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MODELLING OF LATTICES
OF TWO-DIMENSIONAL QUASI-CRYSTALS

We propose the method for modelling of quasi-periodic structures based on an algo-
rithm being a geometrical interpretation of the Fibonacci-type numerical sequences.
The modelling consists in a recurrent multiplication of basis groups of the sites,
which possess the 10-th, 8-th or 12-th order rotational symmetry. The advantage
of the proposed method consists in an ability to operate with only two-dimensional
space coordinates rather than with hypothetical spaces of dimension more than
three. The correspondence between the method of projection of quasi-periodic lat-
tices and the method of recurrent multiplication of basis-site groups is shown. As
established, the six-dimensional reciprocal lattice for decagonal quasi-crystals can
be obtained from orthogonal six-dimensional lattice for icosahedral quasi-crystals
by changing the scale along one of the basis vectors and prohibiting the projection
of sites, for which the sum of five indices (corresponding to other basis vectors)
is not equal to zero. It is shown the sufficiency of using only three indices for de-
scribing diffraction patterns from quasi-crystals with 10-th, 8-th and 12-th order
symmetry axes. Original algorithm enables direct obtaining of information about
intensity of diffraction reflexes from the quantity of self-overlaps of sites in course
of construction of reciprocal lattices of quasi-crystals.

Keywords: quasi-periodic structures, Fibonacci sequence, projection method, basis
vectors, rotation symmetry, reciprocal lattice.

1. Introduction

One of actual problems of modern solid-state physics is the description
of quasi-crystalline materials structure. For the establishment and de-
scription of crystal structures, the experimental and theoretical basis is
well developed. In the same time, formal extrapolation of laws and
methods of classical crystallography to quasi-crystalline structures leads
to significant difficulties. For instance, the usage of three Miller indi-
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q, Fig. 1. Basis vectors of planar quasi-lattice with de-
cagonal symmetry

ces for denoting of atomic planes (corre-
sponding to the reciprocal quasi-lattice sites)
leads to the fact that these indices are irra-
tional in most cases. In practice, the using of
non-integer indices is inconvenient. There-
fore, for the indexing of quasi-crystals planes
s s with the symmetry of icosahedron, in paper
[1], it was proposed the replacement of three
index symbols with six-index integer index as (h/h' k/k'1/I'), H = h + h't,
K =Fk + E't, L =1 + l't, where irrational constant number t = 2cos(n/5)
denotes ‘golden ratio’.

Another method of indexing of atomic planes is the result of model-
ling method of icosahedral quasi-crystal structures. It consists in pro-
jecting the six-dimensional hypercube lattice on the three-dimensional
space [2, 3]. In this method, the six-index designation (n, n, n, n, n; n;)
was proposed for both atomic planes and reciprocal lattice sites, since
the symmetry of quasi-crystal lattice is identic to corresponding sym-
metry of its reciprocal lattice [4, 5]. In addition, for icosahedral quasi-
crystals, authors commonly use the two-index (N, M)-type designation
based on the fact that square number of the vector of reciprocal icosa-
hedral quasi-lattice can be presented as [1]

Q2 =N + M. 1)

One of the differences of quasi-crystals, which have 8-th, 10-th or
12-th order symmetry axis, from the quasi-crystals with icosahedral
symmetry is the periodicity in direction of higher order axis. The cor-
responding index associated with this direction always accepts integer
value and there is no need to replace it with the combination of two
indices comprising rational and irrational part. The issue is in ambigu-
ity of assignment of base vectors for flat quasi-lattice, which is perpen-
dicular to symmetry axis of the 8-th, 10-th or 12-th order. In many
papers relating to decagonal quasi-crystals [6—10], there are five-index
symbols of diffraction reflexes. These symbols include four indices re-
ferring to flat quasi-lattice and one index referring to periodicity direc-
tion. In papers [11, 12], authors used a six-index notation for such
quasi-crystals. In this case, the five-dimensional index refers to flat
quasi-lattice. Quite often, e.g., in Refs. [3—15], reflexes are simply de-
noted as those related to the quasi-crystalline phase without specifying
the corresponding indices. The difference in the number of indices is
caused by the fact that for the basis vectors of flat reciprocal quasi-
lattice are used five vectors, which directed from the pentagon centre to
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its vertices (xq,, =q,, tq;, *q,, £q;) (Fig. 1). However, considering equa-
tion q, + q,+ q;+ q,+ q;= 0, obviously, it can be used only four basic
vectors. However, the simplification of indexation, which consists in
reducing of number of used indices, leads to the fact that equivalent
sites of reciprocal quasi-lattice are differently indexed (Fig. 2).

In addition to the problem with indexing, there is also the problem of
calculating the diffraction maxima intensity. The main difficulty consists
in impossibility of assignment of quasi-crystals elementary cell and, con-
sequently, in impossibility of calculating the structural factor. One way of
solving this problem is to approximate quasi-crystalline structure with
cubic or other lattices with large parameters [16—19]. However, this meth-
od is not convenient, since in order to increase the correspondence of the
calculated results to the real one, it is necessary to choose the elementary
cells of approximant structure with the largest values of lattice parame-
ters. In this case, the number of cell basis elements naturally increases.

Another method for evaluating the intensity of reflexes is based on
the using of periodic lattice in multi-dimensional, in particular, six-di-
mensional [20] space.

To solve these problems more correctly, the original method of mod-
elling the quasi-periodic structures, elucidated in papers [21-25], is
proposed.

2. Decagonal Quasi-Periodic Lattices

Since the concept of the quasi-crystal is closely related to the concepts
such as Fibonacci sequence (elements of which are determined by the
equation F,=F, |, + F, ,) and the ‘golden ratio’ (expressed by t number),
then, some kind of geometric interpretation of this sequence is sug-
gested for modelling.

For two-dimensional decagonal quasi-lattice, the process of model-
ling can be demonstrated as follows. The group of sites, set by ten basic
vectors (+q,, £q,, £q,, £q,, £q;), is selected for the first element of the
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Fig. 3. The process of generation of
quasi-lattice sites: (a) initial group of
sites, (b) displacement of additional
initial group of sites along one of the
basis vectors, (¢) group of sites D,, (d)
group of sites D,

Fig. 4. Group of sites D, constructed
according to algorithm no. 1

‘sequence’. Let us call this group as
D, (Fig. 3, a).

To simplify the recording, we de-
note these ten vectors as q;, where i-
index varies from 1 to 10. The group
D, is obtained by placing the centres
of additional ten groups D, in the
sites of the initial group (Fig. 3, b,
¢). Thus, the group D, is the set of
sites given by the set of vectors, {q,},
of the previous group, D,, and the
vectors obtained by the addition of
vectors, {q, + q;}. Schematically, the
procedure for obtaining this group
can be written as D, = D, + {q,}D,,
where the equation {q,}D, denotes the
shifting the centre of the group D,
into corresponding vectors. Then, on
ends of the vectors (tq,, f1q,, t1q,,
*1q,, *1q;) constructed from the cen-
tre of the group D,, the centres of
the group D, are placed. As a result,
we obtain the group of sites D, (Fig.
3, d) [21, 22].

For obtaining the group D, on
ends of the vectors (£t%q;, £7%q,, £1%q;,
+t’q,, *1?q,) constructed from the
centre of group D,, ten groups D, are
placed (Fig. 4). Generally, to obtain
the group D,, we have to put the
centres of the group D, ; at the ends
of the vectors (f1"?%q,, £1"%q,, £1" %qs;,
+t"%q,, 1" 2q,) constructed from the
centre of the group D, ,.

The total algorithm for model-
ling the decagonal quasi-crystalline

lattice can be written in the form of recursive expression D, = D, ; +
+ {t"?%q,}D, ,. Starting with the third group of sites, it is possible
to implement two more versions of recursive algorithm: D, = D, , +
+ {="%q}D, ,and D, = D, , + {="*q,}D, ,.

Therefore, we denote the algorithm D, = D, , + {t"?q,}D, , as al-
gorithm no. 1, D, = D, , + {t"2q,}D, , as algorithm no. 2, and D, =D, , +

+{1"2q,}D, , as algorithm no. 3.
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It is known [3, 5, 9] that reciprocal for decagonal quasi-crys-
talline lattice is also decagonal quasi-periodic lattice. Therefore,
obtained models can be compared with electron diffraction pat-
terns of real decagonal quasi-crystals having selected certain scale.
In fact, these electron diffraction patterns represent the section
of three-dimensional reciprocal lattice.

