiplication table

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j .
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Using the operator ∇ := i ∂∂x + j ∂∂y + k ∂
∂z , he rewrote Eqs. (1.1) in

an equivalent form ∇W (x, y, z) = 0 for the function W (x, y, z) :=
iv1(x, y, z) + jv2(x, y, z) + kv3(x, y, z) . In this case Eqs. (1.1) can be
considered as analogues of Cauchy – Riemann conditions for the function
W (x, y, z) taking values in the algebra of quaternions.

Gr. Moisil and N. Théodoresco [47], R. Fueter [7] considered gener-
alizations of system (1.1) for functions taking values in the algebra of
quaternions.

Nevertheless, in spite of convenience to write compactly many rela-
tions for potential fields in quaternion form, during a long time, the de-
velopment of applications of quaternion-valued functions was restrained
by undevelopment of methods for effective construction of such functions
as well as functions taking values in others noncommutative algebras.

Last decades, one can see the essential progress in the theory of
mappings of noncommutative algebras and their applications to prob-
lems of mathematical physics (see, e.g., the papers of A. Sudbery [99],
K. Gürlebeck and W. Spröessig [20], V. Kravchenko and M. Shapiro [32],
H. Leutwiler [36], J. Ryan [80], F. Colombo, I. Sabadini and D. Struppa [5]
and many other papers).

2.2. Description of low-dimensional commutative algebras

After Hamilton’s discovery of algebra of quaternions the active con-
structions of algebras of hypercomplex numbers began.

In particular, to describe linear associative algebras, B. Peirce [49]
has introduced concepts of nilpotent and idempotent elements and has
constructed multiplication tables for 163 algebras of dimensionality not
greater 6, but has considered not all three-dimensional and four-dimen-
sional algebras.

E. Study [98] has described all associative algebras with unit up to
the fourth dimension inclusive over the field of real or complex num-
bers. It follows from results of the paper [98] that there exist only 2
two-dimensional commutative associative algebras with unit 1 over the
complex field C (let us denote their by B0 and B) and 4 three-dimensional
algebras with the same properties (let us denote their by A1, A2, A3 and
A4). If one chooses nilpotent and idempotent elements generating these
algebras, then the multiplication tables will of the simplest form.

Let B0 be a semisimple algebra with idempotent elements in the basis
{I1,I2} and the multiplication table: I2

1 = I1, I2
2 = I2, I1I2 = 0.

Here 1 = I1 + I2.
The algebra B with the basis {1, ρ}, where ρ2 = 0, contains the one-

dimensional radical generated by the element ρ.
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Let A1 be a semisimple algebra with idempotent elements in the basis
{I1,I2,I3} and the multiplication table: I2

1 = I1, I2
2 = I2, I2

3 = I3,
I1I2 = I1I3 = I2I3 = 0. Here 1 = I1 + I2 + I3.

The algebras A2, A3 and A4 contain radicals.
Let A2 be an algebra with the basis {I1,I2, ρ} and the multiplication

table: I2
1 = I1, I2

2 = I2, I1I2 = 0, ρ2 = 0, I1ρ = 0, I2ρ = ρ. Here
1 = I1 + I2, and ρ belongs to the one-dimensional radical of algebra.

Algebras A3 and A4 have the basis {1, ρ1, ρ2}, where ρ1 and ρ2 belong
to the radicals of these algebras. The multiplication table in the algebra
A3 is of the form: ρ21 = ρ2, ρ

2
2 = 0, ρ1ρ2 = 0 , and the multiplication

table in the algebra A4 is of the form: ρ21 = ρ22 = ρ1ρ2 = 0 . Thus,
algebras A3 and A4 have the two-dimensional radicals.

C. Segre [82] considered commutative algebras of multicomplex num-
bers. Such algebras are constructed by an inductive way and have di-
mensions 2n as algebras over the real field R. In particular, the algebra
of bicomplex numbers (they are also called by the Segre quaternions)
has the dimension 4 over the field R and is isomorphic to the mentioned
algebra B0.

E. Cartan [4] proved that for any finite-dimensional associative alge-
bra with unit there exist a basis composed of nilpotent and idempotent
elements, and he specified the multiplication table for such a basis.

2.3. Attempts to use commutative algebras for constructions

of solutions of classical equations of mathematical physics

The first attempts to use commutative algebras for constructions of
solutions of three-dimensional Laplace equation gave often negative re-
sults.

Let A be a n-dimensional commutative associative Banach algebra
with unit 1 over either the field R or the field C, 3 ≤ n ≤ ∞ . Let
{e1, e2, e3} be a part of a basis of A and E3 := {ζ := xe1 + ye2 + ze3 :
x, y, z ∈ R} be the linear span generated by the vectors e1, e2, e3.

Let us use the same denotation Ω for a domain Ω ⊂ R3 and for the
domain in E3 that is congruent to the domain Ω.

A function Φ : Ω −→ A is analytic in a domain Ω ⊂ E3 if in a certain
neighborhood of every point ζ0 ∈ Ω it can be represented in the form
of the sum of convergent power series with coefficients belonging to the
algebra A.

H. A. v. Beckh-Widmanstetter [1] has proved that there does not exist
a three-dimensional commutative associative algebra with unit e1 = 1
over the field R such that all components of expansion of analytic function

Φ(xe1 + ye2 + ze3) = u1(x, y, z)e1 + u2(x, y, z)e2 + u3(x, y, z)e3
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with respect to the basis {e1, e2, e3} satisfy Eq. (1.2).
Nevertheless, P. W. Ketchum [26] used analytic functions with val-

ues in commutative algebras for a construction of solutions of three-
dimensional Laplace equation (1.2). He has shown that if linearly in-
dependent elements e1, e2, e3 ∈ A satisfy the condition

e21 + e22 + e23 = 0 , (2.1)

then every analytic function Φ(ζ) of the variable ζ = xe1 + ye2 + ze3
satisfies Eq. (1.2) due to the relations

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Φ(ζ) ≡ Φ′′(ζ) (e21 + e22 + e23) = 0 , (2.2)

where Φ′′ := (Φ′)′ and Φ′ is defined by the equality dΦ = Φ′(ζ)dζ as well
as in the paper of G. Scheffers [81].

P. W. Ketchum [26] called an algebra A harmonic if in A there exists
a triad of linearly independent vectors satisfying the equality (2.1). We
shall say that such a triad {e1, e2, e3} is also harmonic. Later I.P. Mel’ni-
chenko [42] added the requirement e2k 6= 0 for k = 1, 2, 3 to exclude from
a consideration trivial triads kind of e1 = 1, e2 = i and e3 = ρ, where
i2 = −1 and ρ2 = 0.

P. W. Ketchum [26] considered the mentioned Segre algebra of quater-
nions as an example of harmonic algebra. Indeed, in this algebra the
multiplication table for the basis {1, i, j, k} is of the following form:
i2 = j2 = −1, k2 = 1, i j = k, i k = −j, j k = −i. Therefore,
there are harmonic triads, in particular: e1 =

√
2, e2 = i, e3 = j.

At the same time, P. W. Ketchum [27] understood that it is impos-
sible to obtain all solutions of Eq. (1.2) in the form of components of
analytic functions taking values in a finite-dimensional commutative al-
gebra. In the paper [27] he considered an infinite-dimensional vector
space containing a harmonic triad. This vector space is not an algebra,
but P. W. Ketchum proved that a set of components of analytic func-
tions taking values in the mentioned space includes all analytic solutions
of Eq. (1.2). M. N. Roşculeţ [79] considered an other infinite-dimensional
vector space with a commutative multiplication for a part of its elements
and functions generating solutions of Eq. (1.2).

