UDC 512.5

Zhanmin Zhu (Jiaxing Univ., China)

SOME RESULTS ON MP-INJECTIVITY AND MGP-INJECTIVITY OF RINGS AND MODULES ДЕЯКІ РЕЗУЛЬТАТИ ПРО MP-IH'ЄКТИВНІСТЬ ТА MGP-IH'ЄКТИВНІСТЬ КІЛЕЦЬ ТА МОДУЛІВ

We study MP-injective rings and MGP-injective rings satisfying some additional conditions. Using the concepts of MP-injectivity and MGP-injectivity of rings and modules, we present some new characterizations of QF-rings, semisimple Artinian rings, strongly regular rings, and simple Artinian rings.

Вивчаються MP-ін'єктивні та MGP-ін'єктивні кільця, що задовольняють деякі додаткові умови. Із застосуванням понять MP-ін'єктивності та MGP-ін'єктивності кілець та модулів наведено нові характеризації QF-кілець, напівпростих кілець Артіна, сильно регулярних кілець та простих кілець Артіна.

1. Introduction. Throughout this article, R is an associative ring with an identity. For a subset X of R, the right and left annihilators of X are denoted by r(X) and l(X), respectively. To facilitate, $\mathbf{r}(a)$ is called a special right annihilator of R for each $a \in R$. The Jacobson radical of R is denoted by J = J(R), the right singular ideal of R is denoted by $Z_r = Z(R_R)$. The right socle of R is denoted by $S_r = \operatorname{Soc}(R_R)$. Let R be an R-module and R be a submodule of R, following [1], we write $R \subseteq \operatorname{cess} M$ to indicate that R is an essential submodule of R. Concepts which have not been explained can be found in [1] and [2].

Recall that a ring R is right P-injective [3] if every R-homomorphism from a principal right ideal of R to R extends to an endomorphism of R. A ring R is right generalized principally injective (briefly right GP-injective) [4] if, for any $0 \neq a \in R$, there exists a positive integer n such that $a^n \neq 0$ and any right R-homomorphism from $a^n R$ to R extends to an endomorphism of R. GP-injective rings are studied in papers [4–8]. In [8], GP-injective rings are called YJ-injective rings.

In [2], the concepts of right P-injective rings and right GP-injective rings are generalized to right MP-injective rings and right MGP-injective rings, respectively, and some interesting results on these rings are obtained. Following [2], a right R-module N is MP-injective if, for every R-monomorphism from a principal right ideal of R to N extends to a homomorphism of R to N, the ring R is right MP-injective if R_R is MP-injective; a right R-module R is MGP-injective if, for any R to R to R extends to a homomorphism of R to R and any R-monomorphism from R to R extends to a homomorphism of R to R to R is right MGP-injective if R is MGP-injective. In this paper, we shall study some new properties of MP-injective rings and MGP-injective rings, and give some new characterizations of QF-rings rings, semisimple artinian rings, von Neumann regular rings, strongly regular rings and simple artinian rings by MP-injectivity and MGP-injectivity of rings and modules.

2. Results. Recall that a ring R is QF if it is right or left self-injective and right or left artinian, a ring R is *semiregular* if R/J(R) is von Neumann regular and idempotents can be lifted modulo J(R), a ring R is right CF if every cyclic right R-module embeds in

a free module, a ring R is *right mininjective* if every R-homomorphism from a minimal right ideal of R to R extends to an endomorphism of R. These concepts can be found in [1]. It is well known that right CF-rings are left P-injective [1] (Lemma 7.2 (1)); and a ring R is QF if and only if R is right artinian and right and left mininjective [9] (Corollary 4.8). According to [10], a ring R is *right 2-simple injective* if every R-homomorphism from a 2-generated right ideal of R to R with simple image extends to an endomorphism of R.