The quasi-lattice model constructed according to the first algo-
rithm is in a good agreement with the electron diffraction pattern,
which was obtained in [26] for the Al-Ni—Co alloy with a decago-
nal structure (Fig. 5, a, b). However, the coincidence of model
sites is observed only for reflexes with high and medium intensity.
Some of the same low-intensity reflexes according to specified al-
gorithm are not generated. Using the algorithm no. 2 eliminates
this problem (Fig. 5, c).

Table 1. Characteristics of D, groups constructed according to three algorithms

Algorithm
1 2 3
Group D,=D,,+{t"*q}D,, D,=D,,+{r"%q}D,, D,=D,,+{t"%q}D,,
Vectors Group Group Group
of group radius Group vectors radius Group vectors radius
D, |{a} 1 |{q} 1 ({a} 1
D, |{q}; {q, + q;} 2 [Ha}, {q, + g} 2 Hahlg, + qf 2
D; |{a}, {q, +q}, |t+1]|{q} T+ 2 {a}, {q, + q}, {tq, + q}, | T+ 2
{rq, + q;} {rq, + q; + q,}, {rq, + q; + q;}
D, |{a}; {a, +q}, |t+3[{a}, {a,+q}, |21+ 3|{q}, {q, +q}, {tq, + q}, |21+ 3
{rq, + q;}, {r’q, + q;}, {rq, + q; + q,},
{t*q, + q;}, {t*q, + 1q; + {P’q, + q}, {t°q, + q, + q,},
{t’q, + q; + q,} +q,+q) {t’q, + 1q;, + q;},
{t’q, + 1q, + q; + q,}
D, |{a}, {q, + q;}, |37+ 2|{q}, 4t + 4 |{q}, {q, + q;}, {1q, + q;}, |47+ 4
{rq, + q;}, {rq; + q; + q,}, {rq, + q; + q,},
{r°q, + q;}, {r’q; + q;}, {r’q, + q;},
{t%q, + q; + q,}, {r’q;, + q; + q,}, {t%q, + q; + q,},
{°q, + q;}, {r’q, + P°q; + q,}, {t’q, + 1q; + q,},
{t°q, + q; + q,}, {t*q, + t*q; + {’q, + 1q;, + q, + q},
{t%q, + 1q; + q;} +1q, +q,+q,} {t%q, + q}},
{’q, + q; + q,},
{r°q, + 1q; + q,},
{r*q, + 1q; + q, + q},
{t%q, + P*q; + q,},
{t’q, + g, + q, + q;},
{r*q, + P’q; + 1q, + q,},
{t*q, + ’q; + 1q, + q, + q,,}

ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 555



V.V. Girzhon and O.V. Smolyakov

a] o] <]

Fig. 5. Overlaying the model groups of lattice sites on electron diffraction pattern
of real decagonal Al-Ni—Co quasicrystal [26] (a), where the sites are constructed via
the algorithms nos. 1 (b) and 2 (c¢)

Using the algorithm no. 3 also leads to similar result. Some
characteristics of sites groups constructed by three specified algo-
rithms are given in Table 1, from which it is evident that the
groups constructed according to the algorithm D, =D, , +1t"2%q,D, ,
(algorithm no. 3) include also those groups, which are constructed
according to the two another algorithms.

It should be noted that starting from a group D, the last sub-
sets of vectors in algorithms nos. 2 and 3 (Table 1) contain all
other ‘preceding’ subsets of corresponding algorithm. For exam-
ple, the subset of {tq, + q; + q,} vectors (D; group) contains {q, + q;}
and {tq, + q;} vectors. It can be easy verified, if to consider some
properties of basic vectors, particularly that q;, + q;,;, = —1q,, ;. At
the same time, the last element in groups constructed according to
the first proposed algorithm, in the general case, does not contain
all subsets. For example, {t%q, + q; + q,} subset in D, group does not
contain {q,} vectors. It follows from the fact that |t®q, — 1q, — q| >
> |q|. Thus, the quasi-lattices constructed according to the second
and to the third algorithms are identical with each other and D,
group is reduced to the set of sites given by {q, + q, + 1q; +
+ t%q,, +...+ 1" 'q,,} vectors.

2.1. Relation between Decagonal and Icosahedral
Quasi-Lattices; Indexing of Diffraction Reflexes
Writing five unit basis vectors (Fig. 1) in a form

1 (7. . 1. . 1(=T
=—|—i+jl, =—(0i+21j), =—|=i+ijl,
q, 21& JJ 4 =5 ( i), a, 2T[y1 J]

1 ii+?2' q 1 li+?2j
G 2t vy Vs 2t vy ’
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where y = 1/ NJT+ 2, then, we can show that, in a case of plain decagonal
quasi-lattice, the equation for square distance between the random site
and origin of coordinates (Q = n,q, + n,q, + n,q; + n,q, + n,q;) can be
reduced to the form:

Q> =(n2 + n2 + n2 + n?+n2- nn, — n,n, — ngn, — n,n, — n.n,)+
+ (nyny + nyng + nyny, + Ny + NNy — NN — NN, — NN, — NN, — NNL)T. (3)
Using denotations
N'=n}+nl+n2+n}+n2-nn,— n,n,—n,n, — nn, — nn,
M =nn, + n,ng + nyn, + NN, + NNy — NN, — NNy, — NNy — NN, — N, (4)

it can be derived the equation, which is similar by the form to obtained
in Ref. [1] for icosahedral quasi-crystals:

Q) = N* + M*t. (5)

Identical form of Eqs. (1) and (5) is due to the relation between
icosahedral and decagonal lattices. To prove this statement, let us use
the method of projection and select six orthogonal vectors in the recip-
rocal six-dimensional space, which the general view was reported in
Ref. [1]:

u=[t101T71 0]
u,=[0t1017],
u3:[TOrr(11], ©6)
wu=[07T101T7]
u,=[t 1 01 7 0],
u=[10rt 7 0 1],

Let us consider the first triple and the second one of components for
each vector as the Cartesian coordinates of reciprocal spaces: physical
(XYZ) and ‘perpendicular’ (X'Y'Z') ones. The vectors (6) determine six
vertices of icosahedron both in physical and ‘perpendicular’ spaces.
Thus, the projection of six-dimensional periodic structure constructed
on the set of vectors (6) specifies the reciprocal icosahedral lattice. Us-
ing rotation matrix of the form

yt Oy 0 O O
01 0 O0 0O
y 0O yvr 0 0 O
000 v 0 yt| 0
0 00 010
0 0 0 vyt 0 v
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the system (10) can be converted in a manner that vector u, is projected
only onto Z and Z' axis, while projections of the rest of five vectors on
XOY and X'OY’ planes specifies the vertices of regular pentagon:

u =[yt* 1yt y T 1),
u,=[y t oyt ¥y 1 71,
u, =[2yt 0yt 2yt O yt], ®)
w=y Ty’ 1y,
u, =[y* 1yt v t ¥,
u, =[0 0 1/y 0 O 1/v].
The set of vectors (8) remains orthogonal, and next statement is
correct for both the (8) and (6) vectors:

|u1|=|u2|=|u3|=|u4|=|u5|=|u6|=\/2(r+2) . 9)

Linear combination of the first five vectors (8)

% * *
q, = (111 - 113), q, = (112 - u4), q; = (u3 - u5),
* _ * _
q, = (u, — w), q; = (u; — uy)
represents five vectors in reciprocal six-dimensional space, which pro-

jections onto physical and ‘perpendicular’ spaces are coplanar between
each other:

(10)

9, =[vy 1 0 Ipr T 0],
q,=[0 2t 0 0 2 0],
q; =[t/y 1 0 1yt T 0], (11)
q, =[x T 0 1y 1z 0],
9, =[/y ™ 0 1/y 1/t 0]

Comparing Egs. (2) and (11), we can write

4=, 4=, 4= a), @, = a6, = g5 (12)
1 2T 1 2 2T 2 3 2T 3 4 2T 4 5 2T 5
here, q’;" are projections of q; vectors onto reciprocal space.

