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ON A REGULARITY OF DISTRIBUTION
FOR SOLUTION OF SDE OF A JUMP TYPE
WITH ARBITRARY LEVY MEASURE OF THE NOISE*

ITPO PEI'YJIAPHICTDH PO3IIOALLY PO3B’A3KY C/IP
31 CTPUBKAMM 3 1IOBIVIBHOIO MIPOIO JIEBI

In the paper the local properties of distributions of solutions of SDE’s with jumps are studied. Using the method,
based on the “time-wise” differentiation on the space of functionals from Poisson point measure, we give a full
analogue of Hormander condition, sufficient for the solution to have a regular distribution. This condition is
formulated only in terms of coefficients of the equation and does not require any regularity properties of the
Levy measure of the noise.

BuBYaIOTLCs1 JIOKAJIBHI BiIacTUBOCTI po3B’sa3kiB CIP 3i crpubkamu. Ilpu 3acTocyBaHHi MeTony, sIKMil 6a3y-
€TbCsl Ha ,,qudepeHiloBaHHi 32 yacoM” Ha MpocTopi PYHKILIOHAJIIB BiJ] MyacCOHOBOI TOYKOBOI MipH, HaBe-
JICHO YMOBY, sIKa aHaJIoriyHa yMoBi XbopMaH/iepa Ta JOCTAaTHS AJIA TOTO, 06 PO3B’ 30K MaB peryJIsIpHUN
posnozin. 1l ymoBa OpMYJIIOETBCA TiJIbKU y TepMiHax KoedillieHTiB piBHSAHHS Ta HE BUMArae Biji Mipu
JleBi BUKOHAHHSI Oy/b-sIKUX BJIACTUBOCTEN PEryJIIPHOCTI.

Introduction. In this article we deal with the following general problem. Let X (z, ¢, )
be the solution of the SDE
t

X(z, t,r) = x—i—/a(s,X(m,s,r))dS—i—

T

¢
+//C(S,X(:L’,S*,T)ﬂt)ﬂ(ds,du), t € [r,+00), 0.1)

r Rd

where v is a random Poisson point measure on R% x R+ with the Levy measure II, # is
corresponding compensated measure (we are not going into details with introducing this
standard objects, referring the reader, if necessary, to [1]), and coefficients a,c satisfy
standard conditions, sufficient for equation (0.1) to have unique strong solution. Denote
by P(z,t,r,dy) the distribution of this solution, P(z,t,r,dy) = P(X(x,t,r) € dy).
It is natural both from probabilistic and analytical points of view to consider the follow-
ing family of questions: does measure P(z,t,r,dy) have a density p(z,t,7,y) wrt.
Lebesgue measure? Does this density, considered either as a function from y under fixed
t,x, or as a function from (z,t,7,y), possess some regularity property, for instance be-
longs to some Ly 1oc, is locally bounded, belongs to classes Ck or C°, etc? These
questions were studied by numerous authors, let us emphasize two big groups of results
in this direction, which are based on different ideas and impose essentially different con-
ditions on the Levy measure II of the noise.

The first group is based on the approach proposed by J. Bismut [2], in which some
Malliavin-type calculus on a space of trajectories of Levy processes is introduced via
transformations of trajectories, which change values of its jumps (see [2—5] and refer-
ences there). In this approach Levy measure is supposed to have some (regular) density
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1262 A. M. KULIK

w.r.t. Lebesgue measure, which is a natural condition, sufficient for such transformations
to be admissible.

The second group is based on the method by J. Picard [6], in which some version
of stochastic calculus of variations for Poisson point measure is proposed. This method
uses perturbations of the point measure by adding point into it and requires method some
limitations on the asymptotic behavior of the Levy measure at the origin.

It is natural to try to give some sufficient conditions for the regular density to ex-
ist, which would not involve any specific conditions on the Levy measure. As a first
possible answer on this question, let us mention recent results by V. N. Kolokol’tsov
and A. D. Tyukov [7], who developed an analytical approach for SDE’s of some special
form, which, we believe, is not crucial and is caused by the framework of characteristics
method for stochastic heat equation with a jump noise. This approach allows to prove
regularity results for small time part of the initial distribution, this means that instead of
P(x,t,r,dy) the measures Elx(2,¢,r)edy - Lt<7, where 7 is some specific stopping
time, are considered.

Another point of view on this problem was given in the recent work by the author
[8]. It was motivated by a natural idea, that without any conditions on the Levy measure
there always exist admissible transformations of the Poisson point measure v, which
change the moments of jumps, and one can construct some kind of stochastic calculus of
variations based on these transformations. This idea is not very new, it was mentioned
in the introduction to [6]. However, the rigorous development of this idea is nontrivial, it
appears that the corresponding calculus have some new properties, which does not exist
in Malliavin calculus for diffusions or Bismut calculus for jump processes with regular
Levy measures (see discussions in [8] and Example 1.4 below).

In the work [8] the following two problems remained unsolved. First, sufficient condi-
tion for P(x,t,r,dy) to have a density was given in the following form: some combina-
tion of differential and difference operators, defined by the coefficients of initial equation,
has to be nondegenerated. This can be interpreted as a partial analogue of Hormander
condition, as soon as Hormander condition is formulated in the terms not of one, but of
a sequence of vector fields. Thus, it is natural to try to give a regularity result under a
full analogue of Hormander condition. Another problem is regularity properties of the
density. It was shown in [8] (see also Example 1.4 below), that the density, considered
as a function of y, can be extremely nonregular, for instance, there exist situations in
which it does not belong to L1, 1oc for € > 0. At the same time, the properties of the
density as a function of (¢,2) were not studied. In this paper we solve the first problem
and prove the regularity of the density under a full analogue of Hormander condition.

1. Main result. We suppose that coefficients a : RT™ x R™ — R™, c¢: Rt x R™ x
x R* — R™ of equation (0.1) are measurable functions which are infinitely differen-
tiable in (s, ) and locally bounded together with their derivatives. We also assume that
JK Vz,yeR™, seRT:
[ et = cts, ) PIiw) < Ko =y
Rd
so that (0.1) has a unique strong solution which is a process with cadlag trajectories. Also

we suppose the following condition to hold true,

ISSN 1027-3190. Ykp. mam. xypH., 2005, m. 57, N° 9



ON A REGULARITY OF DISTRIBUTION FOR SOLUTION OF SDE OF A JUMP TYPE . .. 1263

/ sup [Hc(s,x,u)HRm + ||V1;C(S,x7U)||R77L><Rm:|]:[(du) < 400 (1.1)
s€[0,T],||lz[|<R

for any positive T, R.