Theorem 2.1. Let R be a right MGP-injective ring. Then the following statements are equivalent:

- (1) R is a QF-ring;
- (2) R is a right 2-simple injective ring with ACC on right annihilators;
- (3) R is right CF-ring and the ascending chain $\mathbf{r}(a_1) \subseteq \mathbf{r}(a_2a_1) \subseteq \mathbf{r}(a_3a_2a_1) \subseteq \dots$ terminates for every sequence $\{a_1, a_2, \dots\} \subseteq R$;
 - (4) R is a semiregular right CF-ring.
- **Proof.** (1) \Rightarrow (2). Since a QF-ring is right self-injective and right noetherian, so (1) implies (2).
- $(2) \Rightarrow (1)$. Suppose (2) holds. Then since R is a right MGP-injective ring with ACC on right annihilators, by [2] (Corollary 3.12(1)), R is semiprimary. Noting that R is right 2-simple injective, by [10] (Theorem 17(17)), R is a QF-ring.
- $(1) \Rightarrow (3)$. Assume (1). Then since every injective module over a QF-ring is projective, so every right R-module embeds in a free module, and hence R is a right CF-ring. Note that a QF-ring is right noetherian, the last assertion of (3) is clear.
 - $(3) \Rightarrow (4)$. By [2] (Theorem 3.11), R is right perfect, so that it is semiregular.
- $(4) \Rightarrow (1)$. Note that right MGP-injectivity implies that $J(R) = Z_r$ by [2] (Theorem 3.4(2)), so R is right artinian by [11] (Corollary 2.9). Since R is right and left mininjective, by [9] (Corollary 4.8), R is QF.

Theorem 2.1 is proved.

Corollary 2.1 ([12], Corollary 3). The following statements are equivalent for a ring R:

- (1) R is a QF-ring;
- (2) R is a right 2-injective ring with ACC on right annihilators.

Lemma 2.1. Let R be a left noetherian ring. If I is an ideal of R and $\mathbf{r}(I) \subseteq^{\text{ess}} R_R$, then I is nilpotent.

Proof. Since R is left noetherian and $\mathbf{r}(I^i)$ is an ideal for each positive integer i, there exists $k \geq 1$ such that $\mathbf{r}(I^k) = \mathbf{r}(I^{k+1}) = \dots$. If I is not nilpotent, choose $\mathbf{l}(x)$ maximal in $\{\mathbf{l}(y) \mid I^k y \neq 0\}$. Then $I^{2k} x \neq 0$ because $\mathbf{r}(I^{2k}) = \mathbf{r}(I^k)$, so there exists $a \in I^k$ such that $I^k ax \neq 0$. Since $\mathbf{r}(I) \subseteq \mathbf{r}(I^k)$ and $\mathbf{r}(I) \subseteq^{\text{ess}} R_R$, we have that $\mathbf{r}(I^k) \subseteq^{\text{ess}} R_R$. Thus $axR \cap \mathbf{r}(I^k) \neq 0$, say $0 \neq axb \in \mathbf{r}(I^k)$, then, $I^k xb \neq 0$ and $I^k a \subseteq \mathbf{l}(xb)$ but $I^k a \not\subseteq \mathbf{l}(x)$, which contradicts the maximality of $\mathbf{l}(x)$. Therefore I is nilpotent.

Lemma 2.1 is proved.

Theorem 2.2. Let R be a left noetherian right MGP-injective ring. Then:

- (1) $\mathbf{r}(J) \subseteq^{\mathrm{ess}} R_R;$
- (2) J is nilpotent;
- (3) r(J) ⊆^{ess} _RR;
- (4) lr(J) = J.

1428 ZHANMIN ZHU

Proof. (1). Let $0 \neq x \in R$. Since R is left noetherian, the non-empty set $\mathcal{F} = \{\mathbf{l}((xa)^k) \mid a \in R, k > 0 \text{ such that } (xa)^k \neq 0\}$ has a maximal element, say $\mathbf{l}((xy)^n)$.

We claim that $J(xy)^n=0$. If not, then there exists $t\in J$ such that $t(xy)^n\neq 0$. Since R is right MGP-injective, there exists a positive integer m such that $(t(xy)^n)^m\neq 0$ and $b\in R(t(xy)^n)^m$ for every $b\in R$ with $\mathbf{r}((t(xy)^n)^m)=\mathbf{r}(b)$. Write $(t(xy)^n)^m=s(xy)^n$, where $s=(t(xy)^n)^{m-1}t\in J$. We proceed with the following two cases.

Case 1: $\mathbf{r}((xy)^n) = \mathbf{r}(s(xy)^n)$. Then $(xy)^n = cs(xy)^n$, i.e., $(1-cs)(xy)^n = 0$. Since $s \in J$, 1-cs is invertible. So we have $(xy)^n = 0$. This is a contradiction.