L. Sobrero [97] considered a four-dimensional commutative associative
algebra over the field R with the basis {1, j, j2, j3} and the multiplication
rule j4 = −1 − 2j2 that implies the equality (1 + j2)2 = 0 . Therefore,
every analytic function Φ(ζ) of the variable ζ = x + yj satisfies the
biharmonic equation because

(
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

)
Φ(ζ) ≡ Φ(4)(ζ) (1 + j2)2 = 0 .
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Note that the algebra considered in [97] is isomorphic to the mentioned
algebra B .

3. Differentiable functions in commutative Banach

algebras: theory and applications

3.1. Differentiability in the sense of Lorch and in the sense of

Gâteaux

It is clear that a characterization of functions satisfying the equalities
(2.2) has relation to a question: in what sense the derivative is understood
in the algebra A.

It is well-known that there exist various definitions of differentiable
functions given in algebras. Choosing a concept of differentiable function
and its derivative, it is natural to desire to combine the largest set of
functions satisfying the equalities (2.2) with the preservation of the basic
properties of analytic functions of a complex variable for functions of the
mentioned set.

Consider a function Φ: Ω −→ A given in a domain Ω ⊂ E3 and
properties of differentiability of such a function.

The concepts of Fréchet derivative and Gâteaux derivative are used
for mappings of linear normalized spaces. These derivatives are defined
as linear operators. In the considered case, they are linear operators from
E3 into A.

Formerly, for functions given in a domain of a finite-dimensional al-
gebra, G. Scheffers [81] considered a derivative, which is understood as a
function given in the same domain.

Generalizing such an approach to the case of mappings given in a do-
main of an arbitrary commutative associative Banach algebra, E.R. Lorch
[37] introduced a derivative, which is also understood as a function given
in the same domain.

A function Φ: Ω −→ A is called differentiable in the sense of Lorch
(cf. [37]) in a domain Ω ⊂ E3 if for every ζ ∈ Ω there exists an element
Φ′L(ζ) ∈ A such that for any ε > 0 there exists δ > 0 such that for all
h ∈ E3 with ‖h‖ < δ the following inequality fulfilled:

∥∥Φ(ζ + h)−Φ(ζ)− hΦ′L(ζ)
∥∥ ≤ ‖h‖ ε . (3.1)

Obviously, in the inequality (3.1) the Lorch derivative Φ′L(ζ) is a function
of the variable ζ, i.e., Φ′L : Ω −→ A .

At the same time, the mapping Bζ : E3 −→ A, which is defined by
the equality Bζh := hΦ′L(ζ), is a bounded linear operator. Therefore, a
function Φ, which is differentiable in the sense of Lorch in a domain Ω ,
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have the Fréchet derivative Bζ in every point ζ ∈ Ω (cf. [25, p. 115]). The
converse is not true, see an example in [25, p. 116].

Some properties similar to properties of analytic functions of a com-
plex variable are established for functions differentiable in the sense of
Lorch [37] in an arbitrary convex domain of commutative Banach alge-
bra. In particular, the integral Cauchy theorem and the integral Cauchy
formula, the Taylor expansion and the Morera theorem are proved in [37]
in such a way as for analytic functions of a complex variable. The con-
vexity of domain in the mentioned results from [37] is withdrawn by
E. K. Blum [2].

Using the Gâteaux differential, I. P. Mel’nichenko [40] suggested to
consider the Gâteaux derivative as a function Φ′G : Ω −→ A3 too.

We say that a function Φ: Ω −→ A is called differentiable in the sense
of Gâteaux in a domain Ω ⊂ E3 if for every ζ ∈ Ω there exists an element
Φ′G(ζ) ∈ A such that

lim
δ→0+0

(Φ(ζ + δh) − Φ(ζ)) δ−1 = hΦ′G(ζ) ∀h ∈ E3. (3.2)

Obviously, the Gâteaux derivative Φ′G(ζ) is a function of the variable ζ
and is a generalization of the classical directional derivative.

The left-hand side of equality (3.2) is called the Gâteaux differential
of function Φ. It is well-known, in a general case, the Gâteaux differential
may fail to be linear with respect to h. But, it is clear, if the Gâteaux
derivative Φ′G(ζ) exists, the Gâteaux differential (3.2) is a bounded linear
operator with respect to h. At the same time, the converse is not true as
the same example in [25, p. 116] shows.

It is evident, both the definition (3.1) of the Lorch derivative and the
definition (3.2) of the Gâteaux derivative take into account the existence
of noninvertible elements h in the algebra A because the division by ele-
ments of algebra is not used in them in contrast to the classical definition
of complex derivative for functions of a complex variable.

Obviously, if a function Φ is differentiable in the sense of Lorch in Ω,
then it is also differentiable in the sense of Gâteaux, and Φ′L(ζ) = Φ′G(ζ)
for all ζ ∈ Ω . The converse is clearly not true similarly to the fact that
the existence of all directional derivatives at a point does not guarantee
a strong differentiability (or even continuity) of function at that point.

For a simplicity, let us consider triads {e1, e2, e3} containing unit of
the algebra A, i.e., for instance, let us set e1 = 1. It follows evidently
from equality (3.2) that if a function Φ: Ω −→ A is differentiable in the
sense of Gâteaux in a domain Ω, then there exist all partial derivatives
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∂Φ/∂x , ∂Φ/∂y , ∂Φ/∂z and the following conditions are satisfied in Ω :

∂Φ

∂y
=
∂Φ

∂x
e2 ,

∂Φ

∂z
=
∂Φ

∂x
e3 . (3.3)

The converse statement is not true as it is well-known in classical
complex analysis because the existence of partial derivatives of a function
of a complex variable together with Cauchy–Riemann conditions is not
sufficient for the complex differentiability of this function.

In the case of finite-dimensional algebras the following statement is
proved in a similar way as the analogous theorem on differentiability of
functions of a complex variable: if the dimension n of algebra A is finite
and in the expansion

Φ(xe1 + ye2 + ze3) =

n∑

k=1

Uk(x, y, z) ek , (3.4)

of a function Φ : Ω −→ A with respect to the basis {e1, e2, . . . , en} of the
algebra A the functions Uk are R-differentiable in Ω, i.e.

Uk(x+∆x, y +∆y, z +∆z)− Uk(x, y, z)

=
∂Uk(x, y, z)

∂x
∆x+

∂Uk(x, y, z)

∂y
∆y +

∂Uk(x, y, z)

∂z
∆z

+ o
(√

(∆x)2 + (∆y)2 + (∆z)2
)
, (∆x)2 + (∆y)2 + (∆z)2 → 0 ,

and the conditions (3.3) are satisfied in Ω , then the function Φ is differ-
entiable in the sense of Lorch in Ω.

3.2. An algebraic-analytic approach to principal elliptic

equations of mathematical physics

I. P. Mel’nichenko [40] suggested to consider doubly differentiable in
the sense of Gâteaux functions in the equalities (2.2).

Indeed, taking consistently basic elements e1, e2, e3 as the vector h in
equalities of the form (3.2) which define the derivatives Φ′G(ζ) and Φ′′G(ζ),
we obtain the equalities

∂2Φ

∂x2
= e21 Φ

′′
G(ζ),

∂2Φ

∂y2
= e22 Φ

′′
G(ζ),

∂2Φ

∂z2
= e23 Φ

′′
G(ζ),

Therefore, ∆3Φ(ζ) ≡ Φ′′G(ζ) (e
2
1 + e22 + e23) , ζ = xe1 + ye2 + ze3 .

