

Approximative properties of the Weierstrass integrals on the classes $W^r_{\beta}H^{\alpha}$

ULIANA Z. GRABOVA, INNA V. KAL'CHUK AND TETIANA A. STEPANIUK

(Presented by S. Ya. Mahno)

Abstract. The work focuses on the solution of the one problem of approximation theory. The problem is to investigate approximative properties of the Weierstrass integrals on the classes $W^r_\beta H^\alpha$. We obtain asymptotic equalities for the upper borders of defluxion of functions from the classes $W^r_\beta H^\alpha$ from the Weierstrass integrals.

2010 MSC. 42A05, 41A60.

Key words and phrases. Weierstrass integral, Weyl–Nagy class, Lipschitz condition, Kolmogorov–Nikolsky problem.

1. Introduction

Let L be the space of 2π -periodic summable on the period functions having the norm $||f||_L = ||f||_1 = \int_{-\pi}^{\pi} |f(t)| dt$; L_{∞} be the space of 2π -periodic measurable and essentially bounded functions having the norm $||f||_{\infty} = \text{ess sup } |f(t)|$; C be the space of 2π -periodic functions having the norm $||f||_C = \max_t |f(t)|$.

Let r > 0 and β be a fixed real number. If the series

$$\sum_{k=1}^{\infty} k^r \left(a_k \cos \left(kx + \frac{\beta \pi}{2} \right) + b_k \sin \left(kx + \frac{\beta \pi}{2} \right) \right) \tag{1.1}$$

is the Fourier series of some summable function φ , then we can introduce the (r,β) -derivative of the function f in the Weyl–Nagy sense and denote it by f_{β}^{r} (see, e.g., [1, p. 130]). By W_{β}^{r} we denote the set of all functions satisfying this condition.

Received 10.08.2017

If $f \in W^r_{\beta}$ and, in addition, $f^r_{\beta} \in H^{\alpha}$, that is satisfies the Lipschitz condition of order α :

$$|f_{\beta}^r(x+h) - f_{\beta}^r(x)| \le |h|^{\alpha}, \quad 0 < \alpha \le 1, h \in \mathbb{R},$$

we say that f belongs to the class $W_{\beta}^r H^{\alpha}$. In the case where $\alpha = 0$ we set $W_{\beta}^r H^0 = W_{\beta,\infty}^r$.

If $\beta = r$, $r \in \mathbb{N}$, then the classes $W_{\beta}^r H^{\alpha}$ coincide with the famous Sobolev classes $W^r H^{\alpha}$. Note that W_{∞}^r are the classes of functions f such that $\|f^{(r)}\|_{\infty} \leq 1$.

Let $f \in L$. The quantity

$$W(\rho; f; x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t+x) \left\{ \frac{1}{2} + \sum_{k=1}^{\infty} \rho^{k^2} \cos kt \right\} dt, \ 0 \le \rho < 1,$$

is called the Weierstrass integral of the function f. Setting $\rho = e^{-\frac{1}{\delta}}$ the Weierstrass integral can be rewritten as follows (see, e.g., [2])

$$W_{\delta}(f;x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t+x) \left\{ \frac{1}{2} + \sum_{k=1}^{\infty} e^{-\frac{k^2}{\delta}} \cos kt \right\} dt, \ \delta > 0.$$

In the present paper we investigate asymptotic behavior of the quantity

$$\mathcal{E}(W_{\beta}^{r}H^{\alpha}; W_{\delta})_{C} = \sup_{f \in W_{\beta}^{r}H^{\alpha}} \|f(\cdot) - W_{\delta}(f; \cdot)\|_{C}, \quad \delta \to \infty.$$
 (1.2)

The problem of establishing the asymptotic equality for the quantity (1.2), according to Stepanets [1, p. 198], is called the Kolmogorov–Nikolsky problem for the Weierstrass integral W_{δ} on the class $W_{\beta}^{r}H^{\alpha}$ in the uniform metric.

In the uniform metrics the Kolmogorov–Nikolsky problem on the Zygmund classes Z_{α} , $Z_{\alpha} := \{f(x) \in C : |f(x+h)-2f(x)+f(x-h)| \leq 2|h|^{\alpha}$, $0 \leq \alpha \leq 2$, $|h| \leq 2\pi\}$, Korovkin [3], Bausov [4], Falaleev [5]; on the Sobolev classes W_{∞}^{r} — in the papers of Bausov [6], Baskakov [7]. Asymptotic equalities for approximation of the Stepanets classes [1] by the Weierstrass integrals were obtained in the papers [2,8,9].

