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Abstract. The work focuses on the solution of the one problem of ap-
proximation theory. The problem is to investigate approximative proper-
ties of the Weierstrass integrals on the classes Wz H®. We obtain asymp-
totic equalities for the upper borders of defluxion of functions from the
classes W5 H® from the Weierstrass integrals.
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1. Introduction

Let L be the space of 2r—periodic summable on the period functions
having the norm || f||r = || f|li = " |f(t)|dt; Lo be the space of 27—
periodic measurable and essentially bounded functions having the norm
Il fllcc = esssup |f(t)|; C be the space of 2m-periodic functions having the

t

norm | flle: = max | £ (1)
Let 7 > 0 and 8 be a fixed real number. If the series

ﬁkr (ak cos (k::z: + %T) + by sin (k::c + %T)) (1.1)

is the Fourier series of some summable function ¢, then we can introduce
the (r, B8)-derivative of the function f in the Weyl-Nagy sense and denote
it by f (see, e.g., [1, p. 130]). By Wj we denote the set of all functions
satisfying this condition.
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If f € Wg and, in addition, fz € H, that is satisfies the Lipschitz
condition of order a:

|f5(x +h) = fa(x)| < [h]%, 0<a<1,heR,

we say that f belongs to the class WgH?*. In the case where @ = 0 we
set WEHO = ng.

If 8 =r, r € N, then the classes WBTHO‘ coincide with the famous
Sobolev classes W"H®. Note that W/ are the classes of functions f such
that [|f0]] < 1.

Let f € L. The quantity

1 (7 1 &
W(P;f;l‘):ﬂ/ f(t+z){2+2pk2coskt}dt, 0<p<l,
- k=1

is called the Weierstrass integral of the function f. Setting p = e~5 the
Weierstrass integral can be rewritten as follows (see, e.g., [2])

1 [ — 2
Ws(f;z) :W/ f(t—i-:r){Q—i- E e 5 coskt}dt, §>0.
- k=1

In the present paper we investigate asymptotic behavior of the quan-

tity
EWsH Ws)c = sup |[f(-) = Ws(f;)lle, 06— oo (1.2)
feWgHe

The problem of establishing the asymptotic equality for the quan-
tity (1.2), according to Stepanets [1, p. 198], is called the Kolmogorov—
Nikolsky problem for the Weierstrass integral Ws on the class Wg H% in
the uniform metric.

In the uniform metrics the Kolmogorov—Nikolsky problem on the Zyg-
mund classes Zo, Zo = { f(2) € C: |f(z+h)—2f(z)+ f(z—h)| < 2|h|*,
0 < a < 2, || < 27}, Korovkin [3], Bausov [4], Falaleev [5]; on
the Sobolev classes W2, — in the papers of Bausov [6], Baskakov [7].
Asymptotic equalities for approximation of the Stepanets classes [1] by
the Weierstrass integrals were obtained in the papers [2,8,9].

2. The approximation by Weierstrass integrals on
the classes W3H*

Analogously to the paper [10] for the Weierstrass integral for r > 0
and ¢ > 0, we consider the following function 7(u) continuous on [0;00):

(1—e )5z, 0<u<-L,

T(u) = 75(r,u) = { ) o (2.1)

(1 —e " )u—r’ u > 5
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whose Fourier transform

73(t) = : /OOO 7(u) cos (ut + B;) du (2.2)

s

is summable on the whole real axis (this fact is proved in [2]).
In what follows, by K, K;, ¢ = 1,2, we denote constants whose values
may be different in different places.

Theorem 2.1. Forr > 2, 0 < a <1 and § — oo the following asymp-
totic equality is true

€ (WEH Ws) ., =

SN

1 1
" O —+ = 2.3
fe%:/l;Ha 17l + (5?‘“ " 52)’ (23)

where f" be the second derivative of function f.

Proof. Similarly, as in the paper [11], let us rewrite the function 7(u)
defined by the relation (2.1) in the form 7(u) = ¢(u) + p(u), where

u25§, 0<u< %;,
o) =1 o TSI (2.4
) — 67
(1— e —u2)s%, 0<u< L,
plu) = (1—e™ —u?)u™", u>-L (2:5)
Y — 5'

It is known that Fourier transforms @(t) and fi(t) of kind (2.2) of func-
tions ¢(u) and p(u) are summable on whole real axis (see, e.g., [2]).
According to the theorem 3 of Bausov [6], if the integrals

Al ) = jr/oo o /OOO (1) cos (ut+ 5”) du‘ dt, (2.6)

o 2
Ala, p) = 71T/OO |t]* /Ooo u(u) cos (ut + B;) du‘ dt, (2.7)

—0o0
are convergent and A(q, p) = O(A(a, cp)), then the following asymptotic
equality holds

1
EW5HY Ws)c = sup_ [fellc +O <6T+QA(04N)> , (2.8)
T [e3 2

fews

>
s T

where f,(z) := ffooo (fg (37 + ﬁ) - fE(@)@(t)dt
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To prove the convergence of the integral A(q,¢), according to theo-
rem 1 of the paper of Bausov [6], let us consider the integrals

1 3
2 2 —a -
/0 W fdg )], | =1 de ()], [ (= 1) ] ()], (2.9)

2 2
[e’s) 1
lo(u) (1 —u) — (1 +u)|
‘/ u1+a /0 s du, (2.10)

and obtain the upper bounds.
For the first integral from (2.9) we get

1
[ lagl = [ jagal s [} e o)

NG

1 1
r NG 2 1
:262/ﬁu1C“du+(2—r)(1—r)/2 u T = 0wy |, 7> 2.
0 1 R

75
(2.11)
In view of the fact that the function |u — 1|'~®|d¢’(u)| is continuous

on the segment [2, 2] it is bounded on this segment. Thus

[N

[ a1y w) = o). (2.12)