Case 2: $\mathbf{r}((xy)^n) \neq \mathbf{r}(s(xy)^n)$. Then there exists $u \in \mathbf{r}(s(xy)^n)$ but $u \notin \mathbf{r}((xy)^n)$. Thus, $s(xy)^n u = 0$ and $(xy)^n u \neq 0$. This shows that $s \in \mathbf{l}((xy)^n u)$ and $\mathbf{l}((xy)^n u) \in \mathcal{F}$. Noting that $s \notin \mathbf{l}((xy)^n)$, so the inclusion $\mathbf{l}((xy)^n) \subset \mathbf{l}((xy)^n u)$ is strict. This contracts the maximality of $\mathbf{l}((xy)^n)$ in \mathcal{F} .

Thus, $J(xy)^n = 0$, and so $0 \neq (xy)^n \in xR \cap \mathbf{r}(J)$, proving (1).

- (2). By (1) and Lemma 2.1.
- (3). If $0 \neq c \in R$, we must show that $Rc \cap \mathbf{r}(J) \neq 0$. This is clear if Jc = 0. Otherwise, since J is nilpotent by (2), there exists $m \geq 1$ such that $J^mc \neq 0$ but $J^{m+1}c = 0$. Then $0 \neq J^mc \subseteq Rc \cap \mathbf{r}(J)$, as required.
 - (4). By (1) and [2] (Theorem 3.4), $lr(J) \subseteq Z_r = J$, so that lr(J) = J.

Theorem 2.2 is proved.

Theorem 2.3. Let R be a left noetherian right MGP-injective ring. Then the following statements are equivalent:

- (1) R is right Kasch;
- (2) R is left C_2 ;
- (3) R is left GC_2 ;
- (4) R is semilocal;
- (5) R is left artinian;
- (6) the ascending chain $\mathbf{r}(a_1) \subseteq \mathbf{r}(a_2a_1) \subseteq \mathbf{r}(a_3a_2a_1) \subseteq \dots$ terminates for every sequence $\{a_1, a_2, \dots\} \subseteq R$.

Proof. (1) \Rightarrow (2). By [1] (Proposition 1.46).

- $(2) \Rightarrow (3)$; and $(5) \Rightarrow (6)$ are obvious.
- $(3) \Rightarrow (4)$. Since left noetherian ring is left finite dimensional, and left finite dimensional left GC_2 ring is semilocal [13] (Lemma 1.1), so (4) follows from (3).
- $(4) \Rightarrow (5)$. Since R is left noetherian right MGP-injective, by Theorem 2.2(2), J is nilpotent. And so R is left noetherian and semiprimary by hypothesis, as required.
- (5) \Rightarrow (1). Assume (5). Then R is semiperfect right mininjective ring and $S_r \subseteq^{\mathrm{ess}} R_R$. So that R is a right minfull ring. By [1] (Theorem 3.12), R is right Kasch.
 - $(6) \Rightarrow (4)$. By [2] (Theorem 3.11).

Theorem 2.3 is proved.

Corollary 2.2. Let R be a left noetherian right MGP-injective right finite dimensional ring. Then R is left artinian.

Proof. Since R is right MGP-injective, by [2] (Theorem 3.4(1)), R is right GC_2 . But right finite dimensional right GC_2 ring is semilocal, so R is left artinian by Theorem 2.3.

Corollary 2.3. The following statements are equivalent for a ring R:

- (1) R is a QF-ring;
- (2) R is left artinian and right 2-injective;

- (3) R is left noetherian right 2-injective and right Kasch;
- (4) R is a left noetherian right 2-injective semilocal ring;
- (5) R is left noetherian right 2-injective and left C_2 ;
- (6) R is left noetherian right 2-injective and left GC_2 ;
- (7) R is left noetherian right 2-injective and the ascending chain $\mathbf{r}(a_1) \subseteq \mathbf{r}(a_2a_1) \subseteq \mathbf{r}(a_3a_2a_1) \subseteq \ldots$ terminates for every sequence $\{a_1, a_2, \ldots\} \subseteq R$;
 - (8) R is left noetherian right 2-injective and right finite dimensional.

Proof. By Theorem 2.3 (2) through (7) are equivalent. (1) \Rightarrow (8) is clear. (8) \Rightarrow (2) by Corollary 2.2. (2) \Rightarrow (1) by [10] (Theorem 17).