2. The approximation by Weierstrass integrals on the classes $W^r_{\beta}H^{\alpha}$

Analogously to the paper [10] for the Weierstrass integral for r > 0 and $\delta > 0$, we consider the following function $\tau(u)$ continuous on $[0; \infty)$:

$$\tau(u) = \tau_{\delta}(r, u) = \begin{cases} (1 - e^{-u^2}) \delta^{\frac{r}{2}}, & 0 \le u \le \frac{1}{\sqrt{\delta}}, \\ (1 - e^{-u^2}) u^{-r}, & u \ge \frac{1}{\sqrt{\delta}}, \end{cases}$$
(2.1)

whose Fourier transform

$$\hat{\tau}_{\beta}(t) = \frac{1}{\pi} \int_{0}^{\infty} \tau(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du \tag{2.2}$$

is summable on the whole real axis (this fact is proved in [2]).

In what follows, by K, K_i , i = 1, 2, we denote constants whose values may be different in different places.

Theorem 2.1. For r > 2, $0 < \alpha < 1$ and $\delta \to \infty$ the following asymptotic equality is true

$$\mathcal{E}\left(W_{\beta}^{r}H^{\alpha}; W_{\delta}\right)_{C} = \frac{1}{\delta} \sup_{f \in W_{\beta}^{r}H^{\alpha}} \left\|f''\right\|_{C} + O\left(\frac{1}{\delta^{\frac{r+\alpha}{2}}} + \frac{1}{\delta^{2}}\right), \tag{2.3}$$

where f'' be the second derivative of function f.

Proof. Similarly, as in the paper [11], let us rewrite the function $\tau(u)$ defined by the relation (2.1) in the form $\tau(u) = \varphi(u) + \mu(u)$, where

$$\varphi(u) = \begin{cases} u^2 \delta^{\frac{r}{2}}, & 0 \le u \le \frac{1}{\sqrt{\delta}}, \\ u^{2-r}, & u \ge \frac{1}{\sqrt{\delta}}, \end{cases}$$
 (2.4)

$$\mu(u) = \begin{cases} (1 - e^{-u^2} - u^2) \delta^{\frac{r}{2}}, & 0 \le u \le \frac{1}{\sqrt{\delta}}, \\ (1 - e^{-u^2} - u^2) u^{-r}, & u \ge \frac{1}{\sqrt{\delta}}. \end{cases}$$
 (2.5)

It is known that Fourier transforms $\widehat{\varphi}(t)$ and $\widehat{\mu}(t)$ of kind (2.2) of functions $\varphi(u)$ and $\mu(u)$ are summable on whole real axis (see, e.g., [2]).

According to the theorem 3 of Bausov [6], if the integrals

$$A(\alpha, \varphi) = \frac{1}{\pi} \int_{-\infty}^{\infty} |t|^{\alpha} \left| \int_{0}^{\infty} \varphi(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du \right| dt, \tag{2.6}$$

$$A(\alpha, \mu) = \frac{1}{\pi} \int_{-\infty}^{\infty} |t|^{\alpha} \left| \int_{0}^{\infty} \mu(u) \cos\left(ut + \frac{\beta\pi}{2}\right) du \right| dt, \tag{2.7}$$

are convergent and $A(\alpha, \mu) = o(A(\alpha, \varphi))$, then the following asymptotic equality holds

$$\mathcal{E}(W_{\beta}^{r}H^{\alpha}; W_{\delta})_{C} = \frac{1}{\delta^{\frac{r}{2}}} \sup_{f \in W_{\beta}^{r}H^{\alpha}} \|f_{\varphi}\|_{C} + O\left(\frac{1}{\delta^{\frac{r+\alpha}{2}}} A(\alpha, \mu)\right), \tag{2.8}$$

where
$$f_{\varphi}(x) := \int_{-\infty}^{\infty} \left(f_{\beta}^{r} \left(x + \frac{t}{\sqrt{\delta}} \right) - f_{\beta}^{r}(x) \right) \widehat{\varphi}(t) dt.$$