Thus, the basis vectors {q,} of reciprocal decagonal quasi-lattice in
physical space are expressed through the similar basis vectors of re-
ciprocal icosahedral lattice. Using equations (12), it is possible to ob-
tain the relations between (N, M*) and (N, M), which appear in Egs. (1)
and (5):

N+ Mt =1/(2t)*(N + Mt), N =4/(N"+ M"), M =4/(N"+ 2M"). (13)
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Let complement the system (11) with sixth vector and divide all vectors
by 2t:

Qb =[1/2y 1/2t 0 1/2y7° 1/2 0],
qs =[0 1 0 0 1/t 0],
i =112y 12t 0 1/2yt* 1/2 0],
Qb =[1/2yr T/2 0  1/2yt 1/2¢° 0], (14)

as =[1/2yr T/2 0  1/2yt 1/2¢ 0],
q¢ = [0 0 AA2yt 0 0 AA2y1.

Establishment of dimensionless coefficient A for vector u, is equiva-
lent to the substitution of the six-dimensional cubic lattice by the or-
thogonal non-cubic one. It is necessary to note that

ja?| = [a5| = |ag| =as| = |af| = VB =7, |a5| = 1B~ (15)

According to (10) and (14), the indices of random site of reciprocal
decagonal lattice (n, n, n; n, n, ny) can be expressed through the indices
of reciprocal icosahedral (non-cubic) lattice (k, kB, kB, k, B k;) by next
equation:

1 0010 0)\(n k,
01 001O0||n k,
T91000n3:k3. (16)
01010 0]||n k,
00101 0||n k,
000 0O0 1)(n ks

It can be easily shown that the sum of the first five indices &, derived
from Eq. (16) is equal to zero.

Thus, the reciprocal decagonal lattice can be constructed by the pro-
jection of six-dimensional orthogonal non-cubic lattice (which corre-
sponds to distorted icosahedral lattice) onto the physical space. Addi-
tionally, it is necessary to prohibit the projection of sites, in which the
sum of the first five indices is not equal to zero.

Considering (14), Eqgs. (3) and (5) can be written as

Q) =(n? + n2 + n2 + n? + n2— n,n, — n,n, — nyn, — n,n, — n,n,) +
+ (nyny + NNy + Ngn, + NN, + NN, — NNy — NN, —
— ngng — n,n, — nn,)T+An, an
Q7] = N* + Mt + 22L2, (18)

where N = n,.
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Table 2. Site indices of the flat decagonal quasi-lattice based
on five base vectors and corresponding indices N* and M".
The relation between the value of the parameter tN*— M"
and the self-overlapping quantity in the model group D,

No. | (m,nynymymy) | N | M Q| N - M ggjﬁggg of self-
1| 11100) 5 -3 2-1 11.09 131
2| (10100) 2 -1 -1 4.24 538
3| a1011) 7 -4 | J7T-4ac 15.33 24
41 (10000) 1 0 1 1.62 850
5| 11000) 3 -1 3-1 5.85 424
6 | (20200) 8 -4 2t - 2 16.94 5
7|1 (20100) 5 -2 5-2t 10.09 167
8 | (20101) 4 -1 -1 7.47 287
9| (11000) 1 1 T 0.62 1033

10 | 21101) 8 -3 831 15.94 14

11 | 10100) 2 1 2+t 2.24 764

12 (21000) 7 -2 N 13.33 57

13 | (20000) 4 0 2 6.47 347

14 11100 3 1 3+t 3.85 514

15 @x11071) 5 0 V5 8.09 259

16 | (20110) 7 -1 T-1 12.33 76

17 (21000) 3 2 J3+2t 2.85 615

18 | (20101) 8 -1 8-t 13.94 41

19 | 11010) 2 3 T+1 0.24 1018

20 201171) 9 -1 Jo-1 15.56 15

21 21001) 6 1 N 8.71 216

22 | (20010) 5 2 J5+ 21 6.09 338

23 | (21100) 7 1 T+1 10.33 150

24 | (30000) 9 0 3 14.56 27

25 110171) 3 4 J3+4t 0.85 944

26 21011 8 1 J8+1 11.94 80

27 | (21100) 5 3 5+ 31 5.09 405

28 | (22000) 4 2t 2.47 623
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Proceeding from the above, it can be proposed quadratic form for
decagonal lattice:
1 N +Mt+AML N +Mt I’ c 1
— = > = - +—, —=—. (19)
d a a c a A

Using equations (4) and (18), it is possible to proceed from the six-
indexes’ notation (n, n, n, n, n, ny) to the three-indexes’ one (NML),
which is more convenient in the case of indexing the XRD-patterns of
polycrystalline samples. The values of N and M for the plain quasi-lat-
tice are presented in Table 2 in ascending order of |Q|. Equation (19) is
formally identical to quadratic form for tetragonal lattice.

2.2, Intensity of Diffraction Reflexes

In paper [1], it has been shown that, for icosahedral quasi-crystals, the
intensity of diffraction reflexes is determined by the value of t(tN — M)
that is the distance between the site of hyper-lattice and its correspond-
ing projection onto physical space. Moreover, the intensity increases
with decreasing of this distance. In our case of two-dimensional decago-
nal quasi-lattice, the distance from the site of six-dimensional lattice to
physical space is determined by modulus of vector:

Q, =y + 1,0 + 50y + 1,45 + 1505, (20)
where ¢ are projections of six-dimensional vectors (14) onto ‘perpen-
dicular’ space. Using the set of Eqgs. (14), it can be shown that the
square value of Q, modulus can be expressed through the same param-
eters N* and M", which determine the square value of vector modulus in
physical space (5):

Q.7 = 3Nt + M¥). (21)
Therewith, the square value of six-dimensional vector modulus is equal tol.5
QP =1QF +1Q.F B - (V" + M. (22)

It occurs multiple overlapping
of sites during modelling the two-
dimensional decagonal lattice ac-
cording to definite algorithm since
various combinations of basis vec-
tors can lead to the same result.

Fig. 6. Correlation between the intensity
of reflexes on electron diffraction pattern
from decagonal AIl-Ni—-Co quasicrystal
[26] and the quantity of self-overlaps of
sites at the construction of the quasi-lat-
tice according to algorithm no. 3 (group of
sites Dg)
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Computer analysis of constructed lattices allowed indicating distinct
correlation between the value of (Nt — M) parameter, experimental
intensity of reflexes and the number of overlaps (Fig. 6, Table 2). The
revealed correlation evidences for correctness of the selection of six-di-
mensional lattice basis vectors (14) that is in agreement with the data
of paper [1] for icosahedral lattice. The selection of alternative basis,
which projection onto the physical space also determines the vectors (6),
may interrupt this correlation. For example, in paper [27], it has been
proposed orthogonal basis in five-dimensional space:

qi) = [cy 85 €5 S 1/\/5]’
qg =[e; s ¢ 84 1/\/5]3
Q@ =[c, s, ¢, s, 121, (23)
qi = [63 S3 €4 84 1/\/5],
: 2
q; = [¢, s, ¢, s, 1N2],

where ¢, = cos(2rmn/5), s, = sin(2rn/5), and the first two vectors compo-
nents are referred to the physical space, while the rest ones are referred
to ‘perpendicular’ space. In this case, correlation between the distance
from the site of five-dimensional lattice to physical space and the inten-
sity has not been observed.

Comparing systems (14) and (23), we can propose the criterion for
selection of decagonal-lattice basis vectors in the space with dimension-
ality, which is higher than 3: the sum of five basis vectors has to be
equal to zero.

Correlation between the intensity of reflexes and the number of
overlapping could be interpreted in the following way. Basis sites of
quasi-crystalline lattice are obtained from the projection of hyper-lat-
tice sites ‘closely’ located to physical space. Moreover, according to Eq.
(26) and Table 2, (10100)- and (10000)-type sites are located at the same
minimal distance from coordinate start in six-dimensional space. How-
ever, the (10000)-type sites are ‘closer’ located to physical space and
this determines their selection as the basis ones. The only one site of
six-dimensional hyper-lattice, which located in the real (physical) space,
is the origin of coordinate. This is necessary condition of aperiodicity of
this hyper-lattice projection in any direction.

