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SOME RESULTS ON MP-INJECTIVITY
AND MGP-INJECTIVITY OF RINGS AND MODULES

JAESAKI PE3YJIIBTATHU ITPO MP-IH’EKTUBHICTb
TA MGP-IH’EKTUBHICTB KIVIELIb TA MO YJIIB

We study MP-injective rings and MGP-injective rings satisfying some additional conditions. Using the concepts
of MP-injectivity and MGP-injectivity of rings and modules, we present some new characterizations of QF-
rings, semisimple Artinian rings, strongly regular rings, and simple Artinian rings.

Busuarorbcst MP-in’exTuBHI Ta MGP-iH’€KTHBHI KiJIbLIs, 1110 33/10BOJIBHSIOTH JIESKI JIOATKOBI yMOBH. I3 3acTo-
CyBaHHSM MOHATh MP-in’exTuBHOCTI Ta MGP-iH’€KTHBHOCTI KiJlellb Ta MOIYJIIB HABE/ICHO HOBI XapaKTepu3aLil
QF-kinenp, HaMIBIPOCTHUX Killellb APTiHa, CUIBHO PETYISIPHUX KiJelb Ta MIPOCTUX Killelb ApTiHa.

1. Introduction. Throughout this article, R is an associative ring with an identity. For
a subset X of R, the right and left annihilators of X are denoted by r(X) and /(X),
respectively. To facilitate, r(a) is called a special right annihilator of R for each a € R.
The Jacobson radical of R is denoted by J = J(R), the right singular ideal of R is
denoted by Z,. = Z(Rg). The right socle of R is denoted by S, = Soc(Rpr). Let M
be an R-module and N be a submodule of M, following [1], we write N C**° M to
indicate that NV is an essential submodule of M. Concepts which have not been explained
can be found in [1] and [2].

Recall that a ring R is right P-injective [3] if every R-homomorphism from a princi-
pal right ideal of R to R extends to an endomorphism of R. A ring R is right generalized
principally injective (briefly right GP-injective) [4] if, for any 0 # a € R, there exists
a positive integer n such that a” # 0 and any right R-homomorphism from "R to R
extends to an endomorphism of R. GP-injective rings are studied in papers [4—8]. In
[8], GP-injective rings are called YJ-injective rings.

In [2], the concepts of right P-injective rings and right GP-injective rings are gen-
eralized to right MP-injective rings and right MGP-injective rings, respectively, and
some interesting results on these rings are obtained. Following [2], a right R-module
N is MP-injective if, for every R-monomorphism from a principal right ideal of R
to NV extends to a homomorphism of R to IV, the ring R is right MP-injective if Rp
is MP-injective; a right R-module NV is MGP-injective if, for any 0 # a € R, there
exists a positive integer n such that " # 0 and any R-monomorphism from a" R to
N extends to a homomorphism of R to NN, the ring R is right MGP-injective if Rp
is MGP-injective. In this paper, we shall study some new properties of MP-injective
rings and MGP-injective rings, and give some new characterizations of QF-rings rings,
semisimple artinian rings, von Neumann regular rings, strongly regular rings and simple
artinian rings by MP-injectivity and MGP-injectivity of rings and modules.

2. Results. Recall that a ring R is QF if it is right or left self-injective and right or
left artinian, a ring R is semiregular if R/J(R) is von Neumann regular and idempotents
can be lifted modulo J(R), aring R is right CF if every cyclic right R-module embeds in
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a free module, a ring R is right mininjective if every R-homomorphism from a minimal
right ideal of R to R extends to an endomorphism of R. These concepts can be found
in [1]. It is well known that right CF-rings are left P-injective [1] (Lemma 7.2 (1));
and a ring R is QF if and only if R is right artinian and right and left mininjective
[9] (Corollary 4.8). According to [10], a ring R is right 2-simple injective if every R-
homomorphism from a 2-generated right ideal of R to R with simple image extends to
an endomorphism of R.

Theorem 2.1. Let R be a right MGP-injective ring. Then the following statements
are equivalent:

(1) Ris a QF-ring;

(2) R is a right 2-simple injective ring with ACC on right annihilators;

(3) R is right CF-ring and the ascending chainr(ay) C r(asa;) C r(asasa;) C ..
terminates for every sequence {a1,as,...} C R;

(4) R is a semiregular right CF-ring.

