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Constructing balleans

TARAS BANAKH, IGOR PROTASOV

Abstract. A ballean is a set endowed with a coarse structure. We
introduce and explore three constructions of balleans from a pregiven
family of balleans: bornological products, bouquets and combs. Also
we analyze the smallest and the largest coarse structures on a set X
compatible with a given bornology on X.

2010 MSC. 54E35.

Key words and phrases. Ballean, coarse structure, bornological prod-
uct, bouquet, comb.

1. Introduction

Given a set X, a family &£ of subsets of X x X is called a coarse
structure on X if

e cach F € & contains the diagonal Ax := {(z,z) : x € X} of X;

o if £, ' € £then EoE € £ and E~! € £, where Eo E' = {(z,y) :
I ((0,2) €, (zy) € BN}, BT ={(y,2) : (w,y) € E};

e if Fc&and Ax C E' C E then E' € €.

Elements E € £ of the coarse structure are called entourages on X.

For x € X and F € & the set E[z] := {y € X : (x,y) € E} is
called the ball of radius E centered at x. Since E' = |J,.x{x} x Elz], the
entourage E is uniquely determined by the family of balls {E[z] : z € X }.
A subfamily B C £ is called a base of the coarse structure £ if each set
FE € £ is contained in some B € B.

The pair (X, ) is called a coarse space [11] or a ballean [8,10]. In [§]
every base of a coarse structure, defined in terms of balls, is called a ball
structure. We prefer the name balleans not only by the authors rights but
also because a coarse spaces sounds like some special type of topological
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spaces. In fact, balleans can be considered as non-topological antipodes
of uniform topological spaces. Our compromise with [11] is in usage the
name coarse structure in place of the ball structure.

In this paper, all balleans under consideration are supposed to be
connected: for any x,y € X, there is E € £ such y € E[x]. A subset
Y C X is called bounded if Y = E|x] for some F € £, and z € X. The
family By of all bounded subsets of X is a bornology on X. We recall
that a family B of subsets of a set X is a bornology if B contains the
family [X]<“ of all finite subsets of X and B is closed under finite unions
and taking subsets. A bornology B on a set X is called unbounded if
X ¢B.

Each subset Y C X defines a subbalean (Y,€|y) of (X,E), where
Ely ={EN(Y xY): E € £}. A subbalean (Y,€|y) is called large if
there exists £/ € £ such that X = E[Y], where E[Y] =,y E[y].

Let (X,€&), (X',&") be balleans. A mapping f : X — X' is called
coarse (or macrouniform) if for every E € £ there exists E' € £ such
that f(E(z)) C E'(f(z)) for each z € X. If f is a bijection such
that f and f~! are coarse, then f is called an asymorphism. If (X, &)
and (X', &’) contains large asymorphic subballeans, then they are called
coarsely equivalent.

For coarse spaces (Xq,&), a € K, their product is the Cartesian
product X = [],c, Xo endowed with the coarse structure generated by
the base consisting of the entourages

{((xa)aem (ya)a@i) EXXX:Vaekr ($ayya) € Ea}a

where (Ea)acr € [[aex €a

A class 901 of balleans is called a variety if 91 is closed under formation
of subballeans, coarse images and Cartesian products. For characteriza-
tion of all varieties of balleans, see [7].

Given a family § of subsets of X x X, we denote by £ the intersection
of all coarse structures, containing each F'U Ax, F' € §, and say that £
is generated by §. It is easy to see that £ has a base of subsets of the
form Fi o0 Eqo...0E,, where

Ei,..,E,c{FUF'U{(z,9))}UAx:F€F, z,yc X}

By a pointed ballean we shall understand a ballean (X,€) with a
distinguished point e, € X.
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2. Metrizability and normality

Every metric d on a set X defines the coarse structure £; on X with
the base {{(x,y) : d(z,y) < n} : n € N}. A ballean (X, &) is called
metrizable if there is a metric d on such that £ = &;.

Theorem 1 ([5]). A ballean (X,E) is metrizable if and only if £ has a
countable base.