In fact, the overlapping of geometric group shifted by certain vec-
tor means ‘parallel transfer’ of physical space so that another site of
hyper-lattice closely located to the physical space is turned out in the
real space (this site corresponds to 1" %q, vector). Intensity of diffraction
reflexes is determined by the distance from the hyper-lattice site to
physical space [20]. Since that, indicated correlation of intensity can be
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L
(eF} 2

Fig. 7. Mutual ori-
entation of basis
vectors in the
physical (a) and
‘perpendicular’ (b) a/ s q q;
spaces

interpreted in terms of probability for hyper-lattice site to be in projec-
tion region at the ‘shifting’ of the physical space during the generation
of sites groups. In this manner, within this algorithm, the sites located
closer to the initial physical space are generated more frequently as
compared to those located at higher distances. Therefore, multiple gen-
eration of the same sites enables to get information on the intensity of
appropriate diffraction reflexes.

Figure 7 illustrates mutual orientation of the basis vectors projec-
tions onto the physical q;, and ‘perpendicular’ q; spaces according to the
set (14).

Value of q, + q, =—1q, type defines one of the shifting the group of
sites during modelling process. It corresponds to ‘perpendicular’ shift-
ing to qi + qy = —q; /7 vector. It follows that the radii of sites groups in
the model (algorithms nos. 2 and 3) in the physical and ‘perpendicular’
spaces are defined by equations:

rp=l+l+t+.412% rt=1+1+1/t+..+1/177, (24)

respectfully. The second equation in (24) shows that the radius of sites
groups in ‘perpendicular’ space is limited:

rt =1+1Q-1/0)'=1+=1+2. (25)

It follows that only those sites of six-dimensional lattice, which are
located at the distance not higher than t + 2 from the physical space, are
projected within discussed model. Then, during the construction sites’
groups of high orders, the density of its location will be limited due to
finite size of projection region [21].

3. Quasi-Periodic Lattices with Octagonal Symmetry

Let show that algorithm D, = D, _, + {t"?q,}D,_, proposed for decagonal
quasi-crystals is appropriate for using to quasi-crystalline lattices with
octagonal symmetry.
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ds
A

Ay (¢ ds )

Fig. 8. Options for
selection of the ba-
sis vectors for quasi-
lattice, which pos-
\ N sesses the octago-
a b nal symmetry

3.1. Real Space

The set of basis vectors has to be selected with two options, which are
different in mutual orientation (Fig. 8):

q, = (1i +0j), q, = {g(i +j)}, q, = (0i +1j), q, = [—%‘ _j)j (26)

q, = (1i +0j), q, z(g(”j)j’ ds =[—g(i—j)], a, = (0i-1j). (27

As we can see, there is some ambiguity in selection of basis vectors.
Then, if we consider q; as reciprocal lattice vectors, the ambiguity in
indexing of diffraction reflexes of octagonal quasi-crystals will exist.

For example, let consider set (26) as the basis. Initial sites group O,
is constructed with (+q;, £q,, t+q;, £q,) set of q, vectors. Algorithm for
modelling the lattice can be expressed in the form

On = On—l + {Ssrrzqi} On—l’ (28)

where we use ‘silver ratio’

0, 0, O, =1+ \/5) as parameter by
analogy with ‘golden ratio’ t

[28]. One of the properties of

number 9§, is that exponent va-

0, lues for it can be expressed as

r=KJ3 + K, ; (29)

here, K, are Pell’s numbers
(0; 1; 2; 5; 12; 29; 70; 169;

Fig. 9. Model for construction of
the octagonal quasi-lattice
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408; ...), which satisfy to K, = 2K, , + K, , condition [29]. It should be
noted that there is a relation between the basis vectors:

q, +q, +9q; = 5.q,. (30)

Then, using equations (29) and (30), we can write as following:

8iqz =2(q, +q, +q3) + 4, = 2(q; +q3) + 34,3

850, =5(q, +d, +dy) + 24, = 5(q, +qy) + 79,3

S:qz :12(q1 +4q, +q3)+5q2 :12(q1 +q3)+17q2; (31)

quz =K,(q, +q, +q3) + K, ,q, = K, (q, +q3) + (K, + K, ,)q,.

Thus, it is evidently that any site of O, = O,_, + {87 2q,}O,_, group
can be expressed as linear combination of basis vectors in the form
Q = n,q, +n,q, + nyq; + n,q,. Figure 9 illustrates the example of applica-
tion of specified algorithm for O, sites group.

It is important that algorithm (28) can be modified by substitution
of one or few numeral coefficients (Fig. 10):

(@ 0,=0, +{q}0,, .., 0, =0, , + {672q}0, ;

(b) 0,= 0, +{q)0,, O, = 0, + {2} 0,, ..., 0, = 0, , + {5"q,} O, ,;
(c) 0, =0, +{q}0,, O, =0, +{2q,}0,, .., 0, =0, , + {8/°q,} O, ;;
) 0, =0, +{2q,}0,, ..., 0, =0, , + {87 %} 0, ,.

Fig. 10. Fragments of octagonal lattices for different
a algorithms, where O, group is marked
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Also momentous is condition
that specified coefficients are ex-
pressed through relations between
basis vectors similar to Eq. (30).
In contradistinction to known
modelling methods [30—-34], this
proposed method for multiplying of
sites groups allows to classify qua-
si-crystalline structures. For exam-
ple, Fig. 11 illustrates two-dimen-
sional quasi-periodic structure [35].
It is evident that this structure is
in agreement with the mo-del shown
in Fig. 10, d. Such structure ac-
Fig.. 11. Two-dimensional colloidal  ¢ording to numeric coefficients in
quasi-crystal [35] algorithm can be expressed as the

structure of O(5,—1,57?) type. The
structures obtained with other structure algorithms (Fig. 10, a, b, ¢)
can be denoted as O(1,6"?), O(1, 2,6 3) and O(1,5,—1, 6"?), respectively.
It is easy to show that variation of algorithm consists in rearrangement
of coefficients at q,. For instance, O, = O, + {8,4,}O,, O; = O, + {q,} O,,
O, =0, + {2q,}0;, ..., 0, =0, , +{0"3q,}O,_, leads to construction the
structure, which is the same as obtained with O, = O, + {q,}O,,
O, =0, + {2q}0,, .., O, = 0, +{0"3q,}O,_,. That is why it is advi-
sable to note the coefficients in notation of structural class in ascen-
ding order.

It is known [36, 37] that quasi-crystalline lattice can be represented
as projection of periodic lattice in the space with dimensionality R onto
space with dimensionality d. In the case of octagonal plain quasi-lattice,
it can be proposed the projection of four-dimensional hyper-cubic lattice
onto the plain. If the basis of four-dimensional lattice are represented
as orthogonal vectors,

u=[1010], u,=[V2/2 V2/2 —V2/2 J2/2],
u, =010 -1], wu, =[-2/2 V2/2 V2/2 J2/2],

then, the first two coordinates of each vector correspond to basis vec-
tors. Two of rest coordinates correspond to the vectors

ai = 1i+0j), qf =(-(2/2)i+(2/2)),
a; = (0i—-1j), q =((2/2)i+(2/2)j),

which are projection of set (32) onto ‘perpendicular’ space. Mutual ori-
entation of basis vectors in ‘perpendicular’ space with preset basis in

(32)

(33)
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A4

L 1
@ @ 42 Ay
I 1
Fig. 12. Mutual » >
orientation of ba-
sis vectors (32) at
their projection to
physical and ‘per- N
pendicular’ spaces Y a3

physical space is presented in Fig. 12. Evidently, the vector of physical
space q, + g, + ¢, corresponds to the vector of ‘perpendicular’ space
q; +g;+ q;, whose modulus has a minimal value for all combinations of
three basis vectors.

We show that algorithm (28) corresponds to the sites of four-dimen-
sional hyper-cubic lattice, which are closely located to physical space.
By this way, it will prove that proposed method and projected method
are equivalent between each other. For this, it is enough to show that
‘the radius’ of sites group in ‘perpendicular’ space (maximal distance
from sites of four-dimensional space to physical space) is finite. As seen
from Fig. 12, the next equation is valid during execution of Eq. (30):

a +q; +q; = (2 -1a; = ~(1/8,)a; - (34)

We can show from Eqgs. (831) and (34) that boundary radii of sites’
groups r,,, and ri _  are equal to

_ S ]2 _
r,., =1+ 2263 =,
P

- 1 8, +1 J2
- . + — =1+ =2+—
n=2 1—63 2 2

Thus, the distance from projected four-dimensional lattice to physical
space does not exceed 2 + J2 / 2. Hence, proposed method is quite correct.