Under this condition (0.1) can be rewritten in the equivalent form

¢ ¢
X(z,t,r) :ac—}-/&(s,X(m,s,r))als—i—//c(s,X(x,s—,7"),u)1/(ds7du)7 teRT,
r T Rd

(1.2)
with a(s,z) = a(s,z) — /Rd c(s, z,u)II(du).

Let us introduce some notations. For every function Y(s,z,u), s € RT, z € R™,
u € R?, which takes values in R™ and is smooth w.r.t. (s,z), we define AT = Az Y
by

(AY)(s,z,u) = V,Y(s,z,u)a(s,z) + Ti(s,z,u) — Vya(s,z)Y (s, z,u),
here V. denotes vector derivative w.r.t. variable . We also define =, T ==, ,T by
(ZuX)(5,2,u) = [Irm + Vac(s,z,u))] " Y (s, 2 + c(z,u),u).
Note that the function =, Y is well defined only for s, z,u satisfying assumption
-1 & o(Vze(s,z,u)), (1.3)

we denote the set of such (s,z,u) by © and put O, , = {u|(s,z,u) € O}.
For (s,z,u) € © we put

A(s,z,u) = [Ipm + Vaic(s,z,u))] "t x
x[{als, @ + els, 2, 0)) = als,2)} = Vacls, 2, u)als, z) - (s, z,0)|,

and introduce the family of R™-valued functions {AZ”""’”“, k>0, € Zy,r =
=0,...,k} by

Aij”""’i"' (8,2, U0, ..., up) = A*Z A1 ADE, ACA(s, 2, u0),
seRY, zeR™, wg,...,ur € Os.z-
Next, we denote by £ (s, x,ug,...,ux), k > 0 the linear span (in R™ ) of the vectors

W00y ) . .
{Ajo (8, &, Uo7y - -y Wjgr),  TG0y-..,85 >0, 7=0,...,k—7, ]zO,...,k}.

One can see that the family {£;} is monotonous in a sense that (s, z, ug, ..., ux) C

- £k+1(8,x,U0, s ,’U/k+1).
1
el > - z:Ok})
I 41(A) = sup

At last, let us denote
k
n>1 1
- {H({ueRdHuH > E})}

AeB((RY)™),

For every k function IIj, , posses the following properties:

H®(k+1) (A N {(an s 7uk) € (Rd>k+1

)
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D I, ,(A) <TI;,,(B) for AC B;
2) HZ-‘,—l(A) - hmnﬁoo Z+1(An) for An T A7 n — +OO,

o0
3) Wi (4) <D T (A) for AU, An.
Informally one can interpret the space (R?)**! as the space of (k -+ 1)-point config-
urations and II7 , | as the outer measure, generated on this space by initial Levy measure.
Now we can formulate our main result.

Theorem 1.1. A. Suppose that
Vr e R™, seRt, [eR™\{0}:
H{u € O ¢ [ isnot orthogonal to £o(s, x, u)} = +400. (1.4)
Then for every x € R™, 0 <r <t
Po [X(z,t,r) ' < \™

B. Suppose that there exists k > 0 such that for every v € R™, s € RT,
[ € R™\{0}

HZ+1{(Uo, coug) € [@svz]]”l:

I is not orthogonal to £1.(s,x, ug, . . . ,uk)} = +o00. (1.5)

Suppose also two following additional conditions to hold true:

A) there exists C' > 0 such that functions a(-,-) and c(-,-,u) for H-almost all
u € R? are analytical functions in every point (s,x) € Rt x R™ with the radius of
analyticity not less than C
B) / sup [H(Vw)jc(s,33,u)||(Rm)x,- II(du) < 400 for any j € N,
, s€l0.TLllelI<R
T>0, R>0.
Then for every x € R™ 0 <r <t

Po [X(x,t,r) " < \™

The proof of Theorem 1.1 will be given in Section 2, some improvements will be
given in Section 3. Here let us make some discussion.

It was shown in [8] (see also Example 1.4 below) that the density p(z,¢,7,y) of
distribution of X (z,t,r), considered as a function of y, can be extremely nonregular,
for instance, there exist situations in which it does not belong to L, 1o for every p > 1.
At the same time, the properties of this density, considered as a function of (¢,x), were
not studied.

Proposition 1.1. Under conditions of Theorem 1.1 the function

R™ x {(t,r) € (RT)?|t > r} > (z,t,7) — p(a,t,7,-) € L1 (R™)

is continuous.

The proof of this statement is a subject of a separate paper [9] and is based in the
methods, developed recently in [10].

Next, the statement of Theorem 1.1 can be rewritten in a form, which is natural
from the point of view of theory of pseudo-differential operators, let us do this in time-
homogeneous case.
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For an R™-valued function Y(z) denote by the same letter Y differential operator
on R™, defined by
(Yf) = (VS Drm, [ CHR™),
then it is clear that
AY =[a,Y]=a-T-7-a.

Also denote by C,, (for every u € R?) difference operator defined by
Cuf(x) = flx+c(x,u) = f(z), [feCpR™).

Under more strong version of condition (1.3),

sup  ||Vae(z,u)|| <1, (1.3")
u€ERE zeR™

operator I + C,, is invertible (here I is identity operator), and one can see that
EX=T+C)YI+C)Y A(,u)=a—Z,a.

Statements of Theorem 1.1.A and Proposition 1.1 now can be reformulated in the follow-
ing form.

Corollary 1.1. Let us say that the family of operators {¥, .,k > 0}, indexed by
u € Re, is nondegenerated w.r.t. measure I1 if for every x € R™ and every f €
€ CHR™) such that V f(z) # 0

H({u|§|k >0: Uy f(z) # 0}) — Lo
Consider the family
Vo = [a,C](I+C)  =a—T+C)a(I+Cy) ™", Vo =[a, Vs 14, k>0,

and suppose that it is nondegenerated w.r.t. measure 11. Then for the PDO L, given by
the formula

L=a+ /CuH(du),
Rd

the fundamental solution of equation
/
u = Lu

is usual (not generalized) function, which is continuous while considered as a function
from R™ x RY 1o L;(R™).

Statement B of Theorem 1.1 also can be reformulated in the same way, we omit this
in order to shorten exposition.

At last, let us give several examples, illustrating different features of the regularity
result, given by Theorem 1.1.