Let (X,€) be a ballean. A subset U C X is called an asymptotic
neighbourhood of a subset Y C X if for every E € & the set E[Y]\ U is
bounded.

Two subset Y, Z of X are called asymptotically disjoint (separated) if
for every E € £ the intersection E[Y] N E[Z] is bounded (Y and Z have
disjoint asymptotic neighbourhoods).

A ballean (X, £) is called normal [6] if any two asymptotically disjoint
subsets of X are asymptotically separated. Every ballean (X, &) with
linearly ordered base of £ is normal. In particular, every metrizable
ballean is normal, see [6].

A function f: X — R is called slowly oscillating if for any E € £ and
e > 0, there exists a bounded subset B of X such that diam f(E[z]) < e
for each z € X \ B.

Theorem 2 ([6]). A ballean (X, &) is normal if and only if for any two
disjoint asymptotically disjoint subsets Y, Z of X there exists a slowly
oscillating function f : X — [0,1] such that f(Y) C {0} and f(Z) C {1}.

For any unbounded bornology B on a set X the cardinals
add(B) = min{A C B: |JA ¢ B},

cov(B) =min{|C|: C C B, |UC = X} and
cof(B) =min{C Cc B:VBe B 3C €C B cC C}

are called the additivity, the covering number and the cofinality of B,
respectively. It is well-known (and easy to see) that add(B) < cov(B) <
cof (B).

The following theorem was proved in [10, 1.4].
Theorem 3. If the product X XY of balleans X,Y is normal then
add(Bx) = cof (Bx) = cof (By) = add(By).

Theorem 4. Let X be the Cartesian product of a family F of metrizable
balleans. Then the following statements are equivalent:
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1. X is metrizable;
2. X is normal;
3. All but finitely many balleans from F are bounded.

Proof. We need only to show (2) = (3). Assume the contrary. Then
there exists a family (Y},),<, of unbounded metrizable balleans such
that the Cartesian product Y =[], Y5 is normal. On the other hand,
add(By) < add(By,) = Rp and a standard diagonal argument shows that
cof (By) > W, contradicting Theorem 3. O

3. Bornological products

Let {(Xa,&a) : @ € A} be an indexed family of pointed balleans and
let B be a bornology on the index set A. For each o« € A by e, we denote
the distinguished point of the ballean X.

The B-product of the family of pointed balleans {X, : a € A} is the
set

Xp = {(za)aca € H Xo:{a€A:zg #eq} € B},
acA

endowed with the coarse structure £g, generated by the base consisting
of the entourages

{((xa)aEAv (ya)aeA) € Xpx Xp:Vae€ B (zq,ya) € Ea}

where B € B and (Eq)aeB € [[,ep Ca-

For the bornology B = P4 consisting of all subsets of the index set
A, the B-product Xp coincides with the Cartesian product ], 4 Xao of
the coarse spaces (Xq,&q)-

If each X, is the doubleton {0, 1} with distnguished point e, = 0,
then the B-product is called the B-macrocube on A. If |A| = w and
B = [A]=“, then we get the well-known Cantor macrocube, whose coarse
characterization was given by Banakh and Zarichnyi in [2].

For relations between macrocubes and hyperballeans, see [3], [9].

Theorem 5. Let B be a bornology on a set and let Xp be the B-product
of a family of unbounded metrizable pointed balleans. Then the following
statements are equivalent:

1. Xp is metrizable;

2. Xp is normal;
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3. |A| = w and B = [A]=¥.
Proof. To see that (2) = (3), repeat the proof of Theorem 4. O

Theorem 6. Let B be a bornology on a set A and let Xp be the B-
product of a family {X, : a € A} of bounded pointed balleans which
are not singletons. The coarse space Xp is metrizable if and only if the
bornology B has a countable base.

Proof. Apply Theorem 1. O

Let X be a macrocube on a set A and Y be a macrocube on a set B,
AN B =10. Then X XY is a macrocube on AU B and, by Theorem 3,
X x Y needs not to be normal.