3.2. Reciprocal Octagonal Lattice

Let us analyse the possibility of using the proposed model for reciprocal
lattice of the octagonal quasi-crystals.

We can reduce the square values of modules of vectors Q, = n,q, +
+ Ny, + NG5 + 1,0, Q) = 1,Qf + 1,05 + gy + 1,4y, and Q = nguy + npu, +
+ ngu; + n,u, (in physical, ‘perpendicular’, and four-dimensional spaces,
respectively) to the form:

2
‘Q”‘ = (n? +n? +n?+n?)+(mn, + nyn, + n,n, —n,n,)\2,
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a] o]
Fig. 13. The overlap of the groups of O, sites on electron diffraction pattern from

octagonal quasi-crystal of the Mn,(Al,Si) system oriented by its symmetry axis of
the 8-th order along the electron beam (diffraction pattern adopted from paper [38])

2
|Ql| =(n? +n? +nl+nl)-(mn, +n,n, + nyn, — nln4)\/§, (35)

2
Q=1Q.F + ‘QH‘ =2(n? +n} +nl +n?).
Using denotations

N = (n} +n} +n? + nl) — (n,n, + nyn, + nyn, — m,n,), (36)
M = (n,n, + n,n, + ny,n, —nn,),

we can deduce

|Qu|2 =N + M3y, (37)
that has similar form to equations for icosahedral (1) quasi-crystals [1]
as well as for plain lattice of decagonal (5) quasi-crystals [21]. At the
same time, the squared distance from site of four-dimensional lattice to
its corresponding projection in physical space is defined by N, — M

value:
|Ql|2 = (N3, — M)/3,. (38)

According to Refs. [18, 20, 34, 36], the value of |Q > defines the
intensity of diffraction reflexes. It is important that |Q [> < (Nt — M)
for the icosahedral and decagonal lattices.

The translation of O, , sites’ groups ond”?q, value corresponds to
shifting its centres to positions of (n,n,n,n,) sites of the (1110)-, (2320)-,
(5750)-, (1217120)-, ..., (K,, K, + K, ;, K,, 0)-type according to Egs. (29)
and (30). The substitution of these indices in Eq. (36) gives the pairs of
values N = K2 + K? , and M = 2(K? + K K, ,): (1, 2); (5, 12); (29, 70);
(169, 408);.... Thus, squared modulus values for shifting vectors of
sites groups can be expressed throw the pairs of N and M numbers,
which are neighbouring elements in Pell’s sequence. The corresponding
pairs of numbers satisfy to the condition M /N < §,, which is necessary
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condition according to Eq. (38). It is can be verified that the value of
|Q |* defined from Eq. (88) is small for these numbers’ pairs as compared

to any other numbers’ pairs.

Table 3. Characteristics of some sites of O, groups constructed

according to algorithms (28) and (39)

No. | (mmmn) | N | M QF | oveane58) | overiane(30)
1 (1-1 1 0) 5 | -2 5.828 5 78
2 (-1 2-1 0) | 10 | -4 11.657 11
3 0 0 1-1) 3 | -1 3.414 12 108
4 (1 00 0) 1 0 1 43 223
5 (1 1-1 1) 6 | -2 6.828 48
6 -111-2) |11 | -4 12.657 12
7 (2-1 1 0) 9 | -3 10.243 22
8 (0 2-1 0) 7| -2 7.828 46
9 (0 0 2-2) 12 | 4 13.657 6
10 (1010 2 0 2 26 170
11 (10 1-1) 3 0 3 25 150
12 (1100 1 1 0.586 48 224
13 (2 0 0 0) 4 0 4 14 119
14 0 1 1-2) 7 | -1 7.414 54
15 (201 0) 5 0 5 10 96
16 1110 1 2 0.172 73 257
17 210 1) 6 0 6 4 78
18 (11 1-1) 2 2 1.172 52 236
19 0 2 1-1) 5 1 4.586 16 112
20 (210 0) 3 2 2.172 28 162
21 11 2-1) 5 2 4.172 15 110
22 2110 3 3 1.756 42 222
23 1210 2 4 0.343 78 286
24 2 2-1 0) 7 2 6.172 61
25 (121-1) 3 4 1.343 44 196
26 (2 20 0) 4 4 2.343 32 202
27 (130 0) 7 3 5.757 8 96
28 21 20 5 4 3.343 17 131
29 21 2-1) 6 4 4.343 20 131
30 3110 7 4 5.343 5 81
31 a2 2-1 5 5 2.929 32 192
32 221 0) 3 6 0.515 48 213
33 (1310 5 6 2.515 27 151
34 2 2 1-1) 3 7 0.101 104 332
35 (13 1-1) 6 6 3.515 32 172
36 (2 3 0 0) 7 6 4.515 7 89
37 2 2 2 0) 4 8 0.686 54 276
38 (31 2-1) 9 6 6.515 3 63
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48
(3,6)

Fig. 14. Indices (N, M) and the quantity
of site overlaps (algorithm (28), O, group)

G for the corresponding reflex on electron
52 diffraction pattern adopted from Ref. [38]

2,2)

eo g Figure 13, a illustrates the over-
lapping of O, sites group on the elec-
tron diffraction pattern for octago-
nal quasi-crystal of Mn,(Al,Si)
system. Evidently, the sites of con-
structed lattice totally coincide with
reflexes from diffraction pattern. Therewith, there are reflexes with
low intensities, which have no corresponding site on the model (some of
them are marked with the point in Fig. 13). Changing algorithm for
construction of O, = O, + {q;} O, into O, = O, + {\/E q;}O, (the next steps
of algorithm remain unchanged) causes the appearance of additional
sites, which coincide with marked reflexes (Fig. 13, b). Thus, diffrac-
tion pattern for octagonal quasi-crystal Mn,(Al,Si) is related to O(5, -
—1,6?), class by geometry. Such algorithm change corresponds to ex-
tending of projection region in four-dimensional space, because
rt . =2++2/2+ (/2 1) in this case.

Table 3 presents the characteristics of some reciprocal lattice sites,
which are the most closely located to coordinate start. These sites have
been generated according to algorithms (28) and the following relation-
ship:

On = Onfl + {6:_3(11} Onfl‘ (39)

As a result of construction of the octagonal quasi-lattices, using
described algorithms (as well as in the case of the construction of de-
cagonal quasi-lattices), there is a multiple mutual overlapping of the
sites. The quantity of this overlaps for various algorithms is presented
in the last two columns of Table 3. As shown, the correlation between
overlapping quantity and |Q |* value is observed for all proposed algo-
rithms as well as for decagonal quasi-lattice (Table 2).

Figure 14 shows indices and the quantity of overlaps (algorithm
(28)) for appropriate reflexes on electron diffraction pattern for octago-
nal quasi-crystal of Mn,(Al,Si) system. As seen, the quantity of overlaps
is in a distinct agreement with intensity of diffraction reflexes.

Reflexes with the next values of indices (N, M) should have suffi-
ciently high intensity according to obtained results:

(1,0); (2,0); (1,1); (1,2); (2,4); (3,4); (3,6); (3,7); (4,8); (5,1);.... (40)

Reasoning from the three-dimensionality of octagonal quasi-crystals
and its periodicity along 8th-order symmetry axis, inter-planar distanc-
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es can be calculated by the equation, which is similar to obtained one for
decagonal quasi-crystals (19):

1/d? = (N + M3§,)/a? + L?/c?% (41)
here, a is spacing parameter of plain quasi-lattice, ¢ is spacing param-
eter along 8th-order symmetry axis.

In practice, value of L index does not exceed 2 during indexing of
XRD (x-ray diffraction) patterns. That is why the number of possible
combinations of three indices (N,M,L) is rather small. It should be
noted that reflexes of (0,0, L)-type can also be observed on diffraction
patterns in addition to reflexes of (IV, M, L)-type (with N and M indices,
which correspond to values of Eq. (40)). Therefore, the indexing of
XRD-patterns for octagonal quasi-crystals should be considered as simi-
lar to indexing of crystalline materials, which belong to middle crystals’
systems.

4. Dodecagonal Quasi-Periodic Lattices

The formation of condensed matter with quasi-periodic long-range order
and with the 12th-order symmetry axis has been established not only for
metal systems (as like Ni—V [39], Cr—Ni [40], Bi—Mn [41], Ta-Te [42],
and Mn—Si—V [43]), but also for liquid crystals [44], colloidal solutions
[45], and polymer systems [46].