Lemma 2.2. Let M be a right R-module and $N_R \subseteq^{\text{ess}} M_R$. Then $(N:x) \subseteq^{\text{ess}} R_R$ for all $x \in M$, where $(N:x) = \{a \in R \mid xa \in N\}$.

Proof. Let $x \in M$. For each $0 \neq a \in R$, if xa = 0, then $a \in (N:x)$, thus $0 \neq aR = (N:x) \cap aR$. If $xa \neq 0$, then since $N \subseteq^{\mathrm{ess}} M$, $N \cap xaR \neq 0$, so that there exists $0 \neq xar \in N$, and thus $0 \neq ar \in (N:x) \cap aR$. Hence, $(N:x) \subseteq^{\mathrm{ess}} R_R$.

Lemma 2.2 is proved.

Theorem 2.4. The following conditions are equivalent for a ring R:

- (1) R is a semisimple artinian ring;
- (2) R is right Kasch and every simple right R-module is MGP-injective;
- (3) R is right Kasch and every simple right R-module is mininjective.

Proof. It is obvious that $(1) \Rightarrow (2) \Rightarrow (3)$.

 $(3)\Rightarrow (1)$. For any right R-module A, let E(A) be the injective hull of A. If $A\neq E(A)$, then there exists $x\in E(A)-A$. By Lemma 2.2, we have $(A:x)\subseteq^{\mathrm{ess}}R_R$. Clearly, $(A:x)\neq R$. Thus there exists a maximal right ideal M of R such that $(A:x)\subseteq M$. Clearly, $M\subseteq^{\mathrm{ess}}R_R$. Since R is right Kasch, there exists $0\neq a\in R$ such that $M=\mathbf{r}(a)$. Now we define $f\colon aR\to R/\mathbf{r}(a)$; $ay\mapsto y+\mathbf{r}(a)$, then f is a right R-homomorphism. Since aR is a minimal right ideal and $R/\mathbf{r}(a)$ is a simple right R-module, by hypothesis, there is $b\in R$ such that $1+\mathbf{r}(a)=f(a)=ba+\mathbf{r}(a)$, which yields that $1-ba\in \mathbf{r}(a)$, and so a=aba. Let e=ba, then $0\neq e=e^2$. It follows that $M=\mathbf{r}(e)=(1-e)R$, and then $M\cap eR=0$ but $eR\neq 0$, which contradicts that $M\subseteq^{\mathrm{ess}}R_R$. Hence, A=E(A), i.e., A is injective. Therefore R is a semisimple artinian ring.

Theorem 2.4 is proved.

The following Lemma 2.3 (1) and (2) are well-known results, we give their proof here for completeness.

Lemma 2.3. Let R be a prime ring, then:

- (1) if I is a nonzero ideal of R, then I is essential in R both as a left ideal and as a right ideal;
 - (2) if R is a semisimple artinian ring, then it is a simple artinian ring;
- (3) if R satisfies the ascending chain condition for special right annihilators, then $Z_r = 0$.
- **Proof.** (1). If K is a right ideal of R satisfies $K \cap I = 0$, then $KI \subseteq K \cap I = 0$. Since R is a prime ring, K = 0, and so I is an essential right ideal of R. Similarly, I is an essential left ideal of R.
- (2). Let I be a nonzero ideal of R. Then since R is a semisimple artinian ring, there exists a right ideal T of R such that $I \oplus T = R$. By (1), T = 0, and thus I = R. This proves that R is a simple artinian ring.

1430 ZHANMIN ZHU

(3). Since R satisfies the ascending chain conditions for special right annihilators, the set $\{\mathbf{r}(x) \mid 0 \neq x \in R\}$ has a maximal element $\mathbf{r}(a)$. If $Z_r \neq 0$, then $aZ_ra \neq 0$ because R is a prime ring (otherwise, if $aZ_ra = 0$, then $aZ_r(aR) = 0$, and so $aZ_r = 0$, i.e., $(Ra)Z_r = 0$, which implies that $Z_r = 0$, a contradiction). Thus there is $b \in Z_r$ such that $aba \neq 0$. It follows from the maximality of $\mathbf{r}(a)$ that $\mathbf{r}(a) = \mathbf{r}(aba)$. Since $aba \in Z_r$, we have $\mathbf{r}(a) = \mathbf{r}(aba) \subseteq^{\mathrm{ess}} R_R$, and whence $\mathbf{r}(a) \cap baR \neq 0$. So that there exists $c \in R$ such that $bac \neq 0$ and abac = 0, which implies that $c \in \mathbf{r}(aba) = \mathbf{r}(a)$. Thus ac = 0, and then bac = 0 which contradicts $bac \neq 0$. Therefore $Z_r = 0$.