The first example shows that Theorem 1.1 is a crucial improvement of Theorem 4.2
[8]. It is motivated by the classical Kolmogorov’s example of a diffusion, which hy-
poellipticity can not be provided only by condition on a diffusion part, see [11] or [12],
Chapter 5, Example 8.1.
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Example 1.1. Consider SDE

(1.6)

Xg(t,f) :ZL'Q-‘F/Xl(S,fE)dS,

where Z = (x1,72) € R? and 7; is some compensated Levy process with infinite Levy
measure. Then this equation is of the type (0.1) with m =2, d =1 and

a(s,z) = (z9,21)7, (s, ,u) = (u,0)%.
One has

Az, u) = (0,u)7T, Ab(z,u) = —(u,0)7T,

which means that for every x € R% u # 0 £o(z,u) = R? and therefore condition of
Theorem 1.1 holds true. Note that for [ = (1,0)T TI(u|(l, A(Z,u)) # 0) = 0 for every
x € R2, which means that condition of Theorem 4.2 [8] fails.
It is worth to mention that equation (1.6) is not the full analogue of Example 8.1 [12].
The corresponding analogue should be written as follows:
t

X1(t,Z) =1 + /Xl(s,jf) ds + nq,
(1.6")

Xo(t,7) = 20 + /Xl(s,a’:) ds.

Equation (1.6") gives the simple counterexample, which shows that conditions of the

Theorem 1.1 are close to necessary ones. Namely, in this case AZ""“’Z"“ (Z,ug, ..., ux) =

= (ug,uo)T forevery k > 1,1iq,...,ix > 1,7 € R% uq, ..., ux € R, and conditions

of the Theorem fail. On the other hand, one can choose II in such a way that the distri-

bution of X7 (t) — X2(t) = n; is not absolutely continuous (see Example 1.4 below), and

for II the joint distribution (X7(t), X2(t)) definitely is not absolutely continuous.
Next, let ¢ € C*°(R) be globally Lipschitz. Let us consider equation

t
X1(t,2) =21 + /w(Xg(s,x))ds—l—m,
0

t
Xo(t,T) = x4 +/X1(5,:U) ds.
0

One has that
A(z,u) = (0,u)",  Aj@,u) = (—u)" (") (22),0)T.

Now let us take #(x) which is equal in some neighborhood of 0 to z", r € N, then
equation (1.7) shows that, in general, we can not replace in statement A the family
Lo(z,u) by £5(z,u) = (Aj(z,u), i <r).
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In the second example conditions of statement B of the Theorem hold true, but condi-
tions of statement A fail.
Example 1.2. Consider SDE

t

X1(t,z2) = o —|—/X1(s,rf) ds +n},

0
(1.8)

¢
Xo(t,Z) = o —i—/Xl(S,:E)XQ(S,aE) ds +n?.
0

We suppose that the Levy measure II of the Levy process 7; = (n},n?) is concentrated
on the set {(ul, ug) € R2: uq-uy = 0} and denote by II!, 12 restrictions of II on the
axis {(ul,uQ) DUy = 0} and {(ul,uQ) DUy = 0} correspondingly. Straightforward
computations give that

A(z, 1) = (ur, u1m2 + ugwy)?, ANz, 1) = (—1)" (w1, Prouy s (71, 22)) 7

where P, 4, is some polynom with the free term equal to zero. This means that for
z=(0,0)T,1=(0,1)T condition (1.4) fails.
On the other hand, consider vectors

A %), AP’ a") = (uf, u(vo + ud) + ud(ar +u}))

one can see that these vectors generate R? for every @°, @' € supp II such that u{ # 0,
ul # 0. For the set A of such pairs (", ') we have that

1 1
IP(MH>—>W(MM>—)
II3(A) = sup d "

n _ 1 ’
II <||u > —>
n

and TI5(A) = +oo under condition

M (R?) = 400,  TI*(R?) = +oc. (1.9)

It is easy to see that condition (1.9) is a nessesary one: if it fails, then for the solution of
(1.8) with z1 = 22 = 0 the distribution either of X;(¢) or X2 (¢) has an atom.

The third example shows the following interesting feature. In the usual Hormander
condition the linear subspace, generated by the corresponding family of vector fields, is
supposed to have maximal possible dimension. This example shows, that condition of
Theorem 1.1 can hold true even if dim £4(s,x,u) < m forevery s, z,u, k.

Example 1.3. Consider SDE

t
Xi(t2) =+ [ Xa(s,a)ds o

0
t

Xo(t,7) :ngr/Xg(s,a_:) d5+77t2,
0

where 7, = (n{,n?) is a compensated two-dimensional Levy process. One has that for
every k, ig,...,1x € Z4
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10,5050k (4 _ - _ = 2
Ay (Z,ug, U1, ..., uk) = A(Z,up) = uo, ug, ..., Ug, T € R*

and therefore dim L4 (Z,ug,...,ux) = 1 for up # 0 and dim L£x(Z,ug,...,ux) =0
otherwise. On the other hand, if for every [ e R2

I(a & (1)) = +o0,
condition of Theorem 1.1 hold true.
One can say, that in the considered examples solution of equation

X(t,x) = x—!—/X(s,x) ds + n: (1.10)
0

plays the role of an analogue of one-dimensional diffusion with constant coefficients.
Indeed, in condition of Theorem 1.1, considered as an analogue of Hormander condition,
function A corresponds to the vector field generated by diffusion coefficient, and for
equation (1.10) A does not depend on x. The following example (last in this section)
shows, that even in this simplest case one can hardly expect to obtain for the density, given

by Theorem 1.1, any regularity properties better than given in Proposition 1.1.

o 1
Example 1.4. Consider (1.10) with 7, = Zk . —knf, where o > 1, {n*} are
=1

independent Poisson processes with the same intensity A. Let for simplicity = 0, then
one can show (see [8], Chapter 5) that there exists 5 = S(«) > 0 such that

limsups_TMP(X(t,O) >¢e) > 0. (1.11)
e—0+

We have A(x,u) = u, i.e., conditions of Theorem 1.1 hold true and there exists a density
p(t,-) of distribution of X (¢,0). We have P(X(¢,0) < 0) = 0, therefore from (1.11)
we obtain that

p(t,) € CE(R), if M<B(k+1), k>1,

p(t,") & Loojoc(R), if M < B, (1.12)

p(t,) & Lpioc(R), if X <p (1 — %) , pE(1,400).

It appears, that statements (1.12) are rather precise, namely, as soon as (1.10) is a linear
equation, one can calculate the characteristic function () of X(¢,0) explicitly and
then obtain the estimate :(z) = o(|z\7%), |z| — oo, with some v = y(a) > 0,
which means that

p(t,-) € CFR), M >~y(k+1), k>0.

This forms the phenomenon, which can be call “gradual hypoellipticity”: fundamental
solution of the corresponding equation with PDO becomes smooth not instantly, but after
some period of time, and this period depends linearly on the rate of smoothness which is
to be achieved.