Proof. (1) = (2). Since a QF-ring is right self-injective and right noetherian, so (1)
implies (2).

(2) = (1). Suppose (2) holds. Then since R is a right MGP-injective ring with ACC
on right annihilators, by [2] (Corollary 3.12(1)), R is semiprimary. Noting that R is right
2-simple injective, by [10] (Theorem 17(17)), R is a QF-ring.

(1) = (3). Assume (1). Then since every injective module over a QF-ring is projec-
tive, so every right R-module embeds in a free module, and hence R is a right CF-ring.
Note that a QF-ring is right noetherian, the last assertion of (3) is clear.

(3) = (4). By [2] (Theorem 3.11), R is right perfect, so that it is semiregular.

(4) = (1). Note that right MGP-injectivity implies that J(R) = Z, by [2] (The-
orem 3.4(2)), so R is right artinian by [11] (Corollary 2.9). Since R is right and left
mininjective, by [9] (Corollary 4.8), R is QF.

Theorem 2.1 is proved.

Corollary 2.1 ([12], Corollary 3). The following statements are equivalent for a
ring R:

(1) R is a QF-ring;

(2) R is a right 2-injective ring with ACC on right annihilators.

Lemma 2.1. Let R be a left noetherian ring. If I is an ideal of R and v(I) C*® Rp,
then 1 is nilpotent.

Proof. Since R is left noetherian and r(I?) is an ideal for each positive integer 1,
there exists & > 1 such that r(I¥) = r(I**') = ... . If I is not nilpotent, choose 1(z)
maximal in {1(y) | I*y # 0}. Then I**z # 0 because r(I%*) = r(I*), so there exists
a € I* such that I*ax # 0. Since r(I) C r(I*) and r(I) C** Rp, we have that
r(I¥) C** Rg. Thus azR Nr(I¥) # 0, say 0 # axb € r(I*), then, I*2b # 0 and
I*a C 1(zb) but I*a ¢ 1(z), which contradicts the maximality of 1(z). Therefore I is
nilpotent.

Lemma 2.1 is proved.

Theorem 2.2. Let R be a left noetherian right MGP-injective ring. Then:

(1) ©(J) = Rg;

(2) Jis nilpotent;

(3) r(J) C°= gR;

4) Ie(J) =T
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Proof. (1). Let 0 # = € R. Since R is left noetherian, the non-empty set F =
= {1((za)*) | a € R, k > 0 such that (za)* # 0} has a maximal element, say 1((xy)").

We claim that J(zy)™ = 0. If not, then there exists ¢ € .J such that ¢(xy)™ # 0. Since
R is right MGP-injective, there exists a positive integer m such that (¢(xy)™)™ # 0 and
b € R(t(xy)™)™ for every b € R with r((t(xy)™)™) = r(b). Write (t(zy)™)™ =
= s(zy)", where s = (t(zy)™)™ 't € J. We proceed with the following two cases.

Case 1: r((zy)™) = r(s(zy)™). Then (xy)™ = ecs(zy)™, ie., (1 — cs)(ay)™ = 0.
Since s € J, 1 — ¢s is invertible. So we have (xy)™ = 0. This is a contradiction.

Case 2: r((zy)™) # r(s(xy)™). Then there exists u € r(s(zy)™) butu ¢ r((zy)").
Thus, s(xy)™u = 0 and (zy)™u # 0. This shows that s € 1((zy)"u) and 1((xy)"u) € F.
Noting that s ¢ 1((xy)™), so the inclusion 1((zy)™) C 1((xy)™u) is strict. This contracts
the maximality of 1((xy)™) in F.

Thus, J(zy)™ =0, and so 0 # (zy)™ € RN r(J), proving (1).

(2). By (1) and Lemma 2.1.

(3). If 0 # ¢ € R, we must show that Re N r(J) # 0. This is clear if Jc = 0.
Otherwise, since J is nilpotent by (2), there exists m > 1 such that J™c # 0 but
J™ e =0. Then 0 # J™c C Renr(J), as required.

(4). By (1) and [2] (Theorem 3.4), Ir(J) C Z, = J, so that Ir(J) = J.

Theorem 2.2 is proved.