Thus, if the basic elements e1, e2, e3 satisfy the condition (2.1), then
every doubly differentiable in the sense of Gâteaux function Φ : Ω −→ A
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satisfies Eq. (1.2) in Ω. In turn, if there exists a doubly differentiable in
the sense of Gâteaux function Φ : Ω −→ A satisfying Eq. (1.2) and the
element Φ′′G(ζ) is invertible at least at one point ζ ∈ Ω, then in this case
the equality (2.1) holds.

I. P. Mel’nichenko [40] started to develop an algebraic-analytic ap-
proach to principal elliptic equations of mathematical physics. An idea
of such an approach means a finding of commutative associative Banach
algebra such that differentiable in the sense of Gâteaux functions with
values in this algebra have components satisfying the given equations
with partial derivatives.

Such algebras are found for the three-dimensional Laplace equation
(see I. P. Mel’nichenko [40,42]), the two-dimensional biharmonic equation
(see V. F. Kovalev and I. P. Mel’nichenko [30], I. P. Mel’nichenko [41]), the
generalized biharmonic equation (see V. F. Kovalev and I. P. Mel’nichen-
ko [31]) and elliptic equations degenerating on an axis that describe axial-
symmetric potential fields (see I. P. Mel’nichenko and S. A. Plaksa [43]).

Note that differentiable in the sense of Gâteaux functions taking val-
ues in a commutative Banach algebra form a functional algebra, i.e. a
very wide class of functions. Therefore, they can be simply constructed.
Thus, a relation between these functions and solutions of equations with
partial derivatives is important for constructing the mentioned solutions.

Let us note also that a priori the differentiability of a function in the
sense of Gâteaux is a restriction being weaker than the differentiability
of this function in the sense of Lorch.

In addition, differentiable in the sense of Lorch functions in commu-
tative Banach algebras over the field C can be constructed in the form
of principal extensions (see, e.g., [25, p. 165]) of analytic functions of a
complex variable in particular. If a complex function F is analytic in a
domain D ⊂ C, then for all ζ ∈ A for which the spectrum is located in
D, the principal extension of function F can be expressed by the equality

1

2πi

∫

Γζ

F (t) (t− ζ)−1 dt , (3.5)

where Γζ is an arbitrary closed rectifiable Jordan curve in D that em-
braces the spectrum of element ζ .

3.3. Three-dimensional harmonic algebras

K. S. Kunz [34] developed a method for a formal construction of
solutions of Eq. (1.2) with using power series in any harmonic algebra
over the field C. At the same time, he has emphasized that there does
not appear to be a suitable three-dimensional harmonic algebra.
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The problem on finding a three-dimensional harmonic algebra A with
unit was completely solved by I. P. Mel’nichenko [40,42,45]. In the paper
[40] I. P. Mel’nichenko established that there does not exist harmonic
bases {e1, e2, e3} with e1 = 1 in three-dimensional commutative algebras
over the field R, but he constructed a three-dimensional harmonic algebra
over the field C.

Theorem 3.1 (I. P. Mel’nichenko [40]). The commutative associative
algebra A is harmonic, if the multiplication table for the basis {e1, e2, e3}
is of the following form:

ek e1 = ek, k = 1, 2, 3;

e2 e2 = −1

2
e1 −

i

2
(sinω) e2 +

i

2
(cos ω) e3 ,

e2 e3 =
i

2
(cos ω) e2 +

i

2
(sinω) e3 ,

e3 e3 = −1

2
e1 +

i

2
(sinω) e2 −

i

2
(cos ω) e3 ,

where i is the imaginary complex unit and ω ∈ C.
If a function Φ : Ω → A is differentiable in the sense of Gâteaux in a

domain Ω ⊂ E3, then the components Uk, k = 1, 2, 3, of expansion (3.4)
with n = 3 generate the vectors V1 := (Re U1,−1

2 Re U2,−1
2 Re U3),

V2 := (Im U1,−1
2 Im U2,−1

2 Im U3) such that their coordinates satisfy
Eqs. (1.1).

To prove Theorem 3.1 I. P. Mel’nichenko as well as H. A. v. Beckh–
Widmanstetter [1] wrote out a system of algebraic equations for struc-
tured constants of algebra and showed that this system has only complex
solutions.

Later I. P. Mel’nichenko [42] has developed a more simple method of
the proof which is based on the description of all commutative associa-
tive algebras of a certain dimension, and the problem on finding a har-
monic algebra is concretized as the problem on finding harmonic bases
in concrete algebras. As a result, I. P. Mel’nichenko [42, 45] found all
three-dimensional harmonic algebras and developed a method for finding
all harmonic bases in these algebras.

Theorem 3.2 (I. P. Mel’nichenko [40]). There does not exist any har-
monic basis in a three-dimensional commutative algebra with unit over
the field R.

Theorem 3.3 (I. Mel’nichenko [42,45]). The algebra A4 is not harmonic.
The algebras A1, A2, A3 are harmonic.
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All harmonic bases in the algebras A1, A2, A3 are described (see [45]).
Note that in the semisimple algebra A1, in particular, there are the family
of harmonic bases constructed in Theorem 3.1.

3.4. Monogenic functions

Let us consider a concept of monogenic function Φ: Ω −→ A.
We say that a function Φ: Ω −→ A is monogenic in a domain Ω ⊂ E3

if Φ is continuous and differentiable in the sense of Gâteaux at every point
of Ω.

We use the notion of monogenic function in the sense of existence of
derived numbers for this function (cf. [21, 101]) in a combination to its
continuity.

In the scientific literature the denomination of monogenic function is
used else for functions given in non-commutative algebras and satisfying
certain conditions similar to the classical Cauchy–Riemann conditions
(see, e.g., [80]). The latter functions are also called regular functions
(see, e.g., [99]) or hyperholomorphic functions (see, e.g., [32]).

In the papers [55,59–62,65,70,75,76,83,94,95], we considered mono-
genic functions in harmonic algebras to prove for these functions ana-
logues of principal theorems of the analytic function theory in the com-
plex plane. We developed the following research scheme:

• at first, it is useful to obtain a constructive description of monogenic
functions by means of analytic functions of complex variables;

• hereupon, to show that monogenic functions have the continuous
Gâteaux derivatives of all orders and are differentiable in the sense
of Lorch as well;

• at last, to prove integral theorems and to obtain the Taylor and
Laurent expansions.

Some component parts of the mentioned research scheme are developed
by I. P. Mel’nichenko and S. A. Plaksa (see [43, 45, 55]) for monogenic
functions in an infinite-dimensional algebra associated with axial sym-
metric potential fields and by I. P. Mel’nichenko and V. F. Kovalev (see
[29,30]), S. V. Grishchuk and S. A. Plaksa (see [12,14,55,59]) for mono-
genic functions in the algebra associated with the biharmonic equation.
V. S. Shpakivskyi [84–86] has extended such a scheme to the case of
monogenic functions in an arbitrary finite-dimensional commutative as-
sociative algebra.

Let us to outline a way to get constructive descriptions of monogenic
functions by means of analytic functions of complex variables.
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In the theory of commutative Banach algebras there is the following
fundamental fact (see, e.g., [25, p. 145]): for any commutative Banach
algebra A with unit over the complex field C and for any maximal ideal
I of the algebra A, the quotient algebra A/I is isomorphic to C.

Let f : A −→ C be the linear multiplicative functional such that I is
its kernel and f(1) = 1 (see, e.g., [25, p. 146]).