Question 1. How can one detect whether a given macrocube is normal?
Is a B-macrocube on an infinite set A normal provided that B # P4 is a
mazimal unbounded bornology on A?

Let {X,, : n < w} be a family of finite balleans, B = [w]|<“. By [10],
the B-product of the family {X,, : n < w} is coarsely equivalent to the
Cantor macrocube.

Question 2. Let {X, : a € A} be a family of finite (bounded) pointed
balleans and let B be a bornology on A. How can one detect whether a
B-product of { X, : a € A} is coarsely equivalent to some macrocube?

4. Bouquets

Let B be a bornology on a set A and let {(X,,&) : @ € A} be a
family of pointed balleans. The subballean

\ Xo = {(xa)aca € Xp: [{a € A:zq # ea}| <1}
aEA

of the B-product Xp is called the B-bouquet of the family {(Xa, &) :
a € A}. The point e = (eq)aca is the distinguished point of the ballean

VaeA Xa-

For every a € A we identify the ballean X, with the subballean
{(z5)pea € X : VB € A\{a} x5 = eg} of \/,c4 Xo. Under such
identification \/ ey Xo = Ugea X5 and Xo N X5 = {e} = {ea} = {es}
for any distinct indices «, 8 € A.

Applying Theorem 1, we can prove the following two theorems.
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Theorem 7. Let B be a bornology on a set A and let {X, : a € A}
be a family of unbounded pointed metrizable balleans. The B-bouquet
Vaea Xao is metrizable if and only if |A] = w and B = |A|<¥.

Theorem 8. Let B be a bornology on a set A and let {X, : a € A}
be a family of bounded pointed balleans, which are not singletons. The
B-bouquet \/ ,c 4 Xo is metrizable if and only if the bornology B has a
countable base.

Theorem 9. A bornological bouquet of any family of pointed mormal
balleans is normal.

Proof. Let B be a bornology on a non-empty set A and X be the B-
bouquet of pointed normal balleans X,, a € A. Given two disjoint
asymptotically disjoint sets Y, Z C X, we shall construct a slowly oscil-
lating function f : X — [0,1] such that f(Y) C {0} and f(Z) C {1}.
The definition of the coarse structure on the B-bouquet ensures that
for every a € A the subsets Y N X, and Z N X, are asymptotically
disjoint in the coarse space X, which is identified with the subspace
{(zp) € X : VB € A\{a} x5 = eg} of the B-bouquet X. By the normal-
ity of X, there exists a slowly oscillating function f, : X, — [0, 1] such
that fo (Y NX,) C {0} and fo(ZNX,) C {1}. Changing the value of f,
in the distinguished point e, of X, we can assume that f,(eo) = f3(ep)
for any «, 5 € A. Then the function f : X — [0, 1], defined by f1 X, = fa
for a € A is slowly ascillating and has the desired property: f(Y) C {0}
and f(Z) C {1}. By Theorem 2, the ballean X is normal. O

5. Combs

Let (X, &) be a ballean and A be a subset of X. Let {(Xa,&a) 1 @ €
A} be a family of pointed balleans with the marked points e, € X, for
ae A

The bornology Bx of the ballean (X, &) induces a bornology B :=
{B € Bx : B C A} on the set A. Let \/ 4 Xa be the B-bouquet of the
family of pointed balleans {(Xn,&,) : @ € A}, and let e we denote the
distinguished point of the bouquet \/ ¢ 4 Xa-

For for every a € A we identify the ballean X, with the subballean
{(zg)gea € VaecaXa : VB € A\{a} x5 = eg} of \/,cqXa. Then
Vaeca Xa = Ugea Xo and XoNXp = {e} = {ea} = {eg} for any distinct
indices «, 8 € A.