Interpretation of the electron and x-ray diffraction patterns for
dodecagonal quasi-crystals, as well as for all others, is also ambiguous
because of indetermination of indexing of diffraction reflections. Such
ambiguity is caused by inflation—deflation symmetry, which is native
for quasi-crystals. As a result, the ratio of the absolute values of the
reciprocal lattice vectors is expressed in terms of so-called scaling factor
[20—-23]. In electron diffraction studies of quasi-crystals, basis vectors
are commonly match with reflections closest to the trace of the primary
beam, which have a very low intensity, as a rule. For this reason, the
minimal (basis) reciprocal lattice vectors (determined in diffraction ex-
periments) are dependent on the experimental conditions.

For construction of two-dimensional reciprocal quasi-lattice, let use
algorithm in the form of recurrent equation:

D, =D, ,+{k"?%q}D,,. (42)

In this case, the k parameter (for dodecagonal lattice, let us denote it as
t) was chosen from geometric interpretation of t and §, numbers and
from the condition that this numbers belong to Pisot numbers [5, 31,
34, 47] 1= 2cos(2n/10) and &, =1 + 2cos(2n/8):

E=t=1+2cos(2n/12), (43)
k=t =2+ 2cos(2n/12). (44)
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D, D,

D,

Fig. 15. Groups of sites obtained according to algorithm (42)
and parameter (43) (D, is an initial group of sites)

a] b

Fig. 16. Comparison of fragment of group D; sites (a) (algorithm (42) and parameter
(44)) with electron diffraction pattern from dodecagonal quasi-crystal (b) of Ta—Te
system obtained in Ref. [49]

Parameters (43) and (44) have been used as scaling factors for a dode-
cagonal lattice in papers [5, 31, 48].

As shown earlier, the application of algorithm (42) for the octagonal
and decagonal quasi-crystals results to complete agreement between ob-
tained quasi-lattices and experimental electron diffraction patterns. The
implementation of algorithm (43) and (44) is illustrated in Fig. 15. The
comparison of this lattice with the electron diffraction pattern of a do-
decagonal quasi-crystal (Fig. 16) [26] shows the qualitative conformity
between them.
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Fig. 17. The overlap of group D, (algo-
rithm (45)) on the electron diffraction
pattern [49] from quasi-crystal of Ta—Te
system

The usage of parameter (44) for
the implementation of algorithm
(42) leads to discontinuities of the
lattice. The conformity of the mo-
del quasi-lattice with above-speci-
fied electron diffraction is obser-
ved after the replacement of algo-
rithm (1) with the algorithm pro-
posed earlier in Ref. [27], which can
be written in the form of the following recurrent relations (Fig. 17):

D, =D, +{q}D,, D; = D, +{2q,} D,, D, = D; +{t,q,} D,
D, =D, +{2t,q}D,, Dy = D, +{t?q,} D, D, = Dy +{2t2q,} D,.  (45)

The numbers ¢ and ¢, are the solutions for quadratic equations x, = 2x + 2
and x, = 4x — 1, respectively. It follows, hence, that any power of ¢ and
t, can be expressed in terms of these numbers proper (e.g., t® = 6¢ + 4,
tt= 16t + 12, ... ; 3 = 15¢ — 4, t} = 56t — 15, ...). We must take into ac-
count that basis vectors q, of a dodecagonal lattice relate as q, + q, + q;=
= tq, and q, + 2q, + q; = ¢,q,. Therefore, one can easy see that the posi-
tions of all sites appearing in the realization of the above algorithms can
be expressed in terms of a linear combination of ¢, vectors. Thus, each
site of model quasi-lattices can be indexed.

Let us compare the proposed method of recurrent multiplication of
site groups with the projecting method. Since six basis vectors are used
for a 2D-dodecagonal lattice, it is logically to use a six-dimensional
hyper-cubic lattice. We require that the first two components of the
coordinates of six-dimensional basis vectors represent the basis coordi-
nates of a 2D-dodecagonal quasi-lattice. Then, we can use the unit or-
thogonal basis vectors proposed in paper [31],

u, =(1, 0, 1, 0, /42, 1/4/2)/43,

u, = (V3/2, 1/2, —+3/2, 1/2, -1/J2, 1/42)/43,

u, =(-12, -+3/2, -1/2, J3/2, 142, 1/42)/43,

u, =0, -1, 0, -1, -1/4/2, 1/4/2)/43, (46)
u, = (-1/2, V3/2, -12, —V3/2, V2, 1V2)/V3,

u, = (-3/2, 12, \3/2, 12, -1/V2, 1/42)/3,
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or suggest another set of vectors:

u,=(@1, 0,1, 0, 1, 0)/43,

u, = (V/3/2, 12, -3/2, -1/2, 0, 1)//3,

u, =(1/2, J3/2, 1/2, J3/2, -1, 0)/43,

u4 2(09 1’ 09 _1’ O’ _1)/\/5,

u, =(-1/2, J3/2, -1/2, J3/2, 1, 0)/4/3,

u, = (-+/3/2, 12, J3/2, -1/2, 0, 1)/4/3.
Each vector in Eq. (46) or (47) has two components corresponding to the
two-dimensional physical (i.e., real) space and two components corre-
sponding to the ‘perpendicular’ space. Therefore, we can write these
vectors as u, = (q); q). For each site in the physical space, to correspond
uniquely to a vector in the ‘perpendicular’ space, it is necessary that,
for the linear combination of vectors that gives a zero vector (e.g., q) — qi+
+q)=0 and q) - q} + q) =0 for vectors (48) given below), the correspond-
ing combination of vectors q; can be also equal to zero. As revealed,

vectors (46) and (47) do not satisfy this requirement. Then, as the basis,
we can choose vectors obtained from set (47) in the following manner:

w=@,-u)=@1, 0 -1, 0, 0, 0),

u =(u, +u,) = (/3/2, 1/2, J3/2, 12, 0, 0),

u, = (u, +u,) = (1/2, 3/2, -1/2, -3/2, 0, 0),
w =(u, +u,)=(0, 1, 0, 1, 0, 0),

u = (u, +u,) = (-1/2, V3/2, 1/2,-43/2, 0, 0),
ul = (u, —u) = (-+/3/2, 1/2, —+3/2, 1/2, 0, 0).

Omitting in these expressions (48) the last two coordinates, we can
obtain the four-dimensional non-orthogonal basis of the lattice, which is

(47)

(48)

Fig. 18. Reflexes of electron diffraction
pattern [49] corresponding to basis vec-
tors according to the algorithm (45) (num-
bered reflexes are described in Table 4)
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Table 4. Indices and characteristics of the sites indicated in Fig. 18

No. | (mmymyn) | NSM | MM | NgM, | lep | lp QU of site
1| @2-201) 7;-4 11;-4 15; -4 0.072 | 13.928 37
21 (1 0-11 2;-1 3;-1 4; -1 0.268 3.732 182
3| (1-110) 4;-2 6;-2 8; -2 0.536 7.464 118
4|1(-11 2-2)| 6;-3 9;-3 12;-3 0.804 | 11.196 76
511 000 1; 0 1; O 1; O 1 1 245
6| (2-1 01 5;-2 ;-2 9;-2 1.536 8.464 144
710 1 1-1) 2; 0 2; 0 2; 0 2 2 266
8| (1 1-11) 4;-1 5;-1 6;-1 2.268 5.732 194
9|1 (1 010 3; 0 3; 0 3; 0 3 3 350

10 (110 0) 2; 1 1; 1 0; 1 3.732 0.268 326

11 (O 2 0 0) 4; 0 4; 0 4; 0 4 4 335

12|12 001 5 0 5, 0 5, 0 5 5 328

13| (11001 4; 1 3; 1 2; 1 5.732 2.268 346

14 | (-1 2 2-1)| 6; O 6; 0 6; 0 6 6 292

15/ (1110 4; 2 3; 2 1; 2 7.464 0.536 387

16| (1111 6; 3 3; 3 0; 3 11.196 | 0.804 440

analogous to the basis proposed in Ref. [81]. It can be verified that the
reciprocal angles between the triples of four-dimensional vectors (uj,
uj;, u;) and (uj, uj, uy) are equal to 60° and 120°. At the same time, each
vector from a triple is orthogonal to vectors from another set. It fol-
lows, hence, that we can consider the given four-dimensional lattice as
a combination of two 2D hexagonal sublattices, the spaces of which are
mutually orthogonal. According to Ref. [60], such a lattice belongs to a
bi-isohexagonal orthogonal system. In the given basis, only four vectors
are linearly independent. Therefore, two vectors (e.g., u} and uj) can be
omitted, writing the basis of the 4D lattice in the form:

q =(1,0,-1,05 q; =(/3/2,1/2,43/2,1/2);

(49)
q; =(1/2,4/3/2,-1/2,-3/2); ¢ =(0,1,0,1).