The initial point of the mentioned way is the following statement: if
for a monogenic function Φ: Ω −→ A the domain Ω is convex “in the
direction” of a maximal ideal I and ζ1 − ζ2 ∈ I, then the difference
Φ(ζ1)− Φ(ζ2) belongs to to the same ideal.

Hereupon, we can define the linear operator A which assigns the func-
tion F : D −→ C to a monogenic function Φ : Ω −→ A by the formula
F (f(ζ)) := f(Φ(ζ)) for all ζ ∈ Ω. The function F is given in the domain
D := f(Ω), where f(Ω) is the image of Ω under the mapping f . More-
over, F is an analytic function in D due to Ju.Ju. Trokhimchuk Theorem
21 in [101].

Considering a generalized inverse operator A(−1) which satisfies the
equality AA(−1)A = A, one can make sure that values of the monogenic
function Φ−A(−1)AΦ belong to the ideal I for every monogenic function
Φ : Ω −→ A.

Finally, in the case of an arbitrary finite-dimensional commutative
associative algebra A, it is possible to integrate the conditions (3.3) for a
monogenic function Φ : Ω −→ I and to describe all monogenic functions
taking values in the ideal I by means of analytic functions of complex
variables due to G. Tolstoff result in [100].

3.5. Monogenic functions in three-dimensional harmonic

algebras

For the first time, the mentioned research scheme was realized in the
papers [55,59,70,83,94,95] for monogenic functions in a three-dimensional
harmonic algebra A3 with two-dimensional radical.

Let A = A3, and, for a simplicity, consider a concrete harmonic basis
in A3, viz., e1 = 1, e2 = i+ρ2, e3 = (1−i)ρ1. In this case, all noninvertible
elements in E3 are located on the axis Oz and belong to the radical which
is the unique maximal ideal in the algebra A3 .

We say that a domain Ω ⊂ R3 is convex in the direction of straight
line L if Ω contains each segment that connects two points (x1, y1, z1),
(x2, y2, z2) ∈ Ω and is parallel to L.

A constructive description of monogenic functions taking values in
the algebra A3 by means of analytic functions of a complex variable is
obtained in the paper [70]:
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Theorem 3.4. If a domain Ω is convex in the direction of axis Oz,
then for any monogenic function Φ : Ω −→ A3 there exists such a triad
of complex functions F , F1, F2 analytic in the domain D = {x + iy :
xe1 + ye2 + ze3 ∈ Ω} that Φ can be expressed in the form:

Φ(ζ) = F (ξ) +
(
(1− i)zF ′(ξ) + F1(ξ)

)
ρ1

+
(
yF ′(ξ)− iz2F ′′(ξ) + (1− i)zF ′1(ξ) + F2(ξ)

)
ρ2 ,

ξ = x+ iy , ∀ ζ = xe1 + ye2 + ze3 ∈ Ω . (3.6)

Note that the condition of convexity of Ω in the direction of axis
Oz is essential for the truth of Theorem 3.4 as it is shown by means of
construction of an example (see [55, 59, 70]).

Equality (3.6) can be rewritten in the following form (see [55])

Φ(ζ) =
1

2πi

∫

Γζ

(
F (t) + ρ1F1(t) + ρ2F2(t)

)
(t− ζ)−1dt ∀ζ ∈ Ω , (3.7)

where Γζ is an arbitrary closed Jordan rectifiable curve in D, which is
homotopic to the point ξ and embraces this point, i.e. Φ is expressed via
the principal extensions of analytic functions F , F1, F2 into the domain
Ω .

It follows from equality (3.7) that the function Φ is differentiable in
the sense of Lorch in Ω. Using equality (3.7), we obtain the following ex-
pression for the Lorch n-th derivative, which coincides with the Gateaux
n-th derivative:

Φ(n)(ζ) =
n!

2πi

∫

Γζ

(
F (t) + ρ1F1(t) + ρ2F2(t)

)(
(t− ζ)−1

)n+1
dt ∀ζ ∈ Ω .

(3.8)

Let us note that in the case of monogenic function Φ : Ω −→ A3

given in an arbitrary domain Ω, equalities (3.6)–(3.8) are fulfilled at least
locally, i.e., in a neighborhood of each point ζ ∈ Ω .

Thus, every monogenic function Φ : Ω −→ A3 satisfies equalities (2.2)
in Ω . Moreover, it follows from equality (3.6) that its components Uk,
k = 1, 2, 3, of expansion (3.4) with n = 3 are R-differentiable in Ω .

In the papers [55, 83, 94, 95], for monogenic functions Φ : Ω −→ A3

given in an arbitrary domain Ω, we established basic properties analogous
to properties of analytic functions of a complex variable: the Cauchy in-
tegral theorem and integral formula, the Morera theorem, the uniqueness
theorem, the Taylor expansions.
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In contrast to similar results in the papers E. R. Lorch [37] and
E. K. Blum [2], monogenic functions Φ : Ω −→ A3 are given only in
a domain Ω of the linear span E3 instead of domain of whole algebra.

The proof of the following statement comprising the integral Cauchy
formula for monogenic functions Φ : Ω −→ A3 can be found in the papers
[55, 94, 95]:

Theorem 3.5. Let Ω be a domain convex in the direction of axis Oz
and Φ : Ω −→ A3 be a monogenic function in Ω. Then for every point
ζ0 ∈ Ω the following equality is true:

Φ(ζ0) =
1

2πi

∫

γζ

Φ(ζ) (ζ − ζ0)
−1 dζ,

where γζ is an arbitrary closed Jordan rectifiable curve in Ω, which
around once the straight line {ζ0 + ze3 : z ∈ R} and is homotopic to
the point ζ0.

Note that the integral Cauchy formula established in the papers [2,37]
is not applicable to a monogenic function Φ : Ω −→ A3 because it deals
with an integration along a curve on which the function Φ is not given,
generally speaking.

The following theorem giving different equivalent definitions of mono-
genic functions is true (cf. [55, 95]):

Theorem 3.6. A function Φ : Ω → A3 is monogenic in an arbitrary
domain Ω if and only if one of the following conditions is satisfied:

(I) the components Uk, k = 1, 2, 3, of expansion (3.4) with n = 3 are
R-differentiable and the conditions (3.3) are satisfied in the domain Ω;

(II) in every ball 0 ⊂ Ω the function Φ is expressed in the form (3.6),
where the triad of analytic in the domain f(0) functions F , F1, F2 is
unique;

(III) the function Φ is continuous in Ω and satisfies the equality
∫

∂△

Φ(ζ)dζ = 0

for every triangle △ ⊂ Ω that is understood as a plane figure bounded by
three line segments connecting three its vertices, and ∂△ is the boundary
of triangle △ in relative topology of its plane;

(IV) the function Φ is analytic in Ω, i.e. for every ζ0 ∈ Ω there exists
a neighborhood, in which the function Φ is expressed as the sum of power
series

Φ(ζ) =

∞∑

k=0

ck (ζ − ζ0)
k, ck ∈ A3 .
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In the paper [57], we show that any function Φ : Ω −→ A3 which are
differentiable in the sense of Gâteaux and locally bounded in Ω is also
monogenic in Ω .

Let us write down constructive descriptions of monogenic functions
taking values in either the algebra A1 or the algebra A2.

For a simplicity, consider a concrete harmonic basis in A2, viz., e1 = 1,
e2 = iI1 + ρ, e3 = iI2. In this case, all noninvertible elements in E3 are
located on the axes Oy and Oz.

Consider also a concrete harmonic basis in A1, viz., e1 = 1, e2 = iI1+√
2
2 iI3 , e3 = iI2 −

√
2
2 iI3 . In this case, all noninvertible elements in E3

are located on the axes Oy, Oz and on the straight line L := {t(e2+e3) :
t ∈ R} .