The feature of “gradual hypoellipticity” is interesting, but not very common, this can
be illustrated by the following modification of the example. Using the same arguments
to those made in [8] (Chapter 5), one can construct for every given function ¢ with
©(0+) = +oco asequence {ay} € R, such that for the solution of (1.10) with 7, =
= Zk aknf the following analogue of (1.11) holds true:
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Ve >0: lim sup ¢(e)P(X(¢,0) >¢) > 0. (1.13)
e—0+

This can be reformulated in the following form. Let ® be positive convex function on
R, denote by L  the space of the functions f on R such that

loc

/@(f(x)) dx < +o0
I
for every finite interval I. The following statement is due to (1.13) and Jensen’s in-
equality.
®(z)
]

Proposition 1.2. For any fixed ® with — 00, || — oo, there exists an

equation of the type (1.10) such that
p(t7 ) ¢ Lg;ca t>0.

It is worth to be mentioned that these interesting features do not occur in classes of
equations, which can be treated by methods of J. Bismut or J. Picard. Another new feature
is that, at least for some values of « (say, integers or so called P.V. numbers), distribu-
tion of 1, = Z:il Jnf is singular for every t. The situation, when the solution
of SDE is regular while the noise, driving this equation, is not, seems not to be studied
systematically yet.

As a conclusive remark let us say that our method of proof (some modification of
stratification method) appears to be well suited for a “boundary region” of equations of
the type (0.1), in which such phenomenons, as “gradual hypoellipticity” or singularity of
initial noise, hold, and which can not be treated by other known methods. However, the
price is that this method does not allow one to obtain general results on regularity, more
strong than given in Proposition 1.1.

2. Proof. First we will prove the theorem, supposing coefficient c to satisfy addi-
tional condition

sup IVze(s,z,u)|| < 1. (2.1)
s€R+ ueRd xeR™

Denote by {Sf} the m x m-matrix valued process satisfying equation

t
£ = Igm + / Vs, X (s))E° ds+

n // Vac(s, X (s—), 0)E v(ds, du).

[r t] x R4

Under condition (2.1) matrix E! is a.s. invertible for every r, .
The starting point in our proof is the following statement (see [8], Theorem 4.1).
Denote by p(-) the point process corresponding to random point measure v .

Proposition 2.1. Denote by S; the linear span of the set of vectors {[Sg “)LA(T

X(t=), p(m), T < t}, where T ’s are taken from the domain D of the process p(-).
Let Q; = {w|dim S¢(w) = m}, then

Plg, o [X(1)]7} < A™.
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Our aim is to show that under conditions of Theorem 1.1 the set ; coincides with
Q almost surely. The method of proof is up to [8, 13] and is based on so called “time-
stretching” transformations of the jump process, let us briefly give here necessary con-

structions. Denote H = Lo(RT), Hy = Loo(RT) N Ly(RT), Jh(:) = / h(s)ds,
0
h € H. For afixed h € Hy define the family {7},¢ € R} of transformations of the
axis R™ by putting Tfz, 2 € R equal to the value at the point s = ¢ of the solution
of the Cauchy problem
z;h(s) = Jh(zg,n(5)), seR, zyn(0) =z

The following properties hold:

a) Tyt =TpoT};

d

b) EThﬂt:o = Jh(z);

o Ti="T}.

We denote T}, = Tj!. Denote also Ilg, = {T' € B(R?), II(T') < +o0} and define
for h € Hy, I € I, transformation T{ of the random measure v by

[T,l;y} ([0,¢] x A) =
=v([0,T_4t] x (ANT)) +v([0,] x (A\I)), teRT, A €llg,.

Transformation 7} is admissible for the distribution of v in a sense that there exists
function pg (which can be given explicitly), such that for every {¢,...,¢,} C RT,
{A4,...,A,} C g, and Borel function ¢ : R* — R

Bip ([TE V)10, t2] X A1), [TEVI(0, 1] % Ag)) =

- Epggp(y([o,tl} x Ay, ([0, ta] X An)).

This fact, under additional condition that o -algebra of all random events is generated by
v, imply that T }1; generates the corresponding transformation of random variables, we
denote it also by T,I; .

For a given h € Hy, I' € Ilg, and random variable f denote

L e _
o f= lim % (2.2)

the variable in the left hand side of (2.2) is defined on the set of such w € €2, that the
limit in the right-hand side exists. The key point in our considerations is the following
simple statement.

Lemma 2.1. Let [ be a random variable, hq,...,h; € Hy, I'1,..., Ty € Ilg,
and

A= {(8}1:11) . (8£f)f is defined and ~ # O},
then
Plaoft < Al

Sketch of the proof. One can verify that for a fixed h, I' the transformation T}: gen-
erates measurable stratification of the initial space 2, and therefore using stratification
method (see [5], Chapter 2.5) one can show that
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Pliorszop o 1 <A, (2.3)

i.e., the needed statement holds true for k£ = 1. Statement (2.3) implies that P ({8£ f#

#* 0} Nn{f = O}) = 0, which gives an opportunity to prove statement of the lemma by
induction.

Let us prove first the statement A of Theorem 1.1, which is more simple. Let (s, z, u)
be a fixed vector-valued function, S C R™ be some subspace.

Lemma 2.2. Forevery s <t

[3reDn(sn): (€1 AN)(r X(r-).p(r) £ 5}

C {37’ eDN(s,t): [0 (1, X (1), p(1)) & S}

almost surely.
Proof. Denote by [y, ...,1; some basisin S+, and put

Qrin = {31 €D (5,) + (171 AT, X (7=),p(7). b ) # 0}, (24)

1
where D,, = {T e D|llp(7)|| > = } In order to prove the needed statement it is enough
n

to show that forevery s < t, j <k, n>1,
Qurn © {3 €D (5,): 7] T X (7-),p(7) ¢ S} (25)

almost surely. Let s < t, 7 < k, n > 1 be fixed, we define 7 on the set ;¢ ;, as
the first point from D,,, satisfying condition in the right-hand side of (2.4), and denote
U= ([Eg_]_lT(%,X(%—),p(%)), lj)R . We shall prove that

P ot <\, (2.6)

Qs t,5,n

N 'N

can see that P(Uy . 2y) = 1. Letus show that for Ay = T -

~ow )

1
this will provide (2.5). For N, r € N denote Q7 = {Dn N (T i] - {%}}, one

I, = {u| [l >

1 .
> — } almost surely on the set {2}, there exist
n

T O — W
e—0

=@ ([E7] T @nEXE L) @)