Evidently, if we put vectors (49) in correspondence to the basis
group of sites in the proposed model, the sites generated in accordance
with algorithm (45) will be projections of certain sites in the indicated
four-dimensional lattice.

It is easy to see that, in both cases of the octagonal and dodecagonal
lattices during the multiplication of sites of a dodecagonal lattice in ac-
cordance with algorithm (45), a correlation between the number of self-
overlaps of sites and the intensity of the corresponding diffraction re-
flections is also observed (Fig. 18, Table 4).

ISSN 1608-1021. Usp. Fiz. Met., 2019, Vol. 20, No. 4 575



V.V. Girzhon and O.V. Smolyakov

Let us put in correspondence the intensities of reflections to the
distance from the sites of a 4D lattice to the physical space. Each site of
this lattice can be represented as Q = (Q';Q*), where

RS Lok
Q' = gniqi and Q" = Eljniqi . (50)
Then, squared values of vectors Q' and Q* are as follow:

4 .
|QH|2 - (% n,2 +nng + nz”“j +(myny + nyng + n3n4)x/§ =N+ Mx\/g » (51)

4 g k3
Q'F = (% n’ +nn, + n2n4] —(nyny + nyn, +ngn W3 = N = M*\J3. (52)

The calculation of |Q‘| value is based on Eq. (52) for reflections in
Fig. 18 shows that a correlation is observed between |Q'|, the number of
self-overlaps of sites in the modelling, and the intensity of reflections
(Table 1).

The equation for calculation of |Q!| in both cases of using t and ¢,
parameters can be reduced to the form similar to Egs. (5) and (37):

Table 5. Indices of the sites (Fig. 18) with basis vectors corresponding
to the reflexes located near the central spot

Q2 =N + Mt, |Q? = N, + M,t,;

here, N=N*—- M*, M = M", N, =N"-2M*, M, = M*. Within the value
of |QY (in contrast of to those of icosahedral, octagonal, and dodecagonal

(53)

No. (n, ny ng nyy, Ny M, |Qﬂh|2 |QLch|2
1 (1000) 1; 0 1 1
2 (1100) 21 3.732 0.268
3 (1110) 4; 2 7.464 0.536
4 121-1) 6; 3 11.196 0.804
5 (220-1) 7; 4 13.928 0.072
6 (2210) 11; 6 21.392 0.608
7 (231-1) 14; 8 27.856 0.144
8 (2310) 16; 9 31.588 0.412
9 (2320) 21; 12 41.785 0.215
10 (341-1) 26; 15 51.981 0.019
11 (2420) 28; 16 55.713 0.287
12 (3420) 35; 20 69.641 0.359
13 2431) 40; 23 79.837 0.163
14 (1441) 42; 24 83.569 0.431
15 (3530) 52; 30 103.96 0.038
16 2552) 78; 45 155.94 0.058
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quasi-lattices) cannot be reduced to the form |Q']? < (Nk — M):
Q=N —2M/t, |Q] =N, + M, /t,. (54)

Basis vectors of reciprocal lattice are ascribed in [48] to low-inten-
sity reflections that are closest to the trace of primary beam. In this
case, the indices of the reflections and the magnitudes of corresponding
vectors are recalculated by the following formulas:

N, ="7N"+12M*, M, = 4N" + TM",

|QH|2 2 / 12 |QL|2 12 /
_ = G! 7 4 3 ’ Qh :—ZQ 7—4: 3 .
7 — 443 Q@+ )» Q) 7 + 443 Q¢ )

The results of calculations for characteristics of reflexes (Fig. 18)
obtained with Eq. (55) are presented in Table 5.
Note that, with such indexing of intense reflections, the rounding

of Mch\/g value to the larger integer yields the value of N . The values

(59)
|th|2 =

of |Q.,? and |Q.|? are also determined only by M_, value, i.e.,

Nch = [Mch\/g"'l]’ (56)

QH ? = [Mch\/§+1]+ ‘Z\Ich\/g ’|Qi_h|2 = [Mch\/g_{—1]_]\40}1\/§ :

ch

According to [561, 52], low-intensive reflections in the vicinity of
central spot on electron diffraction patterns are the results of multiple
diffraction typical of quasi-crystals. At the same time, many authors
take these reflections as those corresponding to basis vectors [48, 49].
In our model, the basis vectors of the reciprocal lattice correspond to
reflections of type 5 (Fig. 18), which is in agreement with the results
obtained in [51, 52]. Therefore, the proposed model of recurrent multi-
plication of site groups takes into account the effect of multiple diffrac-
tion and, at the same time, correctly maps the basis vectors on the dif-
fraction pattern. The existence of correlation between the quantity of
self-overlaps of sites and the intensity of diffraction reflections indi-
cates that the procedure of recurrent construction of site groups is a
certain analog of multiple diffraction processes.

To pass from the reciprocal space to the real one, we write vectors
(49) as a; = a,,q; / V2 where a’,, is a space parameter of four-dimen-
sional reciprocal lattice. Using the condition aja, = 5, we can define the
basis vectors of the direct lattice as follows

ij?

a a
= 4D 32,—1 2,_ 32,12, 2 = 4D 1,071’0’
w2 R D), 8, = 01,0)
a4

a
=—2(0,1,0,-1), a, =—*(-1/2,v3/2,-1/2,3/2);
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a] o]

Fig. 19. Comparison of atomic structure of BaTiO, thin layer on platinum substrate
(a) [53] and fragment of group D, (b) (algorithm (61))

here, a,, = 2/(/3a,,) is a lattice parameter. Denoting the interplanar
distance corresponding the basis vector of reciprocal lattice as d, and

considering that aID / \/5 =1/ dq , we obtain the equation for the param-

eter of four-dimensional lattice and quasi-parameter a of four-dimen-
sional quasi-lattice:

a,, =d~\2/3, a=a,,/V2=d,/3. (58)

Then, to calculate the interplanar distances, we can use expression

Ao vy = a\/§/ JN* + M3 . (59)

If there were detected reflexes corresponding to basis vectors, which
are closely located to primary electron beam, then, equation remains
similar to Eq. (59):

Ay, = ach\/g/ N, + Mch\/§ , (60)

where a, = a7+ 43 = at,.

From the physical point of view, (N*, M") indices are more correct,
since they relate to the fundamental vectors of the reciprocal quasi-
crystal lattice. However, indices (N, M,) are more convenient, be-
cause, if we know only one index from this pair, we can easily determine
the second index and estimate the intensity of the corresponding reflec-
tions (see Eq. (56)).

Thus, the dodecagonal system ‘falls out’ of the general relation
|Q'?2 oc (Nk — M); this is observed for other existing types of quasi-crys-
tals. However, it is still possible to indexing diffraction reflections us-
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ing integers. At the same time, taking into account the periodicity of
dodecagonal quasi-crystals along the 12th-order symmetry axis, all dif-
fraction peaks on the powder diffraction patterns can be indexed with
three indices, as for the octagonal and decagonal quasi-crystals.

Except the analysis of the diffraction pattern from quasi-crystalline
materials, the description and classification of quasi-crystalline struc-
ture is a complicated problem. We proposed above the method for de-
scription of the variety of octagonal quasi-lattices. Such description is
possible because we can change the coefficients of vectors in initial al-
gorithm (42). For example, a change of even one coefficient changes the
quasi-lattice without affecting its symmetry. For instance, the image of
the atomic structure of a thin BaTiO, layer on a platinum substrate was
obtained in Ref. [53]. We obtained almost the same geometry of the ar-
rangement of sites (Fig. 19) using the following algorithm:

D2 = Dl + {Zt_lqi}Dl’ D3 = Dz + {zqi}D27

(61)
D, = D, +{tq,}D,, D, =D, +{2tq,}D,.