Denote D1 := {x + iy : xe1 + ye2 + ze3 ∈ Ω}, D2 := {x + iz :

xe1 + ye2 + ze3 ∈ Ω}, D3 := {x+
√
2
2 i(y − z) : xe1 + ye2 + ze3 ∈ Ω} .

Now, we can formulate the following theorems similar to Theorem 3.4:

Theorem 3.7 ( [76]). Let A = A1 and a domain Ω ⊂ E3 be convex in
the directions of axes Oy, Oz and straight line L. Then every monogenic
function Φ : Ω −→ A1 can be expressed in the form

Φ(ζ) = F1(ξ1)I1 + F2(ξ2)I2 + F3(ξ3)I3 ∀ ζ = xe1 + ye2 + ze3 ∈ Ω ,

where Fk is an analytic function in the domain Dk for k = 1, 2, 3 and

ξ1 = x+ iy, ξ2 = x+ iz, ξ3 = x+
√
2
2 i(y − z) .

Theorem 3.8 ( [60]). Let A = A2 and a domain Ω ⊂ E3 be convex
in the directions of axes Oy and Oz. Then every monogenic function
Φ : Ω −→ A2 can be expressed in the form

Φ(ζ) = F1(ξ1)I1 + F2(ξ2)I2
+
(
yF ′2(ξ2) + F0(ξ2)

)
ρ ∀ ζ = xe1 + ye2 + ze3 ∈ Ω ,

where F1 is an analytic function in the domain D1 and F2, F0 are analytic
functions in the domain D2, and ξ1 = x+ iy, ξ2 = x+ iz .

The mentioned way to get constructive descriptions of monogenic
functions by means of analytic functions of complex variables in The-
orems 3.7 and 3.8 is implemented. At the same time, let us note that
on such a way it is impossible to use the principal extensions of ana-
lytic functions of a complex variable just as it was made earlier in the
papers [12, 55, 59, 70] for monogenic functions taking values in algebras
which contain the unique maximal ideal. Nevertheless, it is possible to
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construct in explicit form operators which assign monogenic functions in
the given domain Ω to complex analytic functions (see [60, 61, 76]).

Theorems 3.4, 3.7 and 3.8 are basic for the proof of analogues of the
classical Gauss–Ostrogradskii and Stokes formulas as well as Cauchy in-
tegral theorems for both surface and curvilinear integrals. Such theorems
are proved in the papers [55, 94, 95] for functions taking values in the al-
gebra A3, but, as it follows from their proof, they are true for monogenic
functions in any three-dimensional harmonic algebra.

The Laurent expansions of monogenic functions taking values in the
algebra A3 are obtained and singularities of these functions are classified
by V. S. Shpakivskyi [83]. In particular, it is shown that an isolated
singular point of monogenic function can be only removable. In the case
where a function has a unremovable singularity at the point ζ0, all points
of the line {ζ0 + ze3 : z ∈ R} are singular. The Taylor and Laurent
expansions of monogenic functions taking values in the algebra A2 are
obtained by R. P. Pukhtaievych [75].

We computed the logarithmic residue for monogenic functions taking
values in either the algebra A3 in [71] or the algebra A2 in [77]. It is shown
that the logarithmic residue depends not only on zero points and singular
points of a function but also on the points at which the function takes
values in the ideals of algebra. Some earlier similar result was obtained in
[13] for monogenic functions taking values in the two-dimensional algebra
B mentioned above.

In the papers [63,64] we established sufficient conditions for the exis-
tence of limiting values of an analog of the Cauchy type integral taking
values in the algebra A3.

3.6. Monogenic functions in finite-dimensional commutative

associative algebras

Using the multiplication table proposed by E. Cartan [4] for a basis
in any finite-dimensional associative algebra with unit, V. S. Shpakiv-
skyi [84–86] has developed a scheme of research to the case of monogenic
functions taking values in finite-dimensional commutative algebras. In
the papers [84, 85] he obtained constructive descriptions of monogenic
functions taking values in an arbitrary finite-dimensional commutative
algebra by means of analytic functions of a complex variable. These
result generalizes Theorems 3.4, 3.7 and 3.8 as well as corresponding re-
sults from the papers [62, 65] and summarizes all results on constructive
descriptions of analytic functions in concrete finite-dimensional commu-
tative algebras that were begun by F. Ringleb [78], who obtained such
a description for analytic functions of a bicomplex variable. For the
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mentioned monogenic functions V. S. Shpakivskyi [86] proved curvilinear
analogues of the Cauchy integral theorem, the Morera theorem and the
Cauchy integral formula.

V. S. Shpakivskyi and T. S. Kuzmenko [35,91–93] used the mentioned
research scheme in a noncommutative algebra of complex quaternions.
They defined classes of quaternion mappings having properties similar to
properties of monogenic functions in commutative algebras.

In [67], we proved an analogue of the Cauchy integral theorem for
a surface integral of hyperholomorphic functions given in three-dimen-
sional domains with non piece-smooth boundaries and taking values in
an arbitrary finite-dimensional commutative associative Banach algebra.
Note that monogenic functions in harmonic algebras form a subset of
hyperholomorphic functions considered in [67]. Similar analogue of the
Cauchy integral theorem is proved by O. F. Herus [24] for hyperholomor-
phic functions given in a noncommutative algebra of quaternions.

Studying characteristic properties of monogenic functions facilitates
to developing hypercomplex methods for solving problems of mathemat-
ical physics. V. S. Shpakivskyi [87–90] has shown that for the construc-
tion of solutions of linear PDEs with constant coefficients in the form
of components of monogenic functions with values in finite-dimensional
commutative associative algebras, it is sufficient to use monogenic func-
tions in algebras of a special form, where all idempotents are substituted
by unit. He proposed a procedure for the construction of an infinite fam-
ily of solutions by means of monogenic functions given in a sequence of
concrete algebras. The proposed method is used to construct solutions
of some equations of mathematical physics.

Some examples of the application of differentiable in the sense of
Gâteau functions to PDEs with several variables are considered by A. Po-
gorui, R. M. Rodriguez-Dagnino and M. Shapiro [72].

An interest in the study of functions given in commutative algebras of
hypercomplex numbers is increased in recent years due to advantages of
commutativity together with possibilities of various applications. Some
algebraic, geometric and analytic aspects of theory of hypercomplex num-
bers are studied in monographs of G. B. Price [74], D. Boccaletti et al. [3],
M. E. Luna-Elizarrarás et al. [38]. V. V. Kisil [28] proposed to classify
different analytic function theories in relation to underlying symmetries.

3.7. Monogenic functions in a biharmonic algebra and BVPs

for biharmonic functions

An associative commutative two-dimensional algebra with unit over
the complex field is called biharmonic (see V. F. Kovalev and I. P. Mel’ni-
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chenko [30]) if in this algebra there exists a biharmonic basis {e1, e2}
satisfying the conditions

(e21 + e22)
2 = 0, e21 + e22 6= 0 . (3.9)

V. F. Kovalev and I. P. Mel’nichenko [30] found a multiplication table
for a biharmonic basis {e1, e2}: e1 = 1, e22 = e1 + 2ie2 .

I. P. Mel’nichenko [41] proved that there exists the unique biharmonic
algebra B mentioned above, and he found all biharmonic bases in B. Note
that the algebra B is isomorphic to four-dimensional over the real field
algebras considered by L. Sobrero [97] and A. Douglis [6].