Theorem 2.3. Let R be a left noetherian right MGP-injective ring. Then the fol-
lowing statements are equivalent:

(1) R is right Kasch;

(2) R is left Cy;

(3) R is left GCo;

(4) R is semilocal,

(5) R is left artinian;

(6) the ascending chain r(ay) C r(asay) C r(agasar) C ... terminates for every
sequence {ay,as,...} C R.

Proof. (1) = (2). By [1] (Proposition 1.46).

(2) = (3); and (5)= (6) are obvious.

(3) = (4). Since left noetherian ring is left finite dimensional, and left finite dimen-
sional left GC; ring is semilocal [13] (Lemma 1.1), so (4) follows from (3).

(4) = (5). Since R is left noetherian right MGP-injective, by Theorem 2.2(2), J is
nilpotent. And so R is left noetherian and semiprimary by hypothesis, as required.

(5) = (1). Assume (5). Then R is semiperfect right mininjective ring and
S, C°° Rpg. So that R is a right minfull ring. By [1] (Theorem 3.12), R is right
Kasch.

(6) = (4). By [2] (Theorem 3.11).

Theorem 2.3 is proved.

Corollary 2.2. Let R be a left noetherian right MGP-injective right finite dimen-
sional ring. Then R is left artinian.

Proof. Since R is right MGP-injective, by [2] (Theorem 3.4(1)), R is right GC5. But
right finite dimensional right GC ring is semilocal, so R is left artinian by Theorem 2.3.

Corollary 2.3. The following statements are equivalent for a ring R:

(1) R is a QF-ring;

(2) R is left artinian and right 2-injective;
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(3) R is left noetherian right 2-injective and right Kasch;

(4) R is a left noetherian right 2-injective semilocal ring;

(5) R is left noetherian right 2-injective and left Cs;

(6) R is left noetherian right 2-injective and left GCy;

(7) R is left noetherian right 2-injective and the ascending chain r(a;) C r(aza;) C
C r(agagay) C ... terminates for every sequence {a1,as,...} C R;

(8) R is left noetherian right 2-injective and right finite dimensional.

Proof. By Theorem 2.3 (2) through (7) are equivalent. (1) = (8) is clear. (8) = (2)
by Corollary 2.2. (2) = (1) by [10] (Theorem 17).

Lemma 2.2. Let M be a right R-module and N C° Mpg. Then (N : x) C*° Rp
for all x € M, where (N : z) ={a € R|za € N}.

Proof. Let x € M. For each 0 # a € R, if za = 0, then a € (N : x), thus
0#aR = (N:xz)NaR.If xa # 0, then since N C* M, N NzaR # 0, so that there
exists 0 # zar € N, and thus 0 # ar € (N : z) NaR. Hence, (N : 2) C*° Rp.

Lemma 2.2 is proved.

Theorem 2.4. The following conditions are equivalent for a ring R:

(1) R is a semisimple artinian ring;

(2) R is right Kasch and every simple right R-module is MGP-injective;

(3) R is right Kasch and every simple right R-module is mininjective.

Proof. 1t is obvious that (1) = (2) = (3).

(3) = (1). For any right R-module A, let E(A) be the injective hull of A. If A #
# E(A), then there exists z € F(A) — A. By Lemma 2.2, we have (A : ) C°*° Rp.
Clearly, (A : x) # R. Thus there exists a maximal right ideal M of R such that
(A:x) C M. Clearly, M C** Rpg. Since R is right Kasch, there exists 0 # a € R
such that M = r(a). Now we define f: aR — R/r(a);ay — y + r(a), then f is a
right R-homomorphism. Since aR is a minimal right ideal and R/r(a) is a simple right
R-module, by hypothesis, there is b € R such that 1 +r(a) = f(a) = ba + r(a), which
yields that 1 — ba € r(a), and so a = aba. Let e = ba, then 0 # e = 2. It follows
that M = r(e) = (1 — e)R, and then M NeR = 0 but eR # 0, which contradicts
that M C®° Rp. Hence, A = E(A), i.e., A is injective. Therefore R is a semisimple
artinian ring.

Theorem 2.4 is proved.

The following Lemma 2.3 (1) and (2) are well-known results, we give their proof
here for completeness.

Lemma 2.3. Let R be a prime ring, then:

(1) ifIis a nonzero ideal of R, then I is essential in R both as a left ideal and as a
right ideal,

(2) if R is a semisimple artinian ring, then it is a simple artinian ring;

(3) if R satisfies the ascending chain condition for special right annihilators, then
Z = 0.