To prove the convergence of the integral $A(\alpha, \varphi)$, according to theorem 1 of the paper of Bausov [6], let us consider the integrals

$$\int_{0}^{\frac{1}{2}} u^{1-\alpha} \left| d\varphi'(u) \right|, \int_{\frac{1}{2}}^{\frac{3}{2}} \left| u - 1 \right|^{1-\alpha} \left| d\varphi'(u) \right|, \int_{\frac{3}{2}}^{\infty} (u - 1) \left| d\varphi'(u) \right|, \quad (2.9)$$

$$\left|\sin\frac{\beta\pi}{2}\right| \int_0^\infty \frac{\left|\varphi(u)\right|}{u^{1+\alpha}} du, \int_0^1 \frac{\left|\varphi(1-u)-\varphi(1+u)\right|}{u^{\alpha+1}} du, \tag{2.10}$$

and obtain the upper bounds.

For the first integral from (2.9) we get

$$\int_{0}^{\frac{1}{2}} u^{1-\alpha} \left| d\varphi'(u) \right| = \int_{0}^{\frac{1}{\sqrt{\delta}}} u^{1-\alpha} \left| d\varphi'(u) \right| + \int_{\frac{1}{\sqrt{\delta}}}^{\frac{1}{2}} u^{1-\alpha} \left| d\varphi'(u) \right|
= 2\delta^{\frac{r}{2}} \int_{0}^{\frac{1}{\sqrt{\delta}}} u^{1-\alpha} du + (2-r)(1-r) \int_{\frac{1}{\sqrt{\delta}}}^{\frac{1}{2}} u^{1-r-\alpha} du = O\left(\frac{1}{\delta^{1-\frac{r+\alpha}{2}}}\right), \quad r > 2.$$
(2.11)

In view of the fact that the function $|u-1|^{1-\alpha}|d\varphi'(u)|$ is continuous on the segment $[\frac{1}{2},\frac{3}{2}]$ it is bounded on this segment. Thus

$$\int_{\frac{1}{2}}^{\frac{3}{2}} |u - 1|^{1 - \alpha} |d\varphi'(u)| = O(1). \tag{2.12}$$

Now we estimate the third integral from (2.9):

$$\int_{\frac{3}{2}}^{\infty} (u-1)|d\varphi'(u)| \le \int_{\frac{3}{2}}^{\infty} u|d\varphi'(u)|$$

$$= (2-r)(1-r) \int_{\frac{3}{2}}^{\infty} u^{1-r} du \le K, \quad r > 2.$$
(2.13)

For first integral from (2.10) we get

$$\int_0^\infty \frac{|\varphi(u)|}{u^{1+\alpha}} du = \delta^{\frac{r}{2}} \int_0^{\frac{1}{\sqrt{\delta}}} u^{1-\alpha} du + \int_{\frac{1}{\sqrt{\delta}}}^\infty u^{1-r-\alpha} du$$
$$= O\left(\frac{1}{\delta^{1-\frac{r+\alpha}{2}}}\right), \quad r > 2.$$
(2.14)

Let us estimate the second integral from (2.10). Similarly to formula (30) of [12], it can be shown that for the function φ , given by the relation (2.4), we have the equality

$$\int_{0}^{1} \frac{|\varphi(1-u) - \varphi(1+u)|}{u^{1+\alpha}} du = \int_{0}^{1} \frac{|\lambda(1-u) - \lambda(1+u)|}{u^{1+\alpha}} du + O(H(\alpha, \varphi)),$$
(2.15)

where $\lambda(u) = 1 - u^2$ and

$$H(\alpha,\varphi) = \left|\varphi(0)\right| + \left|\varphi(1)\right| + \int_0^{\frac{1}{2}} u^{1-\alpha} \left|d\varphi'(u)\right| + \int_{\frac{3}{2}}^{\infty} (u-1) \left|d\varphi'(u)\right|.$$

Since $\int_0^1 \frac{|\lambda(1-u)-\lambda(1+u)|}{u^{1+\alpha}}du=O(1)$, according to (2.11) and (2.12) from (2.15) we get

$$\int_{0}^{1} \frac{|\varphi(1-u) - \varphi(1+u)|}{u^{1+\alpha}} du = O\left(\frac{1}{\delta^{\frac{1-r-\alpha}{2}}}\right), \quad r > 2.$$
 (2.16)

Applying theorem 1 of [6] and taking into account relations (2.11)–(2.16) we show that the Fourier transform of the function φ of the form (2.2) is summable on the real axis, and the following estimate holds

$$A(\alpha, \varphi) = O\left(\frac{1}{\delta^{\frac{1-r-\alpha}{2}}}\right), \quad r > 2.$$
 (2.17)