Consider a biharmonic plane µe1,e2 := {ζ = x e1 + y e2 : x, y ∈ R} .
Let G be a domain in the plane µe1,e2 . Inasmuch as divisors of zero do not
belong to the plane µe1,e2 , the Gâteaux derivative of function Φ : G −→ B
coincides with the derivative

Φ′(ζ) := lim
h→0, h∈µe1,e2

(
Φ(ζ + h)− Φ(ζ)

)
h−1 .

Therefore, a function Φ : G −→ B is monogenic in a domain G if the
derivative Φ′(ζ) exists at every point ζ ∈ G.

Let us use the same denotation G for a domain G ⊂ R2 and for the
domains in µe1,e2 and C that are congruent to the domain G.

Any function Φ: G −→ B has an expansion

Φ(ζ) = U1(x, y) e1 + U2(x, y) ie1 + U3(x, y) e2 + U4(x, y) ie2 , (3.10)

where U1, U2, U3, U4 are real-valued functions.
V. F. Kovalev and I. P. Mel’nichenko [30] established that a function

Φ : G −→ B is monogenic in a domain G if and only if the components
Ul : G −→ R, l = 1, 2, 3, 4, in expansion (3.10) are R-differentiable in G
and the following Cauchy–Riemann condition is satisfied:

∂Φ(ζ)

∂y
=
∂Φ(ζ)

∂x
e2 .

Furthermore, for principal extension (3.5) of analytic function F :
G −→ C into the congruent domain of biharmonic plane µe1,e2 an expan-
sion with respect to the biharmonic basis {e1, e2} is obtained by V. F. Ko-
valev and I. P. Mel’nichenko [30].

Moreover, every monogenic function Φ: G −→ B is expressed via
two corresponding analytic functions F : G −→ C, F0 : G −→ C of the
complex variable z = x+ iy in the form (cf. [12, 55, 59]):

Φ(ζ) = F (z)e1 −
(
iy

2
F ′(z)− F0(z)

)
ρ ∀ ζ = x e1 + y e2 ∈ G . (3.11)
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V. F. Kovalev [29] obtained equality (3.11) under additional assumptions
on the geometry of domain G . The equality (3.11) establishes one-to-one
correspondence between monogenic functions Φ and pairs of complex-
valued analytic functions F , F0.

Therefore, every monogenic function Φ: G −→ B has the derivative
of any order in G (cf. [12, 55, 59]) and satisfies the equalities

(
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4

)
Φ(ζ) = Φ(4)(ζ) (e21 + e22)

2 = 0

for all ζ = x e1 + y e2 ∈ G due to conditions (3.9).
Now, one can state that all components Ul, l = 1, 2, 3, 4, in expansion

(3.10) of any monogenic function Φ: G −→ B are biharmonic functions
(cf. [12, 55, 59]), i.e., satisfy the biharmonic equation in G:

∂4U(x, y)

∂x4
+ 2

∂4U(x, y)

∂x2∂y2
+
∂4U(x, y)

∂y4
= 0 .

At the same time, every biharmonic in a simply connected domain G
function U(x, y) is the first component U1 ≡ U in expression (3.10) of
a certain function Φ: G −→ B monogenic in G and, moreover, all such
functions Φ are found in an explicit form (see [12, 55, 59]).

S. V. Gryshchuk [10] established similar relations between solutions
of the generalized biharmonic equation and monogenic functions taking
values in the semisimple algebra B0 mentioned above.

In the papers [14, 55], for monogenic functions taking values in the
algebra B, we established basic properties analogous to properties of an-
alytic functions of a complex variable: the Cauchy integral theorem and
integral formula, the Morera theorem, the uniqueness theorem, the Tay-
lor and Laurent expansions. Thus, we proved a theorem (see [14, 55])
which is similar to Theorem 3.6 and gives different equivalent definitions
of monogenic functions in the biharmonic plane.

It is well-known that a technique of using of analytic functions of a
complex variable for solving biharmonic BVPs is based on an expression
of biharmonic functions by the Goursat formula (cf., e.g., [48, 96]). This
expression allows to reduce the biharmonic problems to certain BVPs for
analytic functions. Further, expressing analytic functions via the Cauchy
type integrals, one can obtain a system of integro-differential equations in
the general case. In the case where the boundary is a Lyapunov curve, the
mentioned system is reduced to a system of Fredholm equations. Such
a scheme is developed for solving BVPs of the plane elasticity theory
with using a special biharmonic function which is called the Airy stress
function (cf., e.g., [46, 48]).
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To develop new methods for effective solving BVPs of the plane elas-
ticity theory, one can use relations of biharmonic functions with mono-
genic functions in the algebra B.

Consider the following boundary value problem: to find a monogenic
function Φ: G −→ B when limiting values of two components of expan-
sion (3.10) are given on the boundary ∂G, i.e. the following boundary
conditions are satisfied:

Uk(x, y) = uk(x, y) , Um(x, y) = um(x, y) ∀ (x, y) ∈ ∂G

for 1 ≤ k < m ≤ 4, where uk and um are given functions.

This problem was posed by V. F. Kovalev [29]. He named such a prob-
lem as biharmonic Schwarz problem due to its analogy with the classical
Schwarz problem on finding an analytic function of a complex variable
when values of its real part are given on the boundary of domain.

We call such a problem by (k-m)-problem. V. F. Kovalev [29] estab-
lished that all (k-m)-problems are reduced to the main three problems:
(1-2)-problem or (1-3)-problem or (1-4)-problem.

V. F. Kovalev [29] shown that the main biharmonic problem (cf., e.g.,
[96, p. 194] and [46, p. 13]) on finding a biharmonic function U : G −→ R
with given limiting values of its partial derivatives ∂U/∂x and ∂U/∂y on
the boundary ∂G can be reduced to the (1-3)-problem (see also [15,16]).

S. V. Gryshchuk [8] investigated a relation between (1-4)-problem and
BVPs of the plane elasticity theory. He considered a problem on finding
an elastic equilibrium for isotropic body occupying G with given limiting
values of partial derivatives ∂u/∂x , ∂v/∂y for displacements u = u(x, y) ,
v = v(x, y) on the boundary ∂G. It is shown in [8] that such a problem
is reduced to (1-4)-problem (see also [18, 19]).

V. F. Kovalev [29] solved (1-4)-problem for a half-plane in an explicit
form under some natural conditions on the given functions. Further, using
equality (3.11) and a conformal mapping of a domain G onto a half-plane
and (1-4)-problem as an auxiliary problem, he reduced (1-2)-problem and
(1-3)-problem to integro-differential equations. Note that V. F. Kovalev
[29] stated only a sketch of solving of biharmonic Schwarz problems and
did not investigate conditions of solvability of these problems.

In the papers [8, 9, 15–19], for solving biharmonic Schwarz problems,
we developed methods which are based on expressions of solutions by
hypercomplex integrals analogous to the classical Schwarz and Cauchy
type integrals.

In [15], we investigated (1-3)-problem for the case where G is either
a half-plane or a unit disk in the biharmonic plane and found solutions
in explicit forms with using of some integrals analogous to the classical
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Schwarz integral. In [9, 16], using a hypercomplex analog of the Cauchy
type integral, we reduced the (1-3)-problem to a system of integral equa-
tions and established sufficient conditions under which this system has
the Fredholm property. It was made for the case where the boundary of
domain belongs to a class being wider than the class of Lyapunov curves
that was usually required in the plane elasticity theory (cf., e.g., [46,48]).
The similar is done for the (1-4)-problem in [17,18]. Obtained results are
mostly analogous to appropriate results in [15,16] dealing with the (1-3)-
problem, but in contradistinction to the (1-3)-problem, which is solvable
in a general case if and only if a certain natural condition is satisfied, the
(1-4)-problem is solvable unconditionally.