The suballean

X LL Xo:= (X x{e}hU LEJA({a} X Xq)
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of the ballean X x \/ X, is called the comb with handle X and spines
acA
Xa, @ € A C X. We shall identify the handle X and the spines X,

with the subsets X x {e} and {a} x X, in the comb X J_,lleO" It can
ae

be shown that the comb X J—,li X, carries the smallest coarse structure
ae

such that the identity inclusions of the balleans X and X,, a € A, into

X 11 X, are macrouniform.
aEA

Theorem 10. The comb X L&}Xa is metrizable if the balleans X and
[e1S
Xao, a € A, are metrizable, and for each bounded set B C X the inter-
section AN B is finite.
Proof. Applying Theorem 7, we conclude that the bouquet \/ . 4 X4 is
metrizable. Then the comb X _IJ;‘ X, is metrizable being a subspace of
ac
the metrizable ballean X x \/ .4 Xa. O

By analogy with Theorem 9 we can prove

Theorem 11. The comb X J_gXa 1s normal if the balleans X and X,
ac

o € A, are normal.

6. Coarse structures, determined by bornologies

Let B be a bornology on a set X. We say that a coarse structure &
on X is compatible with B if B coincides with the bornology Bx of all
bounded subsets of (X, £).

The family of all coarse structures, compatible with a given bornology
B has the smallest and largest elements (|8 and }B.

The smallest coarse structure B is generated by the base consisting
of the entourages (B x B) U Ax, where B € B.

The largest coarse structure B consists of all entourages £ C X x X
such that E~'[B] U E[B] € B for every B € B.

An unbounded ballean (X, €) is called

e discrete if £ = ||Bx,

e ultradiscrete if X is discrete and its bornology Bx is maximal by
inclusion in the family of all unbounded bornologies on X;

e mazximal if its coarse structure is maximal by inclusion in the family
of all unbounded coarse structures on X;

e relatively mazimal if £ = }Bx.
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It can be shown that an unbounded ballean (X, &) is discrete if and
only if for every E € & there exists a bounded set B C X such that
E[z] = {z} for each x € X\B. In [10, Chapter 3| discrete balleans are
called pseudodiscrete.

It is clear that each maximal ballean is relatively maximal. For maxi-
mal balleans, see [10, Chapter 10]. For any regular cardinal x the ballean
(K, t[x]=") is maximal.

Each ultradiscrete ballean is both discrete and relatively maximal.

A ballean (X, &) is called wltranormal if X contains no two unboun-
ded asymptotically disjoint subsets. By [10, Theorem 10.2.1], every un-
bounded subset of a maximal ballean is large, which implies that each
maximal ballean is ultranormal. A discrete ballean is ultranormal if and
only if it is ultradiscrete.

Example 1. For every infinite set X, there exists a bornology B on X
such that B = B but the ballean (X,B) = (X, 'B) is not ultradiscrete.
Consequently, the ballean (X,|B) = (X,\B) is discrete and relatively
mazximal but not ultranormal.

Proof. By Theorem 3.1.6 [4], there are two free ultrafilters p, ¢ on X such
that for every function f : X — X and any P € p and Q € ¢ we have
f(P)¢qand f(Q) ¢ p. Weput B={B C X :B¢p, B¢ q} and note
that B is a bornology on X.

To show that B = 1B, we need to check that for any entourage
E € B, the set Y = {z € X : E[z] # {z}} belongs to the bornology B.
To derive a contradiction, assume that Y ¢ B. For every = € Y choose
a point f(x) € E[z]\ {z}. By Zorn’s Lemma, there exists a maximal
subset Z C Y such that Z N f(Z) = (. By the maximality of Z, for any
y €Y\ Z weget f(y) € Z and hence f(Y \ Z) C Z. It follows from
Yé¢Bthat Z¢BorY \Z¢B.

First assume that Z ¢ B. Then Z € p or Z € gq. Without loss of
generality, Z € p. Then f(Z) ¢ p and f(Z) ¢ q (by the choice of p, q).
Consequently, f(Z) € B and Z C E~Y[f(Z)] € B, which is a desired
contradiction.

The case Y \ Z ¢ B can be considered by analogy.