Proof. (1). If K is a right ideal of R satisfies K N[ =0, then KI C KNI =0.
Since R is a prime ring, K = 0, and so [ is an essential right ideal of R. Similarly, [ is
an essential left ideal of R.

(2). Let I be a nonzero ideal of R. Then since R is a semisimple artinian ring, there
exists a right ideal T’ of R such that I & T = R. By (1), T' = 0, and thus I = R. This
proves that R is a simple artinian ring.
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(3). Since R satisfies the ascending chain conditions for special right annihilators,
the set {r(z) | 0 # = € R} has a maximal element r(a). If Z, # 0, then aZ,a # 0
because R is a prime ring (otherwise, if aZ.a = 0, then aZ,.(aR) = 0, and so aZ, = 0,
i.e., (Ra)Z, = 0, which implies that Z,. = 0, a contradiction). Thus there is b € Z,
such that aba # 0. It follows from the maximality of r(a) that r(a) = r(aba). Since
aba € Z,., we have r(a) = r(aba) C** Rp, and whence r(a) NbaR # 0. So that there
exists ¢ € R such that bac # 0 and abac = 0, which implies that ¢ € r(aba) = r(a).
Thus ac = 0, and then bac = 0 which contradicts bac # 0. Therefore Z, = 0.

Lemma 2.3 is proved.

Theorem 2.5. The following statements are equivalent for a ring R:

(1) R is a simple artinian ring;

(2) R is a right MGP-injective prime ring such that the ascending chain r(a;) C
C r(aza1) C r(azazay) C ... terminates for every sequence {ay,az, ...} C R;

(3) R is a prime ring such that 0 # S,. is MP-injective, and R satisfies the ascending
chain condition for special right annihilators.

Proof. 1t is obvious that (1) = (2) and (3).
(2) = (1). By [2] (Theorem 3.17) and Lemma 2.3(2).

(3) = (1). We first prove that R is a semisimple artinian ring. If not, then S, # R.
Since R satisfies the ascending chain conditions for special right annihilators, the set
{r(z) | € R — S,} has a maximal element r(a). By Lemma 2.3(3), there exists a
nonzero right ideal T of R such that r(a) ® T C** Rg. By Lemma 2.3(1), TN .S, # 0,
so that there exists 0 # b € T'N S,.. Now we define f: abR — S,; abx — bx, then f
is a right R-monomorphism. Since S, is MP-injective, then there is y € .S, such that
b = f(ab) = yab, which implies that (a —aya)b = 0, i.e., b € r(a —aya). Since a ¢ S,
and y € S,, a — aya ¢ S,. By the maximality of r(a), we have r(a) = r(a — aya). It
follows that ab = 0, and so b = yab = 0, which contradicts b # 0. Therefore, S, = R,
i.e.,, R is a semisimple artinian ring. Since R is a prime ring, by Lemma 2.3(2), R is a
simple artinian ring.

Theorem 2.5 is proved.

Recall that a ring R is a right SF ring if every simple right R-module is flat, a ring
R is a right quasi-duo ring if every maximal right ideal of R is an ideal, a ring R is a
quasi-duo ring if it is left or right quasi-duo. These concepts can be found in [14].

Proposition 2.1. [f every maximal essential right ideal of R is MP-injective, then
R is a right SF ring.

Proof. Let S be a simple right R-module, then there exists a maximal right ideal
M of R such that S = R/M. If M is essential right ideal, then by hypothesis, M
is M P-injective. So for any a € R, if y = xa € Ra N M, then since the inclusion
mapping yR — M extends to a right R-homomorphism f: R — M, so that y =
= f(y) = f(y = (f(1)x)a € Ma. Hence Ra N M = Ma, this shows that M is a
pure submodule of R, and therefore R/M is flat.

Proposition 2.1 is proved.