4. Monogenic functions in infinite-dimensional vector

spaces with commutative multiplication

4.1. Infinite-dimensional vector spaces associated with

the three-dimensional Laplace equation

It is impossible to obtain all solutions of Eq. (1.2) in the form of
components of monogenic functions taking values in a finite-dimensional
commutative algebra (see, e.g., [27, 34, 45, 55]). In particular, for such
an algebra there exist spherical functions which are not components of
specified hypercomplex monogenic functions.

Consider an infinite-dimensional commutative associative Banach al-

gebra F := {g =
∞∑
k=1

ckek : ck ∈ R,
∞∑
k=1

|ck| <∞} over the field R with the

norm ‖g‖F :=
∞∑
k=1

|ck| and the basis {ek}∞k=1, where the multiplication

table for elements of basis is of the following form (cf. [45, 55]):

ene1 = en, e2n+1e2n =
1

2
e4n ∀n ≥ 1 ,

e2n+1e2m =
1

2

(
e2n+2m − (−1)me2n−2m

)
∀n > m ≥ 1 ,

e2n+1e2m =
1

2

(
e2n+2m + (−1)ne2m−2n

)
∀m > n ≥ 1 ,

e2n+1e2m+1 =
1

2

(
e2n+2m+1 + (−1)me2n−2m+1

)
∀n ≥ m ≥ 1 ,

e2ne2m =
1

2

(
−e2n+2m+1 + (−1)me2n−2m+1

)
∀n ≥ m ≥ 1 .

It is evident that e1, e2, e3 form a harmonic triad of vectors.
The following theorem is proved in [55]:
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Theorem 4.1. Let a function Φ : Ω −→ F be continuous in a domain
Ω ⊂ E3 and the functions Uk : Ω −→ R from the expansion

Φ(xe1 + ye2 + ze3) =

∞∑

k=1

Uk(x, y, z) ek , (4.1)

be R-differentiable in Ω. In order that the function Φ be monogenic in
Ω, it is necessary and sufficient that the conditions (3.3) be satisfied and
the following relations be fulfilled in Ω:

∞∑

k=1

∣∣∣∣
∂Uk(x, y, z)

∂x

∣∣∣∣ <∞, (4.2)

lim
ε→0+0

∞∑

k=1

∣∣∣∣ Uk(x+ εh1, y + εh2, z + εh3)− Uk(x, y, z)

− ∂Uk(x, y, z)

∂x
εh1 −

∂Uk(x, y, z)

∂y
εh2

− ∂Uk(x, y, z)

∂z
εh3

∣∣∣∣ ε−1 = 0 ∀h1, h2, h3 ∈ R . (4.3)

Note that the relations (4.2), (4.3) are conditioned by the infinite
dimensionality of the algebra F.

In the papers [45, 55] we established that any spherical function of
order n is a component of the monogenic function Φ(ζ) = aζn, where
ζ = xe1 + ye2 + ze3 and the coefficient a ∈ F is found explicitly.

In [66], we inserted the algebra F in the topological vector space F̃ :=

{g =
∞∑
k=1

ckek : ck ∈ R} with the topology of coordinate-wise convergence.

For functions taking values in F̃, the formulation of statement similar
to Theorem 4.2 can be simplified (see [66]):

Theorem 4.2. Let in the expansion (4.1) of a function Φ : Ω −→ F̃
the functions Uk : Ω −→ R be R-differentiable in Ω. In order that the
function Φ be monogenic in Ω, it is necessary and sufficient that the
conditions (3.3) be satisfied in Ω.

The relation between monogenic functions taking values in F̃ and
solutions of the three-dimensional Laplace equation is established in the
following statement (cf. [66] as well as Theorem 1.20 in [55]):

Theorem 4.3. For every doubly continuously differentiable function u :
Ω −→ R which satisfies Eq. (1.2) in a simply connected domain Ω ⊂
R3 there exists a monogenic function Φ : Ω −→ F̃ such that the first
component of expansion (4.1) is U1 ≡ u.
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In [66] we considered also monogenic functions taking values in a topo-
logical vector space G̃ being an expansion of another infinite-dimensional
commutative Banach algebra associated with the three-dimensional Lap-
lace equation. For monogenic functions Φ : Ω −→ G̃ we established
results similar to Theorems 4.2 and 4.3. And also, we described relations
between monogenic functions taking values in either the space F̃ or the
space G̃ and solutions of system (1.1).

Essentially, P. W. Ketchum [27] considered the space F̃ and M. N. Roş-
culeţ [79] considered the space G̃ though they did not use the notion of
topological vector space as well as the differentiability in the sense of
Gâteaux.

In the paper [68] we construct explicitly principal extensions (3.5) of
analytic functions of a complex variable into a complexification FC of the
algebra F. And also, we proved that any monogenic function Φ : Ω −→ F̃C

taking values in a complexification F̃C of the space F̃ can be extended to
a monogenic function given in a certain domain of the greater dimension
than the domain Ω ⊂ E3.

In [69] we proved integral theorems for monogenic functions taking
values in either the algebra FC or the topological vector space F̃C.

4.2. An infinite-dimensional vector space associated with

axial-symmetric potential fields

In the case where a spatial potential field is symmetric with respect
to the axis Ox, a potential function u(x, y, z) satisfying Eq. (1.2) is
also symmetric with respect to the axis Ox, i.e. u(x, y, z) = ϕ(x, r) =
ϕ(x,−r), where r :=

√
y2 + z2, and ϕ is known as the axial-symmetric

potential. Then in a meridian plane xOr there exists a function ψ(x, r)
known as the Stokes flow function such that the functions ϕ and ψ satisfy
the following system of equations degenerating on the axis Ox:

r
∂ϕ(x, r)

∂x
=
∂ψ(x, r)

∂r
, r

∂ϕ(x, r)

∂r
= −∂ψ(x, r)

∂x
. (4.4)

Let HC := {a =
∞∑
k=1

akek : ak ∈ C,
∞∑
k=1

|ak| < ∞} be a commutative

associative Banach algebra over the complex field with the norm ‖a‖HC
:=

∞∑
k=1

|ak| and the following multiplication table for elements of the basis

{ek}∞k=1:

ene1 = en, emen =
1

2

(
em+n−1 + (−1)n−1em−n+1

)
∀ m ≥ n ≥ 1

that was offered by I. P. Mel’nichenko (cf., e.g., [43, 45]).
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The set I :=
{
g ∈ HC :

∞∑
k=1

(−1)k(Re c2k−1 − Im c2k) = 0,

∞∑
k=1

(−1)k(Re c2k + Im c2k−1) = 0
}

is a maximal ideal of the algebra HC.

Consider the plane µe1,e2 := {ζ = xe1 + re2 : x, r ∈ R}. We use the
denotation G for congruent domains in R2, µe1,e2 and C.

A continuous function Φ : G −→ HC is monogenic in a domain G if
for every ζ ∈ G there exists an element Φ′(ζ) ∈ HC such that the equality
(3.2) is fulfilled for all h ∈ µe1,e2 . A theorem similar to Theorem 4.1 is
true for functions Φ : G −→ HC (see [55]).

In what follows, a domain G of a meridian plane xOr is symmetric
with respect to the axis Ox.