Taking into account earlier proposed denotation of quasi-crystalline
structures classes, the structure illustrated in Fig. 18 can be denoted as
D(2/t, 2, t, 2t) .

5. Conclusions

The method of modelling the quasi-periodic structures, which act as a
geometric interpretation of Fibonacci-type sequences, is proposed.

The correspondence between projection method for periodic lattices
and the method of recurrent multiplication of basis sites’ group is ob-
tained.

The possibility of using only three indices (NML) for describing dif-
fraction patterns for quasi-crystals with 10th-order, 8th-order, and
12th-order symmetry axis is proved.

Using constructed algorithm for quasi-crystalline structures, we can
directly obtain information about the intensity of diffraction reflexes.

Described method of modelling is simpler as compared with projec-
tion method. It enables to operate the coordinates of two-dimensional
space unlike to coordinates with dimensionality, greater than three.
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B.B. Tlipxcon, O.B. Cuonarxos
3amnopisbKuii HAIiOHAJBHUHN YHiBEepPCUTET,
ByJ. sHyKoBCchKOTO, 66, 69600 3amopikika, YKpaiHna

MOJEJIOBAHHSA I'PATHUIIb
JBOBHMMIPHIX KBASHUKPHUCTAJIIB

3ampoII0oHOBAHO CIIOCIO MOAET0OBAHHS KBA3UIEPIOAWUHUX CTPYKTYP, B OCHOBI SIKOTO
JIE€KUTHh aJIT'OPUTM, IO € TeOMETPUYHOIO iHTepIpeTalliel0 YMCJIOBUX IIOCJiOBHOCTEH
TuIy nocaigosuocTu @iGonauui. Moger0BaHHSA MOJIATAE Y PEKYPEHTHOMY PO3MHOMKEH-
Hi 6a3MCHUX T'PYI BY3JIiB, SKi MaioTh poraimiiny cumerpiro 10, 8 a6o 12-ro mopAnkKy.
ITepeBaroi 3ampomOHOBAHOrO CIOCO0Y € MOKJIUBICTH OIIEPYBATH KOOPAUHATAMMU JIAIIIE
IBOBUMIiPHOTO IIPOCTOPY, & HE TiOTeTUYHUX IITPOCTOPiB i3 BUMIipHiCTIO, BUIIOIO 3a
Tpu. ITokasaHo BiAIOBiAHICTE Mi’K METOMOI0 ITPOEIiIOBAHHS IEPiOAMYHUX I'DATHUILH
i MeTOMOI0 PEKYPEHTHOTO PO3MHOMKEHHSA TPyn 0asuCHUX BY3JiB. BcTaHOBJIEHO, IO
HIECTUBUMIDHY O0epHEHYy I'DATHUII0 AJS NeKaroHAJbHOTO KBAa3UKPUCTATY MOMKHA
OJlep’KaT! 3 OPTOTOHAJIBHOI MIECTUBUMIPHOI I'PDATHUIIL 1A iIKOCAeAPUUYHOTO KBAa3UKPU-
cTajy 3a AOIIOMOTOIO0 3MiHM MacIinTaly B3JOBXK OJHOTrO 3 6a3MCHUX BEKTOPiB i 3abopo-
HU HA MPOEIiIOBAaHHS BY3JIiB, AJISI SKUX CyMa II’AThOX iHAEKCiB (BixmoBimuHmx iHIITUM
0asuCHUM BEeKTOpaM) He A0piBHIOE Hya10. IIoKasaHo JoCTaTHICTH BUKOPUCTAHHS JIUIIIE
TPHOX iHAEKCiB AiA omucy AudpaKkTorpaM Bif KBasUKPUCTAJIiB 3 ocamu cuMetpii 10,
8 ta 12-ro mopankiB. OpuriHaabHU# aJIrOPUTM YMOKJINBIIIOE O€3I0CEePEeHE OMePIKaAH-
HAa indopmanii npo iHTeHCUBHiCcTL mudpakmiiHux pedieKkciB 3a KiabKicTio camoHa-
KJIaJJaHb BY3JIiB y mporeci mo6yszoBu o6epHEHUX I'DATHUIb KBa3UKPUCTAJIB.

KarouoBi cioBa: KBasinepioguuHi cTpyKTypH, nmocaigopHicTs @iGoHayUi, MeTOH MPOE-
IifoBaHHA, 0a3MCHI BEeKTOPU, poTallifiia cuMeTpid, obepHeHa I'DATHUILA.

B.B. I'upscon, A.B. Cmonakos
3aIopoKCKUI HAIIMOHAJIBHBIN YHUBEPCUTET,
ya. #ykosckoro, 66, 69600 3amopoxbe, YKpanua

MOIEJIMPOBAHUE PEIIETOK
ABYMEPHBIX KBASMKPUCTAJIJIOB

IIpenmosken cmocob6 MOAEINPOBAHUSA KBAa3UMIEPUOIUUYECKUX CTPYKTYDP, B OCHOBE KOTO-
pOTO JIEXKUT aJITOPUTM, SABJIAIOININICA TeOMeTPUYECKON WMHTepIIpeTalueil 4mcI0BBIX
mocJieloBaTeJIbHOCTEI THUMa IocjenoBaTeabHocT PuboHauum. MogmeaupoBaHue 3a-
KJIIOUaeTCsA B PEKYPPEHTHOM Pa3MHOYKEHUW 0a3WCHBIX T'PYII y3JI0B, MMEIOIIUX PO-
TarnuoHuylo cumMmerpuio 10, 8 uau 12-ro mopsanka. IIpeumyiecTBOM IIpeaaaraeMoro
cmocoba ABJISETCS BO3MOMKHOCTH OIEPUPOBATH KOOPAMHATAMU TOJHKO IBYMEPHOTO
MPOCTPAHCTBA, a He TMIOTeTHUYECKUX IIPOCTPAHCTB C Pa3MepPHOCTHIO, OOJIBINIEell TPEX.
ITokazano COOTBETCTBUE MEXKAY METOZOM IIPOEIMPOBAHUA IEPUOAUUECKUX DPEIIETOK
U MEeTOJOM PEeKYPPEHTHOr'0 Pa3MHOKEHUs I'PYII 0a3UMCHBIX y3JI0B. Y CTAHOBJIEHO, UTO
MIeCTUMEPHYIO OOPATHYIO PEHIETKY IJiA AeKaroHaJbHBIX KBa3UKPUCTAJJIOB MOXKHO
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MOJIYYUTh U3 OPTOrOHAJBHOU ITECTMMEPHON PEIIETKU AJIs MKOCAdAPUYECKUX KBa3MU-
KPHUCTAJJIOB C IIOMOIIbI0 M3MEHEeHUsI MaciuTaba BJOJIb OJHOTO M3 GA3MCHBIX BEKTODPOB
U 3ampeTra Ha IPOEIMPOBAHUWE Y3JIOB, [IJIs KOTOPBIX CyMMAa IISITU MHIEKCOB (COOTBET-
CTBYIOIIIUX APYruM 0a3MCHBIX BEKTOpaM) He paBHa HYyJ. IlokasaHa JOCTAaTOYHOCTH
HUCITOJIb30BAHUSA TOJHKO TPEX WHAEKCOB [JIA OMUCAHUA AUPPaKTOrpaM OT KBa3sUKPHU-
craymioB ¢ ocavu cummerpuu 10, 8 m 12-ro mopsaaxoB. OpUrMHAJLHBINA aJTOPUTM
IaéT BO3BMOXKHOCTH HEIOCPEJCTBEHHOrO IOJIydeHUsA uH(popManmuu 00 WHTEHCUBHOCTHA
IudPaKIUOHHEIX PedIEKCOB IO KOJUYECTBY CAMOHAJIOKEHUI y3JIOB B IIPOIlecce Io-
CTPOEHUsI OOPATHBIX PEIETOK KBa3UKPUCTAJIOB.

KaroueBsie c1oBa: KBas3UIEPUOANUECKIE CTPYKTYPHI, MOCJe0oBaTeIbHOCTE PruboHay-
U1, METOJ IIPOeIPOBaHUsA, 0a3MCHbIE BEKTOPhI, POTAIIMOHHASA CUMMETPUs, o0paTHad
permiéeTka.
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