Lemma 2.3 is proved.

Theorem 2.5. *The following statements are equivalent for a ring R*:

- (1) R is a simple artinian ring;
- (2) R is a right MGP-injective prime ring such that the ascending chain $\mathbf{r}(a_1) \subseteq \mathbf{r}(a_2a_1) \subseteq \mathbf{r}(a_3a_2a_1) \subseteq \ldots$ terminates for every sequence $\{a_1, a_2, \ldots\} \subseteq R$;
- (3) R is a prime ring such that $0 \neq S_r$ is MP-injective, and R satisfies the ascending chain condition for special right annihilators.

Proof. It is obvious that $(1) \Rightarrow (2)$ and (3).

- $(2) \Rightarrow (1)$. By [2] (Theorem 3.17) and Lemma 2.3(2).
- (3) \Rightarrow (1). We first prove that R is a semisimple artinian ring. If not, then $S_r \neq R$. Since R satisfies the ascending chain conditions for special right annihilators, the set $\{\mathbf{r}(x) \mid x \in R S_r\}$ has a maximal element $\mathbf{r}(a)$. By Lemma 2.3(3), there exists a nonzero right ideal T of R such that $\mathbf{r}(a) \oplus T \subseteq^{\mathrm{ess}} R_R$. By Lemma 2.3(1), $T \cap S_r \neq 0$, so that there exists $0 \neq b \in T \cap S_r$. Now we define $f : abR \to S_r$; $abx \mapsto bx$, then f is a right R-monomorphism. Since S_r is MP-injective, then there is $y \in S_r$ such that b = f(ab) = yab, which implies that (a aya)b = 0, i.e., $b \in \mathbf{r}(a aya)$. Since $a \notin S_r$ and $y \in S_r$, $a aya \notin S_r$. By the maximality of $\mathbf{r}(a)$, we have $\mathbf{r}(a) = \mathbf{r}(a aya)$. It follows that ab = 0, and so b = yab = 0, which contradicts $b \neq 0$. Therefore, $S_r = R$, i.e., R is a semisimple artinian ring. Since R is a prime ring, by Lemma 2.3(2), R is a simple artinian ring.

Theorem 2.5 is proved.

Recall that a ring R is a *right SF ring* if every simple right R-module is flat, a ring R is a *right quasi-duo ring* if every maximal right ideal of R is an ideal, a ring R is a quasi-duo ring if it is left or right quasi-duo. These concepts can be found in [14].

Proposition 2.1. If every maximal essential right ideal of R is MP-injective, then R is a right SF ring.

Proof. Let S be a simple right R-module, then there exists a maximal right ideal M of R such that $S \cong R/M$. If M is essential right ideal, then by hypothesis, M is MP-injective. So for any $a \in R$, if $y = xa \in Ra \cap M$, then since the inclusion mapping $yR \to M$ extends to a right R-homomorphism $f: R \to M$, so that $y = f(y) = f(1)y = (f(1)x)a \in Ma$. Hence $Ra \cap M = Ma$, this shows that M is a pure submodule of R, and therefore R/M is flat.

Proposition 2.1 is proved.

Definition 2.1. Let R be a ring. A right R-module N is WMGP-injective if, for any $a \in R$, there exists a positive integer n such that any R-monomorphism from a^nR to N extends to a homomorphism of R to N. The ring R is right WMGP-injective if R_R is WMGP-injective.

Example 2.1. Let $R = \left\{ \begin{bmatrix} a & v \\ 0 & a \end{bmatrix} \middle| a \in F, \ v \in V \right\}$ be the trivial extension of the field F by the two-dimensional vector space V over F. Then R is a commutative WMGP-injective ring that is not MGP-injective.

