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DIFFUSION APPROXIMATION
WITH EQUILIBRIUM OF EVOLUTIONARY SYSTEMS
SWITCHED BY SEMI-MARKOYV PROCESSES

HH@Y3IfIHJA AITPOKCUMAILIA 3 PIBHOBAI'OIO
EBOJIIONIMHUX CUCTEM, 11O ITIEPEMUKAIOTHCA
HAIIIBMAPKOBCBKUMMU ITPOINECAMH

We consider an evolutionary system switched by a semi-Markov process. For this system we obtain a
nonhomogeneous diffusion approximation results where the initial process is compensated by the
averaging function in the average approximation scheme.

st cucTeM, IO NMEPEMHUKAIOTHCS HaMiBMAPKOBCHKMMM MPOLIECAMH, OIEPKAHO Pe3yJIbTaTH Mpo He-
oHOpiAHYy AudY3iiiHy anpoKcUMallilo, /1e BUCXi[HUIi IIPOLIEC KOMIIEHCYEThCS yCepeJHEHOI0 (DYHKIIIEI0
B alpOKCUMAILLilHI} cXeMi ycepeHEeHH .

1. Introduction. Dynamic systems described by evolutionary equation is a classical
topic in stochastic modelling. Asymptotic analysis of such systems is studied by
several authors (see, e.g., [1 — 5]).

The usual asymptotic approach, in the diffusion approximation scheme, consist into
normalize the process about an equilibrium point obtained by a balance condition with
respect to the equilibrium distribution. Another diffusion approximation can be
obtained by considering fluctuation with respect to the average process. In a previous
work we have studied evolutionary systems with Markov switching in two cases [6].
The first case when the average process is a deterministic function and the second case
when the average was a stochastic process.

In the present paper, we compensate the initial process by an averaging
deterministic function instead of an equilibrium point (see, e.g., [6]) and we obtain a
nonhomogeneous diffusion approximation result.

In Section 2 we describe processes implied in our analysis. In Section 3 we present
result (Theorem 1) and in Section 4 the proof of this theorem.

2. Preliminaries. Let E be a Polish space and € its Borel c-algebra. We call
the measurable space (FE, €) a standard state space.

The semi-Markov continuous stochastic system is considered in the series scheme
with small series parameter € >0, € — 0, described by a solution of the evolutionary

equation in RY

d t
EU"’(t) = ag(Ue(t);x(e—z)). (1

The velocity function admit the following representation:
ag(u; x) = a(u; x) + €ay(u; x), 2)
where ue RY and xeE.

The semi-Markov switching process x(¢), ¢ = 0, on the standard state space (E,
€), is given by the semi-Markov kernel

O(x, B,1) = P(x, B)F.(1), 3)
where x € E, Be €, and t=0, and supposed to be supposed to be uniformly ergodic

with the stationary distribution 7(B), B € €, satisfying the relation
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n(dx) = pldn) ™9, 4)
m
where p(B), B € ¢, is the stationary distribution of the embedded Markov chain x,,,
n 20, given by the stochastic kernel

P(x, B) := IP’(aneB‘xn:x). ()

In addition

m(x) ;= [Fnydi, F@®) :=1-F@), m:=[pdx)m(x). ©6)
0 E
It is well-known (see, e.g., [3]) that under some additional conditions the stochastic

system U®(t), t >0, converges weakly to the deterministic average process U @), t=z
>0, defined by a solution of the average evolutionary equation

d ~ A

—U@) = alU@®)), 7

200 = a(uo) (7)
with the average velocity

a(u) = jn(dx) a(u; x). (8)
E

It is natural that the fluctuation of the stochastic system around the average process
can be described by the diffusion process (see [6]). The diffusion approximation
scheme for the semi-Markov continuous stochastic system (1) here considered for the
centered and normalized process

¢ = e [U(-00). )
3. Main results. The main result is formulated as follows.
Theorem 1. Let the stochastic evolutionary system (9) be defined by relations
(1) = (9) and the following conditions be fulfilled:
C1) the switching semi-Markov process x(t), t 2 0, is uniformly ergodic with

stationary distribution 7(dx) on the compact phase space E,
C2) the following asymptotic expansions take place:

a+eu; x) = a@; x) + eua,v; x) + 05, u; x),
a(v+eu;x) = a;(v; x) + 07 (v, u; x),
where, for any R >0,

sup 65 (v, u;x)| = 0, €0, i=0,1.
[v|<R
|u|<R
xekE

In addition the velocity functions a(u;x) and a\(u;x) satisfy the global solution
of the equation (1) and (7).
Then the weak convergence for 0 <t<T,

¢ = @, -0, (10)

takes place. The limit diffusion process Co(t), t 2 0, is determined by the generator
of the coupled process Co(t), u, t=0,

Lo(u;v) = b(u,v)@;, (u,v) + %B(v) o(u,v) + a) @, (u, v). (11D
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Here
bu;v) = a;(v) + ua’(v), (12)
aw) = [r(dv)a@;x),  &G@) = [rd)a@; ),
E E

where prime and double prime mean first and second derivatives respectively.

The covariance matrix B(v), v € R , is determined by the relations
B@) = By(v) + B|(v), (13)

Byw) = 2 j n(dx) a(v; x) Rya(v; x),
E
Bi©v) = 2 [r(doux)a(; xa' ©; ), (14)
E

_ mz(x)—Zmz(x)
wx) = T

where a* means transpose of vector a.

Remarks. 1. The particular case W(x) = 0 correspond to the exponential
distribution F,.(f) = 1 — exp{—A(x)z}. As a corollary in this case, we get the results
given in [6].

2. The limit diffusion process Co(t), t 2 0, in nonhomogeneous in time and is
solution of the following SDE

') = [a(0) + & (U0) 0)]ar + B> (U@))aw ),

where W(t), t >0, is the standard Wiener process in RY.