We now show the convergence of the integral $A(\alpha, \mu)$. Let us consider the following integrals

$$\int_0^{\frac{1}{2}} u^{1-\alpha} \left| d\mu'(u) \right|, \int_{\frac{1}{2}}^{\frac{3}{2}} \left| u - 1 \right|^{1-\alpha} \left| d\mu'(u) \right|, \int_{\frac{3}{2}}^{\infty} (u - 1) \left| d\mu'(u) \right|, \quad (2.18)$$

$$\left| \sin \frac{\beta \pi}{2} \right| \int_0^\infty \frac{\left| \mu(u) \right|}{u^{1+\alpha}} du, \int_0^1 \frac{\left| \mu(1-u) - \mu(1+u) \right|}{u^{\alpha+1}} du, \tag{2.19}$$

and get the corresponding upper bounds.

Let us investigate the first integral from (2.18). Similarly, as in the proof of Lemma 1 from [13], we divide the segment $\left[0,\frac{1}{2}\right]$ into two parts: $\left[0,\frac{1}{\sqrt{\delta}}\right], \left[\frac{1}{\sqrt{\delta}},\frac{1}{2}\right]$. According to the inequality

$$2u^2e^{-u^2} - e^{-u^2} + 1 \le 3u^2, \quad u \in \mathbb{R}, \tag{2.20}$$

and the fact that if $u \in \left[0, \frac{1}{\sqrt{\delta}}\right]$ then $\mu''(u) \leq 0$, we can write

$$\int_{0}^{\frac{1}{\sqrt{\delta}}} u^{1-\alpha} |d\mu'(u)| = 2\delta^{\frac{r}{2}} \int_{0}^{\frac{1}{\sqrt{\delta}}} u^{1-\alpha} (2u^{2}e^{-u^{2}} - e^{-u^{2}} + 1) du$$

$$\leq 6\delta^{\frac{r}{2}} \int_{0}^{\frac{1}{\sqrt{\delta}}} u^{3-\alpha} du \leq \frac{K}{\delta^{2-\frac{r+\alpha}{2}}}.$$
(2.21)

Let us estimate the integral on the segment $\left[\frac{1}{\sqrt{\delta}}, \frac{1}{2}\right]$. From (2.5) we get

$$\mu''(u) = (1 - e^{-u^2} - u^2)r(r+1)u^{-r-2} + 4(-r)u(e^{-u^2} - 1)u^{-r-1} + 2u^{-r}(e^{-u^2} - 2u^2e^{-u^2} - 1).$$
(2.22)

One can verify that $\mu''(u) \leq 0$. Further, according to (2.20) and, in addition, to the inequalities

$$e^{-u^2} + u^2 - 1 \le \frac{u^4}{2}, \quad 1 - e^{-u^2} \le u^2, \quad u \in \mathbb{R},$$
 (2.23)

we have

$$\int_{\frac{1}{\sqrt{\delta}}}^{\frac{1}{2}} u^{1-\alpha} |d\mu'(u)| \le r(r+1) \int_{\frac{1}{\sqrt{\delta}}}^{\frac{1}{2}} (u^2 + e^{-u^2} - 1) u^{-1-r-\alpha} du$$

$$+4r \int_{\frac{1}{\sqrt{\delta}}}^{\frac{1}{2}} (1 - e^{-u^2}) u^{1-r-\alpha} du + 2 \int_{\frac{1}{\sqrt{\delta}}}^{\frac{1}{2}} (2u^2 e^{-u^2} - e^{-u^2} + 1) u^{1-r-\alpha} du$$

$$\le K \int_{\frac{1}{\sqrt{\delta}}}^{\frac{1}{2}} u^{3-r-\alpha} du \le K_1 + \frac{K_2}{\delta^{2-\frac{r+\alpha}{2}}}.$$
(2.24)

In view of (2.21) and (2.24) we find

$$\int_0^{\frac{1}{2}} u^{1-\alpha} |d\mu'(u)| = O\left(1 + \frac{1}{\delta^{2-\frac{r+\alpha}{2}}}\right). \tag{2.25}$$

By the same way as to estimate the second integral from (2.18), we get

$$\int_{\frac{1}{2}}^{\frac{3}{2}} |u - 1|^{1 - \alpha} |d\mu'(u)| = O(1). \tag{2.26}$$