Proof. Let $V=uF\oplus wF$. For any $x\in R$, write $x=\begin{bmatrix} a & v \\ 0 & a \end{bmatrix}$. If $a\neq 0$, then x is invertible, so xR=R, and thus any R-homomorphism from xR to R extends to an endomorphism of R. If a=0, then $x^2=0$, and so any R-homomorphism from x^2R to R extends to an endomorphism of R. Hence, R is WMGP-injective. Let $x_0=\begin{bmatrix} 0 & u \\ 0 & 0 \end{bmatrix}$, $y_0=\begin{bmatrix} 0 & w \\ 0 & 0 \end{bmatrix}$, then $x_0^2=0$, $\mathbf{r}(x_0)=\mathbf{r}(y_0)=\begin{bmatrix} 0 & V \\ 0 & 0 \end{bmatrix}$, but $Rx_0=\begin{bmatrix} 0 & Fu \\ 0 & 0 \end{bmatrix}$ and $Ry_0=\begin{bmatrix} 0 & Fw \\ 0 & 0 \end{bmatrix}$. So $Ry_0\nsubseteq Rx_0$. This shows that the R-monomorphism from x_0R to R via $x_0r\mapsto y_0r$ can not be extended to an endomorphism of R. whence R is not MGP-injective.

Proposition 2.1 is proved.

Next, we give some new characterizations of strongly regular rings.

Theorem 2.6. The following conditions are equivalent for a ring R:

- (1) R is a strongly regular ring;
- (2) every maximal right ideal of R is MGP-injective and $\mathbf{l}(a)$ is an ideal for each $a \in R$;
- (3) R is a reduced ring and every maximal essential right ideal of R is MGP-injective;
- (4) R is a reduced ring and every maximal essential right ideal of R is WMGP-injective or a right annihilator;
- (5) R is a quasi-duo ring, and every maximal essential right ideal of R is MP-injective.
- **Proof.** (1) \Rightarrow (2). Since R is a strongly regular ring, by [15] (Proposition 12.3), R is von Neumann regular and every left ideal is two-sided, so (2) holds.
- $(2)\Rightarrow (3)$. We need only to prove that R is reduced. Let $a\in R$ with $a^2=0$, we claim that a=0. Otherwise, if $a\neq 0$, then $a\in \mathbf{l}(a)\neq R$. By (2), $\mathbf{l}(a)$ is an ideal, so there exists a maximal right ideal M such that $\mathbf{l}(a)\subseteq M$. Since M is MGP-injective, the inclusion mapping $aR\to M$ extends to a homomorphism from R to M, and so there exists $b\in M$ such that a=ba. Thus $1-b\in \mathbf{l}(a)\subseteq M$, and then $1\in M$, a contradiction. Therefore a=0, and hence R is reduced.
- $(3)\Rightarrow (4).$ Since right MGP-injective module is right WMGP-injective, so (3) implies (4).
- $(4)\Rightarrow (1)$. For any $a\in R$, we claim that $aR+\mathbf{r}(a)=R$. In fact, if $aR+\mathbf{r}(a)\neq R$, then there exists a maximal right ideal M of R such that $aR+\mathbf{r}(a)\subseteq M$. We claim that M is an essential right ideal. Otherwise, there there exists $0\neq b\in R$ such that $bR\cap M=0$. Since M is a maximal right ideal, $bR\oplus M=R$, and so M=eR for some $e^2=e\in R$. Clearly, a=ea, i.e., $1-e\in \mathbf{l}(a)$. Since aR is reduced, $\mathbf{l}(a)\subseteq \mathbf{r}(a)$, so that $1-e\in \mathbf{r}(a)\subseteq M$, and hence $1\in M$, a contradiction. Therefore M is a maximal essential right ideal. By hypothesis, M is WMGP-injective or a right annihilator.
- Case 1: If M is WMGP-injective. Then there exists a positive integer n such that any R-monomorphism from a^nR to M extends to a homomorphism of R to M. Now

1432 ZHANMIN ZHU

we define $f : a^n R \to M$ by $f(a^n x) = ax$, where $x \in R$, noting that R is reduced, by [2] (Lemma 3.20), f is well-defined, and f is a right R-homomorphism, and so there exist $u \in M$ such that $a = ua^n$. Thus, $1 - ua^{n-1} \in \mathbf{l}(a) \subseteq \mathbf{r}(a) \subseteq M$, it follows that $1 \in M$, a contradiction.

Case 2: If M is a right annihilator. Then there exists $0 \neq c \in R$ such that $M = \mathbf{r}(c)$. Thus, $c \in \mathbf{lr}(c) = \mathbf{l}(M) \subseteq \mathbf{l}(a) \subseteq \mathbf{r}(a) \subseteq M = \mathbf{r}(c)$, so that $c^2 = 0$. Since R is reduced, c = 0, a contradiction too.