Definition 2.1. Let R be a ring. A right R-module N is WMGP-injective if, for
any a € R, there exists a positive integer n such that any R-monomorphism from a™ R
to N extends to a homomorphism of R to N. The ring R is right WMGP-injective if Rp
is WMGP-injective.
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Example 2.1. Let R = {[a Z] a € F, veV, be the trivial extension of the

0
field F by the two-dimensional vector space V over F. Then R is a commutative WMGP-
injective ring that is not MGP-injective.

a
0
is invertible, so xR = R, and thus any R-homomorphism from xR to R extends to an
endomorphism of R. If a = 0, then 22 = 0, and so any R-homomorphism from 22 R to

Proof. Let V = uF @ wF. For any x € R, write z = ﬂ If a # 0, then =

R extends to an endomorphism of R. Hence, R is WMGP-injective. Let ¢ = [8 g )
0w 0o Vv 0 Fu
Yo = [o 0]7 then 202 = 0, r(x) = r(yo) = [o o]’ out ftro = [0 0 ] and

Ryo = {8 Fow} So Ryo j(_ Rxq. This shows that the R-monomorphism from xoR

to R via xgr — yor can not be extended to an endomorphism of R. whence R is not
MGP-injective.

Proposition 2.1 is proved.

Next, we give some new characterizations of strongly regular rings.

Theorem 2.6. The following conditions are equivalent for a ring R:

(1) R is a strongly regular ring;

(2) every maximal right ideal of R is MGP-injective and 1(a) is an ideal for each
a € R;

(3) R is a reduced ring and every maximal essential right ideal of R is MGP-
injective;

(4) R is a reduced ring and every maximal essential right ideal of R is WMGP-
injective or a right annihilator,

(5) R is a quasi-duo ring, and every maximal essential right ideal of R is MP-
injective.

Proof. (1) = (2). Since R is a strongly regular ring, by [15] (Proposition 12.3), R
is von Neumann regular and every left ideal is two-sided, so (2) holds.

(2) = (3). We need only to prove that R is reduced. Let a € R with a® = 0, we
claim that ¢ = 0. Otherwise, if a # 0, then a € 1(a) # R. By (2), 1(a) is an ideal, so
there exists a maximal right ideal M such that 1(a) C M. Since M is MGP-injective,
the inclusion mapping aR — M extends to a homomorphism from R to M, and so
there exists b € M such that a = ba. Thus 1 — b € 1(a) € M, and then 1 € M, a
contradiction. Therefore a = 0, and hence R is reduced.

(3) = (4). Since right MGP-injective module is right WMGP-injective, so (3)
implies (4).

(4) = (1). For any a € R, we claim that aR+r(a) = R. In fact, if aR+r(a) # R,
then there exists a maximal right ideal M of R such that aR + r(a) C M. We claim
that M is an essential right ideal. Otherwise, there there exists 0 # b € R such that
bRN M = 0. Since M is a maximal right ideal, bR & M = R, and so M = eR for
some €2 = ¢ € R. Clearly, a = ea, i.e., 1 — e € 1(a). Since aR is reduced, 1(a) C r(a),
sothat 1 —e € r(a) C M, and hence 1 € M, a contradiction. Therefore M is a maximal
essential right ideal. By hypothesis, M is WMGP-injective or a right annihilator.

Case 1: If M is WMGP-injective. Then there exists a positive integer n such that
any R-monomorphism from a" R to M extends to a homomorphism of R to M. Now
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we define f: a®R — M by f(a"z) = ax, where x € R, noting that R is reduced, by
[2] (Lemma 3.20), f is well-defined, and f is a right R-homomorphism, and so there
exist u € M such that a = ua™. Thus, 1 —ua""1 € 1(a) C r(a) C M, it follows that
1 € M, a contradiction.

Case 2: If M is a right annihilator. Then there exists 0 # ¢ € R such that M =
=r(c). Thus, ¢ € Ir(c) = 1(M) C 1(a) C r(a) € M = r(c), so that ¢ = 0. Since R is
reduced, ¢ = 0, a contradiction too.

Therefore, these contradictions show that aR + r(a) = R. Write 1 = as + t, where
s € R, t €r(a), then a = a®s + at = a®s. Consequently, R is strongly regular.

(5) = (1). By Proposition 2.1 and [14] (Theorem 4.10).

Theorem 2.6 is proved.

Theorem 2.7. If R is a right MGP-injective ring, then it is a classical quotient
ring, and so every right (left) R-module is divisible.

Proof. Let1(a) = r(a) = 0. Then 1(a*) = r(a¥) = 0 for every positive integer k.
By the right M G P-injectivity of R, there exists a positive integer n such that b € Ra"
for every b € R with r(a™) = r(b), in particular, 1 = ca™ for some ¢ € R. Thus,
a™ca™ = a", noticing that 1(a™) = r(a™) = 0, we have a"c = ca™ = 1. Hence R is a
classical quotient ring, and so every right (left) R-module is divisible.