This, together with Lemma 2.1, will give the needed statement, as soon as [Jh'y|(7) # 0
on (2};. By the construction,

d

4 [TF" %} = —[Jh%])(). (2.8)

r
eh’y

e=0

In order to find i
de

{TEF,;NX (i’—)}, let us note that on the set 7 for ¢ small enough
e=0

Tghﬂ}.vX (F-) =X (Tfh@;v %), where X is a solution of equation

X(v)_X(s)—F]d(z,f((z))dqu/u / c(z, X (2—), w)v(ds, du).

s s lull<g
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Under condition (1.1) almost every trajectory of the process X is differentiable by v for
almost all v w.r.t. Lebesgue measure on [s,+o0), and the corresponding derivative is
equal to X’(v) = a(v, X (v)). Distribution of 7 is absolutely continuous, 7 and X are
independent. Therefore

d Th (=] r i
| [T X 0] = @, X () (2.9)
almost surely on 2%;. The same considerations give that almost surely on 7%,
d 7-1—1 r ~ Fo1— ~f~ ~
o) [T )] = UMIGIET T Ve X G (210)
e=

Equalities (2.8) — (2.10) together with the chain rule give (2.7).

The lemma is proved.

The end of the proof of statement A repeats the proof of Theorem 4.2 [8], let us give
it here briefly. First let us give the following useful statement, which is a generalization
of Lemma 4.3 [8].

Lemma 2.3. Suppose that the following objects are chosen.

1. A measurable space (U,U) with a measure [ on it and a compact metric space Z.

2. A sequence of functions {f, : Z x U — R,n € N}, such that every f, is
measurable w.r.t. second coordinate when the first one is fixed and is continuous w.r.t.
first coordinate when the second one is fixed.

3. A sequence {a.} C RT, a sequence of open sets {O, C R, n,k € N},
monotonously increasing by k for every fixed n, and a monotonously increasing se-
quence of measurable sets {U, C U} with u(U,) < +oo and U, U, = U.

Denote O,, = UO,, 1, and suppose that for every z € Z

sup [aTu{u eU,|IneN: f,(z,u) € On}} = 400,
then

lim ing sup [aqu{u eUyFi<n: fi(z,u) € Oi7k}] = +00.
q<r

n,k,r—o00 z€

Proof. Let us consider functions
©n kr(2) = sup [aqu{u eUy|Fi<n: fi(z,u) € Oi’k}},
q<r

due to conditions of the lemma for every z € Z ¢, ,(2) tends to +oo and is
monotonous w.r.t. every index n,k,r while others are fixed. Moreover, every function
©n,k,r 18 lower semicontinuous, i.e., for every sequence z; — z we have the inequality
On k,r(2) < liminf; ¢, k »(z;). Therefore the needed statement holds true due to the
correspondent version of the Dini theorem.

The lemma is proved.

Corollary 2.1. Let K be some compact subset in R™, take Z = [0,T] x K x

_ _ 1 _
x{leR™: || =1}, p=1IL U, = {u s ul] > ;}7 ar =1, fu(s,z,lu) =
= (A§(s,2,u), 1) s Ong = R\{0}. Then due to lemma under condition (1.4) for
every T < +o00 and compact set K C R™

lim inf

1
H{MW|2—,ajgk:
n,k—+oo s<T,x€K,I#£0 n

| is not orthogonal to A%(s,x,u)} = +00. (2.11)
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Another corollary will be given below, in the proof of statement B (see (2.18)).

In order to shorten notations we suppose further that for some compact K C R™
X(s) € K, s <t as., the standard way to give rigorous basis for this supposition is
the following one. Take the Markov moment (r of the exit of X (-) from the set K
and consider the new process X (-) = X (- A (x). For this process all estimates, given
below, hold true, and for every given ¢ the probability of the set {X|j04 # X (0.4} C
C {¢x >t} can be made arbitrary small by an appropriate choice of K.

Let n, k be fixed, denote by 7;* the i-th point from D, S} = <[88' 7}71A(T,

X(t=),p(1)), 7 €Dy, 7 < t>. Due to Fubini theorem, for every s <t

P ( dim S = dim S™

dim S} < m) =

= / P(Vr € D, N(s,t)x

{dim S<m}xR™
xQ[Er] T A, X (y, 7=, 5), p(7)) € ) 320, (dS. dy, dQ),
here we suppose that the space of all subspaces of R™ is parameterized in such a way that
it becomes a Polish space, and sz ,, is the joint distribution of S7, X (s) and [£5]7.
Due to Lemma 2.2 for every S # R, y € R™ one has
P(vr € D (s,0), [ A X (y,7—,5)p(7) ¢ S) =

=P(vr €Dun (5,8), 3 <k (7] AYT Xy, 7, 5),0(7)) £ §) =

> ian(VT €D, N (s,t), 3 <k [E7])10(r, X (y, 7, 5), p(7)) L i). (2.12)

The variable p(7]*) (the value of the i-th jump from D,, ) is independent from the values
of others jumps, from the moments of all jumps and from [857‘ _} ~' The distribution of

n 3 G TIEES) .
(") is equal N Therefore, denoting
n
. 1 . T
Tk = inf H(u:||u|>—7 J5 <k: (Aj(x,s,u),l)Rd;éO>,
s<T,xe K,l#0 n

wo=n({u > 1),

Ny = #(Dy,, N (s,t)) (it has the Poisson distribution with intensity A, (¢ — s)), one
can estimate the last term in (2.12) by

n

Ns‘t
E (1 - ”A—> — exp{—(t — )y

This implies that
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m

P(dim Sy =m) > lirf P (dim St > dim ST, 4
r=1 "

t m
> i 1-— - — =1
- n,kl—r}-lﬁ-oo ( exp{ m’sz,k}) ’

which gives the needed statement.

Now let us proceed with the proof of statement B. In order to shorten notations we will
consider only the time-homogeneous case. Also, without loss of generality, we suppose
that there are some compacts K C R™, K € R™ "™ such that X () € K, En e
€ K as.,, t>0.