To estimate the last integral from (2.18) we use (2.22) and the following inequalities

$$e^{-u^2} \le 1$$
, $1 - e^{-u^2} \le 1$, $u^2 e^{-u^2} \le 1$, $u \in \mathbb{R}$. (2.27)

We obtain

$$\int_{\frac{3}{2}}^{\infty} (u-1)|d\mu'(u)| \le \int_{\frac{3}{2}}^{\infty} u|d\mu'(u)| \le K \int_{\frac{3}{2}}^{\infty} u^{-r+1} du \le K_1, \quad r > 2.$$
(2.28)

Analogously to the estimation (36) of [14], to estimate the first integral with (2.19) we divide the interval $[0, \infty)$ into three parts: $\left[0, \frac{1}{\sqrt{\delta}}\right]$,

 $\left[\frac{1}{\sqrt{\delta}},1\right]$, $\left[1,\infty\right]$. According to the first inequalities from (2.23) and (2.27) we get

$$\int_{0}^{\infty} \frac{|\mu(u)|}{u^{1+\alpha}} du = \delta^{\frac{r}{2}} \int_{0}^{\frac{1}{\sqrt{\delta}}} \frac{e^{-u^{2}} + u^{2} - 1}{u^{1+\alpha}} du
+ \left(\int_{\frac{1}{\sqrt{\delta}}}^{1} + \int_{1}^{\infty} \right) (e^{-u^{2}} + u^{2} - 1) u^{-1-r-\alpha} du \le \frac{1}{2} \delta^{\frac{r}{2}} \int_{0}^{\frac{1}{\sqrt{\delta}}} u^{3-\alpha} du
+ \frac{1}{2} \int_{\frac{1}{\sqrt{\delta}}}^{1} u^{3-r-\alpha} du + \int_{1}^{\infty} u^{1-r-\alpha} du \le K_{1} + \frac{K_{2}}{\delta^{2-\frac{r+\alpha}{2}}}.$$
(2.29)

Let us estimate the second integral from (2.19). Similarly, as for function φ , the following relation holds

$$\int_0^1 \frac{|\mu(1-u) - \mu(1+u)|}{u^{1+\alpha}} du = \int_0^1 \frac{|\lambda(1-u) - \lambda(1+u)|}{u^{1+\alpha}} du + O(H(\alpha, \mu)),$$
(2.30)

where $\lambda(u) = e^{-u^2} + u^2$ and

$$H(\alpha,\mu) = |\mu(0)| + |\mu(1)| + \int_0^{\frac{1}{2}} u^{1-\alpha} |d\mu'(u)| + \int_{\frac{3}{2}}^{\infty} (u-1) |d\mu'(u)|.$$

Since $\int_0^1 \frac{|\lambda(1-u)-\lambda(1+u)|}{u^{1+\alpha}} du = O(1)$, according to (2.25) and (2.28) from (2.30) we get

$$\int_0^1 \frac{|\mu(1-u) - \mu(1+u)|}{u^{1+\alpha}} du = O\left(1 + \frac{1}{\delta^{2-\frac{r+\alpha}{2}}}\right), \quad r > 2.$$
 (2.31)

Applying theorem 1 from the paper of Bausov [6] and taking into account estimates (2.29) and (2.31), we have

$$A(\alpha, \mu) = O\left(1 + \frac{1}{\delta^{2 - \frac{r + \alpha}{2}}}\right), \quad r > 2.$$
 (2.32)

Thus, we showed the convergence of integrals $A(\alpha, \varphi)$, $A(\alpha, \mu)$ and validity of the relation $A(\alpha, \mu) = o(A(\alpha, \varphi))$. So equality (2.8) holds. Whereas an estimation (2.32) from (2.8) we receive

$$\mathcal{E}(W_{\beta}^r H^{\alpha}; W_{\delta})_C = \frac{1}{\delta^{\frac{r}{2}}} \sup_{f \in W_{\delta}^r H^{\alpha}} \|f_{\varphi}\|_C + O\left(\frac{1}{\delta^{\frac{r+\alpha}{2}}} + \frac{1}{\delta^2}\right). \tag{2.33}$$

It is well known that Fourier series of the function $f_{\varphi}(x)$ (see, e.g., [15]) is of the form:

$$S[f_{\varphi}(x)] = \sum_{k=1}^{\infty} \varphi\left(\frac{k}{\sqrt{\delta}}\right) k^{r} (a_{k} \cos kx + b_{k} \sin kx).$$

From here, considering formulas (2.4) and (1.1) we have that

$$S[f_{\varphi}(x)] = \sum_{k=1}^{\infty} \frac{k^2}{\delta^{1-\frac{r}{2}}} (a_k \cos kx + b_k \sin kx)$$
$$= \frac{1}{\delta^{1-\frac{r}{2}}} f_0^{(2)}(x) = -\frac{1}{\delta^{1-\frac{r}{2}}} f''(x), \tag{2.34}$$

where f'' be the second derivative of function f.