Theorem 2.7 is proved.

Proposition 2.2. If every maximal essential right ideal of R is WMGP-injective or
a right annihilator, then R is a classical quotient ring.

Proof. Let a be a nonzero divisor of R, i.e,, 1(a) = r(a) = 0. Then there exists a
right ideal K such that aR® K C*° Rpr. We claim that aR® K = R. If not, then there
exists a maximal right ideal M such that aR & K C M, and so M is WMGP-injective
or a right annihilator. If M is WMGP-injective, then there exists a positive integer n
such that every monomorphism from a™ R to M extends to a homomorphism of R to
M. Now define f: a®R — M by f(a"x) = ax, where x € R, then f is well defined
as a is a nonzero divisor, and so a = f(a™) = ba™ for some b € M. This follows that
1—ba"! €1(a) = 0, and then 1 € M, a contradiction. If M is a right annihilator, then
since M is a maximal right ideal, there exists 0 # ¢ € R such that M = r(¢). Hence,
t€lr(t) =1(M) C1la) =0, ie., t = 0, a contradiction too. Thus, aR & K = R.
Write aR = eR, where €2 = e, then a = ea and e = ac for some ¢ € R, and so
a = aca. Noting that a is a nonzero divisor, we have ac = ca = 1. This shows that R
is a classical quotient ring.

Proposition 2.2 is proved.

At the end of this paper, we give an important property of semiprime right MGP-
injective rings.

Proposition 2.3. If R is a semiprime right MGP-injective ring, then R contains a
unique largest reduced ideal I, and I = rl(I) = Ir(I), Z(rI) = Z(Ig) = 0.

Proof. Let I = ZQGA I, be the sum of all reduced ideals I, of R. It may be
assumed that I # 0. We prove that rl(7) is reduced. Otherwise, then there exists 0 #
# x € rl(I) such that 22 = 0.

Case 1: zRNI, =0 forall « € A. Then xRI, C xRNI, =0 forall « € A,
and so 2RI = 0, zR C 1(I). It follows that xRz = 0. But R is semiprime, © = 0, a
contradiction.
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Case 2: There is i € A such that RN I; # 0. Take 0 # a € R N I;, then
aR is reduced. For any y € r(a?), since (aya)? = ay(a?y)a = 0 and aya € aR, we
have aya = 0, and then (ay)? = (aya)y = 0, which implies that ay = 0. Hence,
r(a?) = r(a). By the proof of [2] (Lemma 3.20), we have that r(a*) = r(a) for every
positive integer k. If a®> = 0, then a = 0, a contradiction. If a® # 0. Since R is right
MGP-injective, by [2] (Theorem 3.2), there exists a positive integer n such that a®” # 0
and a = ba®" for some b € R. Write ¢ = ba?" 2, then a = ca®. It is easy to see
that (a — aca)? = 0, a — aca € aR, so a = aca. Let e = ac, then €2 = e, a = ea,
e € aR C zR. Thus, there exists d € R such that e = xd, (ex)? = ex?dxr = 0. But
er € aR, so ex = 0, and whence ¢ = e? = exd = 0, this follows that ¢ = 0, a
contradiction too.

Therefore, rl(I) is reduced. Noting that r1(I) is an ideal and I C rl(I), we have
I =r)(I), and so I is the unique largest reduced ideal. Since R is semiprime, it is easy
to see that r(K) = 1(K) for every ideal K of R. Noting that I and 1(I) are ideals, we
have Ir(I) = 1I(1) =r1(1) = I.

It is obvious that Z(Ig) = I N Z,. Assume that I N Z, # 0, then there exists
0+#y € INZ,. Since r(y) is an essential right ideal, r(y) N yR # 0, and so there is
0 # yz € r(y). Thus, y%2 = 0, (yzy)? = yz(y?z)y = 0. But yzy € I and I is reduced,
soyzy = 0, (y2)? = (yzy)z = 0, yz € I, and hence yz = 0, which contradicts yz # 0.
Consequently, Z(Ir) = 0. Similarly, Z(rI) = 0.

Proposition 2.3 is proved.
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