Therefore, these contradictions show that $aR + \mathbf{r}(a) = R$. Write 1 = as + t, where $s \in R$, $t \in \mathbf{r}(a)$, then $a = a^2s + at = a^2s$. Consequently, R is strongly regular.

 $(5) \Rightarrow (1)$. By Proposition 2.1 and [14] (Theorem 4.10).

Theorem 2.6 is proved.

Theorem 2.7. If R is a right MGP-injective ring, then it is a classical quotient ring, and so every right (left) R-module is divisible.

Proof. Let $\mathbf{l}(a) = \mathbf{r}(a) = 0$. Then $\mathbf{l}(a^k) = \mathbf{r}(a^k) = 0$ for every positive integer k. By the right MGP-injectivity of R, there exists a positive integer n such that $b \in Ra^n$ for every $b \in R$ with $\mathbf{r}(a^n) = \mathbf{r}(b)$, in particular, $1 = ca^n$ for some $c \in R$. Thus, $a^nca^n = a^n$, noticing that $\mathbf{l}(a^n) = \mathbf{r}(a^n) = 0$, we have $a^nc = ca^n = 1$. Hence R is a classical quotient ring, and so every right (left) R-module is divisible.

Theorem 2.7 is proved.

Proposition 2.2. If every maximal essential right ideal of R is WMGP-injective or a right annihilator, then R is a classical quotient ring.

Proof. Let a be a nonzero divisor of R, i.e., $\mathbf{l}(a) = \mathbf{r}(a) = 0$. Then there exists a right ideal K such that $aR \oplus K \subseteq^{\mathrm{ess}} R_R$. We claim that $aR \oplus K = R$. If not, then there exists a maximal right ideal M such that $aR \oplus K \subseteq M$, and so M is WMGP-injective or a right annihilator. If M is WMGP-injective, then there exists a positive integer n such that every monomorphism from a^nR to M extends to a homomorphism of R to M. Now define $f: a^nR \to M$ by $f(a^nx) = ax$, where $x \in R$, then f is well defined as a is a nonzero divisor, and so $a = f(a^n) = ba^n$ for some $b \in M$. This follows that $1 - ba^{n-1} \in \mathbf{l}(a) = 0$, and then $1 \in M$, a contradiction. If M is a right annihilator, then since M is a maximal right ideal, there exists $0 \neq t \in R$ such that $M = \mathbf{r}(t)$. Hence, $t \in \mathbf{lr}(t) = \mathbf{l}(M) \subseteq \mathbf{l}(a) = 0$, i.e., t = 0, a contradiction too. Thus, $aR \oplus K = R$. Write aR = eR, where $e^2 = e$, then a = ea and e = ac for some $c \in R$, and so a = aca. Noting that a is a nonzero divisor, we have ac = ca = 1. This shows that R is a classical quotient ring.

Proposition 2.2 is proved.

At the end of this paper, we give an important property of semiprime right MGP-injective rings.

Proposition 2.3. If R is a semiprime right MGP-injective ring, then R contains a unique largest reduced ideal I, and $I = \mathbf{rl}(I) = \mathbf{lr}(I)$, Z(RI) = Z(IR) = 0.

Proof. Let $I = \sum_{\alpha \in A} I_{\alpha}$ be the sum of all reduced ideals I_{α} of R. It may be assumed that $I \neq 0$. We prove that $\mathbf{rl}(I)$ is reduced. Otherwise, then there exists $0 \neq x \in \mathbf{rl}(I)$ such that $x^2 = 0$.

Case 1: $xR \cap I_{\alpha} = 0$ for all $\alpha \in A$. Then $xRI_{\alpha} \subseteq xR \cap I_{\alpha} = 0$ for all $\alpha \in A$, and so xRI = 0, $xR \subseteq \mathbf{l}(I)$. It follows that xRx = 0. But R is semiprime, x = 0, a contradiction.