Since X can be written as the union X = P U @ of two disjoint
unbounded sets P € p, @Q € ¢, the ballean (X, {8) is not ultradiscrete
and not ultranormal. O

By a bornological space we understand a pair (X, Bx) consisting of
a set X and a bornology Bx on X. A bornological space (X,Bx) is
unbounded if X ¢ Bx. For two bornological spaces (X, Bx) and (Y, By)
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their product is the bornological space (X x Y,B) endowed with the
bornology

BXXY:{BCXXY:BCBXXBnyI“SOIneBXeB)(, ByEBy}.

The following theorem allows us to construct many examples of bor-
nological spaces (X, B) for which the coarse space (X, 1) is not normal.

Theorem 12. Let (X x Y, B) be the product of two unbounded bornolog-
ical spaces (X,Bx) and (Y,By). If cov(By) < add(Bx), then the coarse
space (X x Y, 'B) is not normal.

Proof. Fix any point (zg,y0) € X X Y. Assuming that cov(By) <
add(Bx), we shall prove that for a coarse structure £ on X x Y is not
normal if £ has the following three properties:

1. £ is compatible with the bornology B;

2. for any By € By there exists E € £ such that
X x By C E[X x {yo}];

3. for any Bx € Bx there exists F € £ such that
Bx xY C E[{zo} x Y.

It is easy to see that the coarse structure 8 has these three properties.
By the definition of the cardinal x = cov(By ), there there is a family
{Ya}aex C By such that ... Yo =Y.

ack T @

Assume that &£ is a coarse structure on X x Y satisfying the condi-
tions (1)—(3). First we check that the sets X x {yo} and {zo} x Y are
asymptotically disjoint in (X x Y, &). Given any entourage F € &, we
should prove that the intersection E[X X {yo}|NE[{zo} x Y] is bounded.
By the condition (1), for every a € x the bounded set E~1[E[{zo} x Y,]]
is contained in the product B, X Y for some bounded set B, € Bx.
Since x < add(Bx), the union B< := [J,¢, Ba belongs to the bornol-
ogy Bx. Given any point (u,v) € E[X x {yo}] N E[{zo} x Y], find
z € X and y € Y such that (u,v) € E[(z,y0)] N E[(xo,y)]. Since
Y = Upes Ya, there exists o € & such that y € Y,. Then (z,y) €
E~YE[(wo,y)]] € E7YE[{xo} x Ya]] C Ba XY C B, x Y and hence
(u,v) € E[(z,y0)] C E[B<x X {y0}], which implies that the intersection

E[X x{yo}] N El{wo} x Y] C E[B<x < {y0}]

is bounded in (X x Y, E).
Assuming that the coarse space (X x Y, £) is normal, we can find dis-
joint asymptotical neighborhoods U and V of the asymptotically disjoint
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sets X x {yo} and Y x {xo}. By the condition (2), for every o € k there
exists an entourage F, € £ such that X x Y, C E,[X x {yo}]. Since U
is an asymptotic neighborhood of the set X x {yo} in (X x Y, &), the set
(X xYa) \U C Eu[X x {yo}] \ U is bounded in (X x Y,&). Now the
condition (1) implies that (X x Y,)\ U C D, x Y for some bounded set
D, € Bx.

We claim that the family { D, }aes is cofinal in By. Indeed, given any
bounded set D € Bx, use the condition (3) and find a entourage F € &
such that D xY C E[{zo} x Y]. Since V is an asymptotic neighborhood
of the set {zo} x Y, the set E[{xo} x Y]\ V is bounded in (X x Y, &) and
the condition (1) ensures that it has bounded projection onto Y. Since
Y ¢ By, we can find a point y € Y such that X x {y} is disjont with
E[{zo} xY]\V. Find a € k withy € Y,. Then (X x{y})NE[{zo} xY] C
V' and hence

Dx{y} C (Xxy})NE[{xo} xY] C (X xY,)NV C (X xY,)\U C D, xY,
which yields the desired inclusion D C D,. Therefore,
cof (Bx) < {Da}ack| < k= cov(By) < add(Bx),

which contradicts the known inequality add(Bx) < cof(Bx). O
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