Theorem 4.4 ( [43, 45]). If a domain G of a meridian plane xOr is
symmetric with respect to the axis Ox and convex in the direction of axis
Or, then every monogenic function Φ : G −→ HC can be expressed in the
form

Φ(ζ) =
1

2πi

∫

Γζ

(AΦ)(t)(te1 − ζ)−1 dt+Φ0(ζ) ∀ ζ = xe1 + re2 ∈ G ,

where Φ0 : G −→ I is a monogenic function taking values in the ideal I.

In the papers [43, 45], for every function F : G −→ C analytic in
such a domain of the complex plane as it is considered in Theorem 4.4,
we constructed explicitly the expansion of principal extension (3.5) with
respect to the basis:

1

2πi

∫

Γζ

(te1 − ζ)−1F (t) dt = U1(x, r) e1 + 2

∞∑

k=2

Uk(x, r) ek , (4.5)

where Uk(x, r) := 1
2πi

∫
Γζ

F (t)√
(t−z)(t−z̄)

(√
(t−z)(t−z̄)−(t−x)

r

)k−1
dt for k =

1, 2, . . . , ζ = xe1 + re2, z = x + ir, and the curve Γζ is an arbitrary
closed Jordan rectifiable curve in G that embraces the segment connecting
the points z and z̄, and

√
(t− z)(t− z̄) is a continuous branch of this

function analytic with respect to t outside of the mentioned segment in
the case Im z 6= 0, and we define

√
(t− z)(t− z̄) := t− z for each z ∈ G

with Im z = 0.

We described relations between principal extensions of analytic func-
tions into the plane µe1,e2 and solutions of system (4.4), viz.:
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Theorem 4.5 ( [43,45]). If F : G −→ C is an analytic function in such
a domain of the complex plane as it is considered in Theorem 4.4, then
the first and the second components of principal extension (4.5) generate
solutions ϕ and ψ of system (4.4) in G by the formulas

ϕ(x, r) = U1(x, r), ψ(x, r) = r U2(x, r) . (4.6)

It follows from the relations (4.5) and (4.6) that the functions

ϕ(x, r) =
1

2πi

∫

Γζ

F (t)√
(t− z)(t− z̄)

dt , (4.7)

ψ(x, r) = − 1

2πi

∫

Γζ

F (t) (t− x)√
(t− z)(t− z̄)

dt , z = x+ ir , (4.8)

are solutions of system (4.4) in the domain G.

In the papers [45, 50] we generalized integral expressions (4.7) and
(4.8) for the axial-symmetric potential ϕ and the Stokes flow function ψ,
respectively, to the case of arbitrary simply connected domain symmet-
ric with respect to the axis Ox. In [58], we shown that in this case the
functions ϕ and ψ are expressed by the formulas (4.6) via components of
principal extensions (4.5) taking values in an infinite-dimensional topo-

logical vector space H̃C := {g =
∞∑
k=1

ckek : ck ∈ C} with the topology of

coordinate-wise convergence (see also [56]). In [56], we proved integral
theorems for monogenic functions taking values in either the algebra HC

or the vector space H̃C.

In the papers [45,50] we established sufficient conditions for continu-
ous continuations of the functions (4.7), (4.8) on the boundary ∂G of a
domain G and obtained estimations for modules of continuity of bound-
ary values of the mentioned functions.

In [11], we established an integral expression of generalized axial-
symmetric potential that is a generalization of integral expressions ob-
tained by A. G. Mackie [39], P. Henrici [23], Yu. P. Krivenkov [33] and
G. N. Polozhii [73].

In the papers [45,51–54] we proved that all axial-symmetric potentials
and Stokes flow functions, i.e. solutions of system (4.4) in G with a
physical interpretation, are represented by the integral expressions (4.7)
and (4.8), respectively.

Using these integral expressions, we developed methods for solv-
ing BVPs in a meridian plane of spatial axial-symmetric potential field
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(see [45, 51–54]). In addition, using the integral expression (4.8) for the
Stokes flow function, in the papers [44, 45, 58] we obtained some results
having a natural physical interpretation. Namely, for a BVP with re-
spect to a steady streamline of the ideal incompressible fluid along an
axial-symmetric body, we obtained criteria of solvability by means distri-
butions of sources and dipoles on the axis of symmetry and constructed
unknown solutions using multipoles together with dipoles distributed on
the axis.
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de la faculté des sciences de Toulouse, 12 (1898), N 1, 1–64.

[5] F. Colombo, I. Sabadini, D. C. Struppa, Noncommutative functional calculus:
theory and applications of slice hyperholomorphic functions, Progress in Mathe-
matics, 289, Birkhäuser Basel, 2011.
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[20] K. Gürlebeck, W. Sprössig, Quaternionic and Clifford calculus for physicists and
engineers, John Wiley and Sons, 1997.

[21] E. Goursat, Cours d’analyse mathematique, 2, Gauthier–Villars, Paris, 1910.

[22] W. Hamilton, Elements of quaternions, University of Dublin Press, 1866.

[23] P. Henrici, On the domain of regularity of generalized axially symmetric poten-
tials // Proc. Amer. Math. Soc., 8 (1957), N 1, 29–31.

[24] O. F. Herus, On the Cauchy theorem for hyperholomorphic functions of spatial
variable // J. Math. Sci., 229 (2018), N 1, 1–6.

[25] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Providence, R.I.:
Amer. Math. Soc., 1957.

[26] P. W. Ketchum, Analytic functions of hypercomplex variables // Trans. Amer.
Math. Soc., 30 (1928), 641–667.



570 Monogenic functions in commutative algebras...

[27] P. W. Ketchum, A complete solution of Laplace’s equation by an infinite hyper-
variable // Amer. J. Math., 51 (1929), 179–188.

[28] V. V. Kisil, Erlangen programme at large: an overview // Advances in Applied
Analysis, Trends in Mathematics. Springer, Basel, (2012), 1–94.

[29] V. F. Kovalev, Biharmonic Schwarz problem, Preprint 86.16, Kiev: Inst. of Math.
of NAS of Ukraine, 1986 (in Russian).

[30] V. F. Kovalev, I. P. Mel’nichenko, Biharmonic functions on biharmonic plane //
Dop. AN Ukr. Ser. A., (1981), N 8 , 25–27 (in Russian).

[31] V. F. Kovalev, I. P. Mel’nichencko, Algebras of functional-invariant solutions
of the p-biharmonic equation, Preprint 91.10, Kiev: Inst. of Math. of NAS of
Ukraine, 1991 (in Russian).

[32] V. V. Kravchenko, M. V. Shapiro, Integral representations for spatial models of
mathematical physics, Pitman Research Notes in Mathematics, Addison Wesley
Longman Inc, 1996.

[33] Yu. P. Krivenkov, Representation of solutions of the Euler–Poisson–Darboux
equation via analytic functions // Dokl. Akad. Nauk SSSR, 116 (1957), N 4,
545–548.

[34] K. S. Kunz, Application of an algebraic technique to the solution of Laplace’s
equation in three dimensions // SIAM J. Appl. Math., 21 (1971), N 3, 425–441.

[35] T. S. Kuzmenko, V. S. Shpakivskyi, Generalized integral theorems for the quater-
nionic G-monogenic mappings // J. Math. Sci., 224 (2017), N 4, 530–540

[36] H. Leutwiler, Modified quaternionic analysis in R3 // Complex variables theory
appl., 20 (1992), 19–51.

[37] E. R. Lorch, The theory of analytic function in normed abelin vector rings //
Trans. Amer. Math. Soc., 54 (1943), 414–425.

[38] M. E. Luna-Elizarrarás, M. Shapiro, D. C. Struppa, A. Vajiac, Bicomplex holo-
morphic functions: the algebra, geometry and analysis of bicomplex numbers,
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