2

Now we estimate the third integral from (2.9):

[, = vlagwl < [ uldsw)

2 2

=(2-7)(1- r)/ udu < K, 1> 2. (2.13)
3
2

For first integral from (2.10) we get

[e'S) ‘
30 o 1 ‘f 1 o l—r—cx
/0 u”o‘ =02 / dut / du

= O(M) r > 2. (214)

Let us estimate the second integral from (2.10). Similarly to formula
(30) of [12], it can be shown that for the function ¢, given by the relation
(2.4), we have the equality

[t ey, 0w A )
0 0

u1+a u1+a

du+ O(H(, ¢)),
(2.15)
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where A(u) = 1 — u? and
1 o0
H(owg) = o) + o] + [*wtlag ]+ [ = vlas )]
3
Since fl %du = O(1), according to (2.11) and (2.12) from
(2.15) we get

/01 (1 =) —p(L+w)]| _0(5 ). r>2 (2.16)

u1+a l1-r—a

Applying theorem 1 of [6] and taking into account relations (2.11)—
(2.16) we show that the Fourier transform of the function ¢ of the form
(2.2) is summable on the real axis, and the following estimate holds

Al0,9) =0 ), 722 (2.17)

We now show the convergence of the integral A(c, ). Let us consider
the following integrals

[t bl [l [ - vl 219

By (2 p@)] (= w) — p(1 )]
‘Sln2‘/0 Jita du,/o pres) du, (2.19)

and get the corresponding upper bounds.

Let us investigate the first integral from (2.18). Similarly, as in the
proof of Lemma 1 from [13], we divide the segment [0, %] into two parts:
[O, L], [%, %} According to the inequality

NG
e ™ — e 1 1<3u?, ueR, (2.20)
and the fact that if u € [0, 7] then p'(u) <0, we can write
/f = d! (u |—252/f 2ue“2—e_“2+1)du

1
<eof [V upaqu< B (2.21)
0 525"
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Let us estimate the integral on the segment [%, %] From (2.5) we
get

2

p'w) = (1— e —u?)r(r + Du™""2 4 4(—r)u(e™ — 1)u~""}

Fou (e = 2ue™ — 1), (2.22)

One can verify that p”(u) < 0. Further, according to (2.20) and, in
addition, to the inequalities

o | S,
[ V]

e 4l —1< ueR, (2.23)

) — 9

we have

1 1
2 1-a / 29 —u? —l-r—a
wdp (w)] <7r(r+1) (u”+e u du
1 1
Vs Ve

1
+4r/2 (1-— e‘“Q)ul_r_O‘du +2 /2 (21126_“2 —e % 4 Dul=""du
1

1

NG NG
1
2 K
<K / F Uty < Ky ——2 (2.24)
1 2=
75
In view of (2.21) and (2.24) we find
2 1
1—a / _
/0 W dy! ()| = 0(1+ 752*”%)' (2.25)

By the same way as to estimate the second integral from (2.18), we
get

3

[ = 1w w] = 0@, (2.26)

2
To estimate the last integral from (2.18) we use (2.22) and the fol-
lowing inequalities

<1, 1-e <1, w2 <1, ucek. (2.27)
We obtain
o0 o0 o0
/3 (u—1)|dp' (u)] < ﬁ uldp (u)] < KL u ' Hdu < Ky, r>2.
2 2 2
(2.28)

Analogously to the estimation (36) of [14], to estimate the first inte-

gral with (2.19) we divide the interval [0,00) into three parts: [0, %],
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[%, 1], [1,00]. According to the first inequalities from (2.23) and (2.27)

we get
1 2
o'} ’ = U 2
pw)| o [VseT" +ut—1
/ ta du =20 /0 e
a1
(/ / ) +u? - 1)u % < l(5% VB
2 Jo
3 r—o > l—r—a K2
+* du —+ du § Kl + S rta (229)
2)a 1 e

Vs
Let us estimate the second integral from (2.19). Similarly, as for function
©, the following relation holds

=) —p( 4w, UL =) = A+ w)
ul+a ~Jo ul+a

du + O(H (o, p)),

(2.30)
where A(u) = e + u? and

H(awn) = [nO)]+ 0] + [ u =l + [~ = D]’

2
Since fl %du = O(1), according to (2.25) and (2.28) from
(2.30) we get

1 | o o
p(1—u) — p(1 +u) 1
’UJ1+0‘ d’LL = O 1 + ﬁ 5 r> 2. (231)

Applying theorem 1 from the paper of Bausov [6] and taking into
account estimates (2.29) and (2.31), we have

1

Thus, we showed the convergence of integrals A(c«, ), A(a, n) and
validity of the relation A(a,p) = o(A(a,¢)). So equality (2.8) holds.
Whereas an estimation (2.32) from (2.8) we receive

EWEHY Ws)o =

(=%
ols|

1 1
sup || f. —i—O( Ta—i—). 2.33
fGWé H <PHC 5 + 52 ( )

It is well known that Fourier series of the function f,(z) (see, e.g.,
[15]) is of the form:

ng ( > k" (ay, cos kx + by sin kx).
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From here, considering formulas (2.4) and (1.1) we have that

o 1.2
S(fo(x)] = Z (5{{_ (ay cos kx + by, sin kx)
k=1

[MIh]

1 1
= 2 () = —ﬂf”(a:), (2.34)

where f” be the second derivative of function f.

1]

2]

3]

[4]

[9]

[10]

[11]

Substituting (2.34) into (2.33), we obtain (2.3). Theorem is proved.
O
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