Let us introduce some notations. For a given ordered set ¢ = {tg < ta < -+ < tx},
t; € QNR*, k> 1 denote d(t) = min;(¢; —t;_1). Forevery such ¢ and every [ > 1
let us choose a sequence A"l = {h?l € Hy, j=1,...,k} such that

a) supp Jh;fl C (tj,tj—1);

‘ d(t) d(t)
Tl o
b) th =1 on (t + —= 3l o1 5 )
Next, for a given ¢ and n,l € N we put

_’fd{#[pn toty)] =1},

L 1
Denote T7:46m = T{:J U"H> }, j=1,...,k. The following properties hold true:

1) the set Q%™ is invariant w.r.t. every transformation 77-%";
2) forevery €12, j1,2 transformations T¢1-“5" and 77241 commute.
d

t,0
Denote ;""" = — T tln
J de

dim S?(r—l) < m) Z

, derivative is taken in an a.s sense. One can see that
e=0

8f,l,n7_f,l,n

;7 = —0;; almostsurely on Qbbno <k,

n

here by Tt we denote the unique point from D,, N (¢;,t;41), 6;; is the Kronecker

symbol. In order to shorten notations we will further omit the subscripts %", tn
8j7 TJ L o -

For a given t, n consider processes X, & ( =Xt Etvn), defined as the solutions
of SDE’s

over

¢ tALo ¢
X(t) :er/EL(X(S)) ds + / /Jr / / (X (s—),u)v(ds,du),
0 0 RE AP0 {u|lp(u)> 7}
¢ tAto ¢
=t [vasogas ) [ [« [ ] s
0 0 RE Ao {ulllp(u)> 7}

x V(X (s—),u) E5v(ds, du).
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Lemma 2.4. Under condition B)there exist functions VN € C(RT), V;N(0) = 0,
k, N € N, such that for every n,l € N, t = {tg < -+ < tx} and every iy,... i) €
€{0,...,N}

D) @0 s+ ) @+ 0™ (1E77] A (), p(me) )

— (D) (Dt + D)1 (B +. .+ a,@)il([égr]—1A(X(m—),p(7k>)) H <

(k+1)N (k+1)N
< VN (g FHEON (DN

i) H(ak)ik (Ot + Op)*1 (D1 + ... + B) ([égk—]*lA(X(ka),p(Tk))) -

7[5(;-1_]A;€1_’171k (X(Tlf)ap(’rl% cee ap(’rk))‘ < Vk-N(tk - tO)

R™

almost surely on Q5™ where

t
nl”:/ / sup, e ([le(@, w)lrm + ... + (Vo) (@, u)||gm)x-)v(ds, du).

0 {llull<3}

Proof. By the definition X=X and £E=€ on [0,71). Due to (2.7)
(00" (I£3 17 A, X (), p(m)) = [657]7 A (X (1), p(m)

almost surely on QbL" which means that the case k = 1 is already proved.
To proceed with the case k£ > 1 we need two auxiliary technical results. Supposing
n to be fixed, denote by ¥, ,(x) = ¥}, (x) solution of SDE

t t
X(t) =2+ /&(X(s)) ds +/ / (X (5=), u)(ds, du), > r.
r T {ullp(wlI< 5}
It follows from the general results about differentiability of the solution of differential

equation w.r.t. initial value that functions \I/it = (V.)'V,, are well defined almost
surely. We denote by ®,.¢(2) = @) ,(x) solution of ODE

X(t):x—i-/&(X(s))ds, t>r,

T

and put ‘I)i,t = (V.) ®,;.
Proposition 2.2. For every N € N there exists function W ¢ C(R*) with
WN(0) = 0 such that for every j < N,z € R™,t > r

j j n,N n,N
H\Ijit(m) - (I)i,t(x)H(RM)X(Hl) < WN(m,; — Mt )-

almost surely.

Sketch of the proof. One can write down iteratively differential equations both on
\Iﬂt and @i’t (stochastic for \Ilf;yt and ordinary for @it) These equations are linear
nonhomogeneous equations with free terms constructed (in a same regular manner) from
functions a,c with their derivatives up to the order j and functions {\Ilfq’t,i < j} or
{<I>i7“i < j} correspondingly. Now the needed statement can be obtained by induction
using condition 3) and Gronwall lemma.
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The same considerations together with the fact that the process nf N in every point
t almost surely has derivative w.r.t. ¢, equal to 0, provide the following statement.
Proposition 2.3. The function WHN in previous proposition can be chosen in such a
way that for every ji, j2, js < N,x e R™, t >r
§ir 9I2 . oIt 9z .
(@) -~ 290 (a)
Orir otiz =" orit gtiz =~ "™
almost surely.

Now let us return to the proof of the lemma. In order to shorten notations we will
consider only the case k£ = 2, the arguments for £ > 2 will be the same.
Using (2.7), we obtain that

(02)" (167271 ACX (r2=), p(72)) ) = €771 (A A) (X (r2=), p(72))-

N N
<w¥ (N = ™)

(Rm )% (43+1)

Let us estimate (0;)% ([5&2_]_1T(X(T2—),p(Tg))) for a vector-valued function Y.

One can write down

(€52 171 T (X (r2), p(72)) =

<T(@r, (X (1) + (X (71 =),p(7))), p(72) ) (2.14)

We know that almost surely on the set Qb
om=-1, & ] =& T Vaa(X (n-)),
X (n-)=—-a(X(n-)), Al =& IVea(X (), (219

nX(11—) = —a(X(m1—)).
Taking iteratively 0; from the right-hand sides of equalities (2.13), (2.14) and using
(2.15) and Propositions 2.2, 2.3 we obtain statement i) of the lemma.
Now let us estimate the value (91 + 02)" (Dg)" ([ggz_]*lA(X(Tgf),p(TQ))). As

soon as function ¢ is defined by a homogeneous equation, one has that for every j > 0

o 0 ;
(8_ + E) @7 ,(z) = 0. This together with (2.15) means that for ¢ € C*
, :

(01 + 02) [0, 1, (P(X (n=))| = = (P41, (P(X (1)), [VoVal (X (n-)))

Rm
) (2.16)
Note that [|®7, _ (2)[|gm)xu+1 = O(ta —to) on Qbbm for all j > 2, thus iterating
(2.16) we obtain that
, - - ~1 ,
|@+02) [0}, (X(n=)+eX(n-)pr))]| || .. =Olta=to) on Q&b

The same considerations give that
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@+ 02T (@, (K1) + (X (1 2)p(m0))).p(72)) -

= O(tg — to) on Qf,l,n.

(01 + ) T (X (71=) + (K (=), p(r),p(r2) |

Therefore, as soon as 82X (r1—) = 0 and 62581_ = 0, we have that, up to some
O(ts — to) term, (9; + az)i([égr] ‘%(X(Tz—),p(@))) is equal to

00 { [€57) 7 [T+ Vael&m-)pm)] x
X T(X(r1=) + (X (=), p(m), p(r2)) } =

= &7 Ay T p(72) | (K (1)),

which gives the needed statement.
The lemma is proved.
For a given s <t and [ # 0 let us consider the event

As,t,f: {E”, neN, t= {to,...,tx} C (5,6)NQ, dg,...7 >0:
(af,lyn)io”'( fﬁl,n_,'_.”_,'_a]t;l,n)ikx

([ AR <)) 1), 0

Due to representation (2.14) and condition A), for every n, ¢ = {tg <
... < ty} there exists a function

Prin s (R™) x (R™™) x (RNDF x {(v1,...,v8) 1to <v1 < ... S} — R™,

which is analytical in every point w.r.t. coordinates vy, ..., v; with the radius of analyt-
icity not less than C, and such that

(&)™ A (Rt ptrm) =

= Ofin (X(to), Eéo,p(rf’"), ... 71)(7’,2’"), Tf’", e T,Z’").