Case 2: There is $i \in A$ such that $xR \cap I_i \neq 0$. Take $0 \neq a \in xR \cap I_i$, then aR is reduced. For any $y \in \mathbf{r}(a^2)$, since $(aya)^2 = ay(a^2y)a = 0$ and $aya \in aR$, we have aya = 0, and then $(ay)^2 = (aya)y = 0$, which implies that ay = 0. Hence, $\mathbf{r}(a^2) = \mathbf{r}(a)$. By the proof of [2] (Lemma 3.20), we have that $\mathbf{r}(a^k) = \mathbf{r}(a)$ for every positive integer k. If $a^2 = 0$, then a = 0, a contradiction. If $a^2 \neq 0$. Since R is right MGP-injective, by [2] (Theorem 3.2), there exists a positive integer n such that $a^{2n} \neq 0$ and $a = ba^{2n}$ for some $b \in R$. Write $c = ba^{2n-2}$, then $a = ca^2$. It is easy to see that $(a - aca)^2 = 0$, $a - aca \in aR$, so a = aca. Let e = ac, then $e^2 = e$, a = ea, $e \in aR \subseteq xR$. Thus, there exists $a \in R$ such that $a \in R$ such that $a \in R$ so $a \in R$ so

Therefore, $\mathbf{rl}(I)$ is reduced. Noting that $\mathbf{rl}(I)$ is an ideal and $I \subseteq \mathbf{rl}(I)$, we have $I = \mathbf{rl}(I)$, and so I is the unique largest reduced ideal. Since R is semiprime, it is easy to see that $\mathbf{r}(K) = \mathbf{l}(K)$ for every ideal K of R. Noting that I and $\mathbf{l}(I)$ are ideals, we have $\mathbf{lr}(I) = \mathbf{ll}(I) = \mathbf{rl}(I) = I$.

It is obvious that $Z(I_R)=I\cap Z_r$. Assume that $I\cap Z_r\neq 0$, then there exists $0\neq y\in I\cap Z_r$. Since ${\bf r}(y)$ is an essential right ideal, ${\bf r}(y)\cap yR\neq 0$, and so there is $0\neq yz\in {\bf r}(y)$. Thus, $y^2z=0, (yzy)^2=yz(y^2z)y=0$. But $yzy\in I$ and I is reduced, so $yzy=0, (yz)^2=(yzy)z=0, yz\in I$, and hence yz=0, which contradicts $yz\neq 0$. Consequently, $Z(I_R)=0$. Similarly, Z(RI)=0.

Proposition 2.3 is proved.

- 1. Nicholson W. K., Yousif M. F. Quasi-Frobenius rings. Cambridge: Cambridge Univ. Press, 2003.
- Zhu Z. M. MP-injective rings and MGP-injective rings // Indian J. Pure and Appl. Math. 2010. 41. P. 627 – 645.
- 3. Nicholson W. K., Yousif M. F. Principally injective rings // J. Algebra. 1995. 174. P. 77–93.
- Nam S. B., Kim N. K., Kim J. Y. On simple GP-injective modules // Communs Algebra. 1995. 23. P. 5437 – 5444.
- Chen J. L., Ding N. Q. On general principally injective rings // Communs Algebra. 1999. 27. P. 2097 – 2116.
- 6. Chen J. L., Ding N. Q. On regularity of rings // Algebra Colloq. 2001. 8. P. 267 274.
- Chen J. L., Zhou Y. Q., Zhu Z. M. GP-injective rings need not be P-injective // Communs Algebra. 2005. – 33. – P. 2395–2402.
- 8. Yue Chi Ming R. On regular rings and self-injective rings. II // Glas. mat. 1983. 18. P. 221 229.
- 9. Nicholson W. K., Yousif M. F. Mininjective rings // J. Algebra. 1997. 187. P. 548 578.
- 10. Zhu Z. M., Chen J. L. 2-Simple injective rings // Int. J. Algebra. 2010. 4. P. 25-37.
- 11. Chen J. L., Li W. X. On artiness of right CF rings // Communs Algebra. 2004. 32. P. 4485 4494.
- 12. Rutter E. A. Rings with the principle extension property // Communs Algebra. 1975. 3. P. 203 212.
- 13. Zhou Y. Q. Rings in which certain right ideals are direct summands of annihilators // J. Austral. Math. Soc. 73. 2002. P. 335–346.
- 14. Rege M. B. On von Neumann regular rings and SF-rings // Math. Jap. 1986. 31. P. 927 936.
- 15. Stenström B. Rings of quotients. Berlin etc.: Springer, 1975.

Received 14.03.11