Substituting (2.34) into (2.33), we obtain (2.3). Theorem is proved.

References

- [1] A. I. Stepanets, *Methods of Approximation Theory. Part 1*, Institute of Mathematics, Ukrainian Academy of Sciences, Kiev, 2002.
- [2] Yu. I. Kharkevych, I. V. Kal'chuk, Approximation of (ψ, β) -differentiable functions by Weierstrass integrals // Ukrainian Math. J., **59** (2007), No. 7, 1059–1087.
- [3] P. P. Korovkin, On the best approximation of functions of class Z₂ by some linear operators // Dokl. Akad. Nauk SSSR, **127** (2007), No. 3, 143–149.
- [4] L. I. Bausov, Approximation of functions of class Z_{α} by positive methods of summation of Fourier series // Uspekhi Mat. Nauk, **16** (1961), No. 3, 143–149.
- [5] L. P. Falaleev, On approximation of functions by generalized Abel-Poisson operators // Sib. Math. J., 42 (2001), No. 4, 779-788.
- [6] L. I. Bausov, Linear methods of summing Fourier series with prescribed rectangular matrices. I // Izv. Vyssh. Uchebn. Zaved. Mat., 3 (1965), 15–31.
- [7] V. A. Baskakov, Some properties of operators of Abel-Poisson type // Math. Notes, 17 (1975), No. 2, 101–107.
- [8] I. V. Kal'chuk, Approximation of (ψ, β)-differentiable functions defined on the real axis by Weierstrass operators // Ukrainian Math. J., 59 (2007), No. 9, 1342– 1363.
- [9] U. Z. Hrabova, I. V. Kal'chuk, T. A. Stepaniuk, Approximation of functions from classes $W^r_{\beta}H^{\alpha}$ by Weierstrass integrals // Ukrainian Math. J., **69** (2017), No. 4, 598–608.
- [10] Yu. I. Kharkevych, T. V. Zhyhallo, Approximation of functions defined on the real axis by operators generated by λ-methods of summation of their Fourier integrals // Ukrainian Math. J., 56 (2004), No. 9, 1509–1525.
- [11] T. V. Zhyhallo, Yu. I. Kharkevych. Approximation of (ψ, β)-differentiable functions defined on the real axis by Abel-Poisson operators // Ukrainian Math. J., 57 (2005), No. 8, 1297–1315.

- [12] I. V. Kal'chuk, Yu. I. Kharkevych, Approximating properties of biharmonic Poisson integrals in the classes $W^r_{\beta}H^{\alpha}$ // Ukrainian Math. J., **68** (2017), No. 11, 1727–1740.
- [13] T. V. Zhyhallo, Yu. I. Kharkevych, Approximation of (ψ, β) -differentiable functions by Poisson integrals in the uniform metric // Ukrainian Math. J., **61** (2009), No. 11, 1757–1779.
- [14] T. V. Zhyhallo, Yu. I. Kharkevych, Approximation of functions from the class C^{ψ}_{β} by Poisson integrals in the uniform metric // Ukrainian Math. J., **61** (2009), No. 12, 1893–1914.
- [15] Yu. I. Kharkevich, T. A. Stepanyuk, Approximation properties of Poisson integrals for the classes $C^{\psi}_{\beta}H^{\alpha}$ // Math. Notes, **96** (2014), No. 6, 1008–1019.

CONTACT INFORMATION

Uliana Z. Lesya Ukrainka Eastern European National

Grabova University, Lutsk, Ukraine

E-Mail: grabova_u@ukr.net

Inna V. Lesya Ukrainka Eastern European National

Kalchuk University, Lutsk, Ukraine

E-Mail: k.inna80@gmail.com

Tetiana A. Graz University of Technology,

Stepaniuk Graz, Austria

E-Mail: tania_stepaniuk@ukr.net