The following fact is well known: if some function is analytical on some subset of R*
and is not equal to 0 in some point, then it is not equal to 0 in almost every point w.r.t.
AF. Variables 70", ... ,T,ﬁ’" are independent from X (to), £°, p(ri™), ... ,p(le’") and
their joint distribution is absolutely continuous w.r.t. A*. This together with statement ii)
of Lemma 2.4 implies that for a given n, [, ¢ and [ # 0 almost surely

R R G R
X ([(ggﬁ)iﬂ_} AXE (=), p(rim™)), f)Rm # 0}3

5 Qbbn A {([551{’”*} ﬂAﬁf_’g"” (X (" =), Py ™), (™), Z_>Rm 7 0}'

This gives that almost surely
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As,t,[ ) Bs,t,[ = {EI.] Z 1: 7-]@7 R 7Tjn+k—1 € (Sat)

P e SN
and ({507 } )l is not orthogonal to

(X (=), P, (i) |-
Let us show that
P(B,,;) = 1. (2.17)
Denote by £ (s, z,uo,...,ux), k> 0 the linear span of the vectors
{A;O""’ij(s,x,uo+r,...,uj+r), iy iy <M, r=0,... k-7, j= 0,...,k}.

Let condition (1.5) to hold true with some given &£ > 0. Then due to Lemma 2.3 for every
R there exist n, M such that forevery = € K, b # 0 there exists N = N*:F (2 b) <n
satisfying condition

B 1 k+1
5 (a,b) = H®<k+1>({<uo,...,uk> e {nun > N} :

b is not orthogonal to £ (x, ug, . . . ,uk)}> X

({n(feemma= 1YY 2 o1

1
Note that Ay =11 <{||u| > N}) is not less than R and therefore inf,, , ; N (z,
b) — +00, R — +o0o. Let us denote
n,M __ . .
BT = U {EI] >1: TJN,...,T;\_[,'_k_l € (s,t) and
N<n
P et AN
([50” } ) [ is not orthogonal to  £4 (X(TJN*),])(TJN), . ,p(Tf\j_k_l)> }
and estimate probability of B:% First we take constant C' = C(k) such that e=¢ <

1 _oCh 1 . . .
< 3 and Zizk e o > 3 Then we construct inductively a random covering of the

c
interval (s,400) inthe following way. Let us take the interval <s, 5+ )\—) and consider

n

C C
the set D, N (s7 s+ )\_> . If this set is empty, we put [} = (s7 s+ /\—] , otherwise we

n n
take the first point @ from this set, define N = NM.R (X(Q—), ([Sg_] _1> Z) and put
C
I = (s, 0+ )\—~] . Then we take I; as the first set in the covering which we are going

N
to construct, replace (s,400) by (s,+00)\I; and repeat the preceding procedure. We
obtain a countable covering of the interval (s,+o00) by a segments {L. = (Vp—1, Vs,

r > 1}, which can be separated in two groups:

1) some segments of the length )\E, we denote this group by G';
n
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C
2) some segments of the length > I we denote this group by G€.

2C
Note that the length of every segment is not greater than R we suppose that R

2C t—
is taken sufficiently large and ) < TS Next, by the construction every v, is a

stopping time and v,4; is independent from F, _, random event {IT = (Vp_1,0,] €

eg 1} is independent from £, _ and its probability is equal to e~¢. Denote by o
the total length of all segments I, in the first group such that v,_; < ¢, then

C
EZ.t = S P €Ghv <t)=

- Ci;c XT:P(’UT_l <)< {[W} + 1} Ci;c,

An(t —8)

here we used the obvious fact that P(v,_; <t) =0, r > [ c

] +1. Analogously

one can verify that
_ 2(,—C _ ,—2C
DZs; < {{L(t 8)} + 1} Cle —7) ),

which means that

t —
Zei—EZ; 50 and P—lim sup Zy, <eC(t—s)< . 5
Ap—+00

Therefore for every fixed p € (0,1) one can choose initial number R (and, conse-
quently, number n ) large enough to provide estimate

P(Zs,t < t;‘s) > p. (2.19)

Next, let us monotonously enumerate the second group, G = {J;}. For a given j let

0; be the first point from D,,N I, N; = NM’R(X(HJ-—LH]-, ([537“}‘1)*1’). Denote

C
by D; the event {the segment <0j,9j + )\—} contains at least k points from Dy, },

;
ok 1
_ -C H .
P(D;) = ZiZke Ty Denote the first & points from Dy, N (6;,400) by
9}, cee 0;?. Due to the choice of INV; probability of the event

k__ * _
Cj = {([Egj ] 1) [ is not orthogonal to

S (X(65-).p(6,),p(6].....p(8))) }

R .

s not less than ——. Events C}, D; are independent both from Fp, and from each
N;

other, therefore
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p(Br)z1-P( () [AGnD)] ]2

s,t,f -
§i0;< 2L
R R
>1—-F 1-—— | >1—-F — —
- . 11 ( 2)\N'> - P 2 AN
j:J; C(s,t) J J:J;C(s,t) J
. c .. .
The variable W ; = Z ‘ —— s just the total length of the intervals from the
? J:J;C(s,t) )\Nj
2(t —
second group, which are contained in (s,t). One have that W, , > ( 3 ) — 2, and

t —
under (2.19) we have that W, ; > TS with probability > p, which gives that

P(B:t]\l{) >p—exp [—%(t — s)] . (2.20)

Now we proceed in a following way: for a given p € (0,1) we take R, such that
(2.19) holds for every R > R, then take R — oo in (2.20) and therefore obtain that
P(B; ;1) > p. Atlast, we take p T 1 and obtain (2.17).

Denote

AM’JVN:{HZ, n>N, t={to,....,tx} C (5,6)NQ, k,ig,...i <M :

s,t,l

](a?’”)io (PR by

([ (e a6n) 1), | > 5

J
by the construction Ai‘/ftvﬁle C Aiwt’%N, N <N, M< M, j < 7, and due to (2.17)

P(AM’JQ) — 1 as M, j — +oo forevery [ # 0, s < t. Fora given ¢ € (0,1) let

s,t,l
us take N,, 7., M, such that P(Aiwt*;j*’N> > p forevery N > N,. Next, we take

N* such that for every n > N* P(V]{}/[ (nt MM _ ns’M(MH)) > — ) <e
Now we can apply the statement ii) of Lemma 2.4 for n > N, V N* and obtain that the

probability of the event

Cs,t,fE {Ell, neN, t= {to,...,tk} C (S,t) NQ, ig,...7%, >0:
(@5hmyio (@0 44 abtmy ik x

<([een ™ ] a(xtm w6, ), # 0}

is not less than 1 — 2¢ and therefore P(C,,7) = 1. Using this fact and Lemma 2.1,
we obtain analogously to the proof of statement A that P(dim S; = dim Ss|dim S5 <
< m) =0 forevery s < t, which gives the needed statement.

The last thing, which we need to do, is to remove condition (2.1). Denote by (
the moment of the first jump such that } \p(e X((—)m(())H > 1. Considerations,
analogous to those made before, imply that
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Pliesn o [X (O] <A™,

Next,let I'p; = {u ‘ SUPs<y |z <r | Vac(s, z,u)|| > 1}, Cri—s =inf {r>t—dlre
€D, p(r) eTry } The same considerations, together with evolutionary property of the
family X (x,t,s), gives that for every R, 4§

Pl{crs>hn{sup,<, I X(s)I <R} © [X ()] <A™

This means that the total mass of the singular part of the distribution of X (¢) can be
estimated by

P (teres <000 fsw x> 7).

which can be made arbitrarily small by taking first R large enough and then § small
enough.

The theorem is proved.

3. Appendix: some improvements and unsolved problems. One can see from the
proof of the Theorem 1.1 that conditions .A), B) are a technical ones, which are used to
calculate and estimate compositions of derivatives w.r.t. the first £ — 1 jumps in a given
set of k£ jumps (derivatives af’l’", e 6,’;:’, see notations before Lemma 2.4). This
remark immediately gives the following version of statement B.

Proposition 3.1. Denote by £;(x, uq, ..., uy) the span of the vectors

{A;‘.’Ov-“vo(x,uw,...,uHr), G=0, .k =0, k—7, i> 0}.
Suppose that for some k > 0 for every x € R™ s € RT [ € R™\{0}

HZ+1{(U/O7 s 7uk) € [GS;I]k+1 :

1 is not orthogonal to i‘,k(& T,UQ, - . - ,uk)} = +o00. (3.1
Then for every x € R™, 0 <r <t
Po [X(z,t,7r)] "t <A™

The proof is analogous to the proof of statement B and is omitted. Proposition 3.1
allows, in particular, to consider SDE’s such that their drift coefficients have a rot of
Zeros.

Example 3.1. a) Consider one-dimensional SDE

X(t,z)=z+ /a(X(s“T)) ds + 1, (3.2)
0

where 7, is the Levy process with the Levy measure II = Z ) agds-r, where

k>
Zk ap = +oo. Suppose that a € C°°(R) is such that in every point of the Cantor
set ' C [0,1] function a together with all its derivatives is equal to zero, and a # 0
outside K. Theorem 1.1 can not be applied here. Indeed, as soon as supp II C K, one
has that Af)(O,u) = 0 for every u € supp II,7 > 0, which means that condition (1.4)
fails and statement A. is not applicable. Statement B we can not apply because function
a is not analytical.
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On the other hand, for every point € R and every ¢ # j one has that at least one
of the numbers x + 3%, 2 + 377, 2 + 3% + 377 does not belong to K. This means
that for every «

;05
H;{(uo,ul) : 8o (, ug, uy) # {0}} > sup @ = 400,
" j<n
and (3.1) holds true with & = 1. Therefore solution of (3.2) has absolutely continuous
distribution.

It is worth to be mentioned that regularity properties of the solution of SDE of the type
(3.2) can essentially depend on the mutual properties of the set of zeros of the function a
and Levy measure of the process 7;.

Example 3.1. b) Let a be equal to zero on the set K i 0L of the points y € [0,1]
such that in their representations

j:

every digit y; is not equal to 1 (note that the classical Cantor set from the previous
example can be written in these notations as Ké’o"l ). Let us consider SDE’s of the

type (3.2) with two different processes 7, in the right-hand side, having Levy measures
1
_ P — - i
equal II, = Zk21 kPé4-r, p>1, and II_; = Zkzl k54—k correspondingly. The
first case can be treated analogously to the previous example. Namely, for every = € R

and every given ¢ > j there exist numbers £; € {0,1,2,3}, e2 € {0,1}, not equal
simultaneously to 0, such that @ + 147" + g9477 ¢ Ki’o’l’l. This means that if in
every point = ¢ K i’o’l’l some derivative of a is not equal to zero, then

3p p
HZ{(U(), L ,’ZL4) : £4(x7u0, ey 'LL4) 75 {O}} > sup K j<i<n — — oo,
n 4]. [Zign i*]
and solution of (3.2) has absolutely continuous distribution.

On the other hand, process 7. with Levy measure II_; on the interval (0,1) does
not have multiply jumps (i.e., all its jumps have different values) with probability

o 1 .
p”‘:l_[e*E <1+—>—67 >0,
n
n=1

here v* = 0,577215. .. is the Euler’s constant. This means that with probability p* the
value 7, in every point s < 1 has in its representation (3.3) all digits equal to either 0

2
or 1. Let us take by starting point = = 3’ all its digits in (3.3) are equal 2, and therefore
2
with probability p* all digits of 3 + ns for every s < 1 are equal 2 or 3, which
2
means that — + s € Ki’o’l’l. If a=0 on Ki’o’l’l, then with the same probability

2 2
X(l’ §) ~ 3 +m € Ki’o’l’l. Remind that Al(Ki’O’l’l) = 0, and this together with

2
the preceding arguments gives that the distribution of X <1, §) has a nontrivial singular

component.
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At this time we can not give any general condition, say, in the terms of the entropy of
the set of zeroes of the drift coefficient in (3.2), sufficient for solution to have an absolutely
continuous distribution.

At the end, let us give another improvement of statement B. One can see that the
constant C' = C'(k) in the proof can be chosen in the form C(k) = C*k. Repeating the
rest of the proof, we obtain that statement B holds true with the condition (1.5) replaced
by the weaker condition

1 . N
— inf Hk+1{(u07...,u;€) € [G)S,w]k'*'1 :
z,s,l#0

[ is not orthogonal to £ (s, z, ug, . . - ,uk)} — +o00, k — +oo. (3.4)

1
The question whether the term z in the left hand side of (3.4) is sharp or it can be

replaced by some term, increasing more slowly (or maybe removed at all), is still open.
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