3. The stationary regime for the average process U (t), t 20, is realized when he
average velocity a(v) has an equilibrium point p: a(p) =0. Then the limit diffusion

process é(t), t 2 0, is of the Ornstein — Uhlenbeck process with the following
generator:

Lo = bt + 2 By,
where
b(u) = b] + l/lbo, bl = &](p), b() = &’(p), B = B(p)

4. Proof. The proof of Theorem 1 is divided on several steps. At first, the
extended Markov chain

¢ =), U =U(E,). x, = x(,), n20, (15)

is considered, where 71,, n = 0, is the sequence of the Markov renewal moments
(moments of jumps of the semi-Markov process x(¢), t=0), that is,

Tpr1 = Ty + 6,44, 120,
F(t) = P(8,,,<t|x,=x).
Let us introduce the following families of semigroups:

TF ()W) =o(Us®),
(16)
U0) =ueR?,
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where Ui(t), t >0, is a solution of the evolutionary system
%Uﬁ(r) = a,(US0; %), xeE
and, similarly,

Ao = o(0U0),
(17)
U0) = veR?,

where l}(t), t >0, is a solution of the average evolutionary system (7).
It is worth noticing that the generators of semigroups (16) and (17) are respectively:

T (o) = ag(u; x)¢'(w),

AoW) = aW)e'w).
The following generators will be also used:

Fx)ew) = a(u; x)9’'(x),
f‘(x)(p(u) = a(u; )@’ (x),  a(u; x) := a(u; x) — a(u).

The main object in asymptotic analysis with semi-Markov processes is the
compensating operator of the extended embedded Markov chain (15) which is given
ere in the next lemma.

Lemma 1. The compensating operator of the extended embedded Markov chain
(15) is determined by the relation

L o, v, %) = €72q()| [ F(d)TS, (x,0)TS 1) A » Po(u, v, x) = (v, x) |, (18)
0

where the semigroup T} (x,v), t>0, is defined by the generator
T v)ew) = a @+ eu; ) ¢'(w), (19)
a®(u; x) = S_Iag(u; X) = 8_1a€(u; x) + a;(u; x), (20)
the semigroup ff(v), t 20, is defined by the generator
CWow = —¢ Avew) = —e™ d0)¢'w). 21

It is worth noticing that the generator T'®(x,v) in (19) can be transformed by using
condition C, of Theorem 1, as follows:

re(xv) = ' (x,v), (22)

e, v)ew) :=
= a;(+ew; )Q'(w) = a; x)Q'(u) + b, u; X)Q (u) + 0% (v, u; x) P(u),
where by definition
b, u; x) = a;(v;x) + ual,;x).

Proof of Lemma 1. The proof of this lemma is based on the conditional
expectation of the extended embedded Markov chain (15) which is calculated by using

1=

E[‘P(Cfﬁl’ 0;+1’ xn+1) ‘ Cft =u, (}5 =U, X, = x] =
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= ]?Fx(dt)Eli(p(u +e! lgjtag(U;(s); x) ds — T&((}(s)) ds},
0

0 0

v+ Ejt&((}(s))ds, xnﬂJ

0

US0) = v+eu, US =v, xnzx] =

= [F@)T% (6, v)TS @) A PO, v, x) =: FE(x)Po(u, v, x).
0
The next step in the asymptotic analysis is to construct the asymptotic expansion of
the compensating operator with respect to €.
Lemma 2. The compensating operator (18) — (21) admits the following

asymptotic representation of test function Q € Cg’z(Rd X Rd):
Lo v, x) = €200, x) + e T(x ) Pew, -,) +
+ [Lo () POC, v, ) + AP, -, )] + 6f o, v, x), (23)

with the negligible term

sup‘ 07 o(u, v, x) ‘

xeE

— 0, ¢—>0.

Here, by definition,
00(x) = g(x)[P - I]o(x), (24)

is the generator of the associated Markov process xy(t), t = 0, with the intensity
Sfunction

g(x) = ﬁ m(x) = 'O[Fx(t)dt.

The generator T(x,v), and the operator Lg(x,v) are defined as follows:

T(x, v)ow) = a; x)@’u), (25)
and
Lo v) () = b(v. 160 w) + 3 B(v: )¢ (w). (26)
b, u; x) 1= ay(v; x) + ua,,(v; x), 27
B (v; x) := Wy(x)a; x)a" (v; x), (28)
w0 = 28y = [ (). (29)
m(x) 0

Proof. At the beginning the compensating operator is transformed as follows:
L = e7Q + e 2 qx)[F(x) - I|P. (30)
Now, the following algebraic identity is used:
abc—1=(@-1)+b-1)+ -1+ @-1DB-1)+ @-1(c-1) +
+ b-D-1)+@-DHbB-(c-1). (31)
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Setting
a = F:zt(x, v), b:= f:zt(v), c = Aezt, (32)

the terms in (30) with (31) and (32) are transformed by using the integral equation for
semigroup

Fi(x) := jFx(dt)[r:zt(x, v-1I] = T, v)jfx(t)l";t(x, vydt =
0 0

= €m0 (xv) + &[T, u)]2 j FTS (x,v)dt =
0

= e2m()T(x ) + £4sz(x)[F£(x, o + oMo F5,

where

Fk () = JE(k)(s)ds, ED@) == F.(),

t
3 L oo*S €
F5(x) := j F (%, (x, v)dr.
0

Taking into account (22) the following expansion is obtained:
FE(x) = em(0)T(x,v) + € ’"ZT(X)[Q x,0)]* + 205 (x, ), (33)
with the negligible term
0% (x.v) = [T (x, )] E5(),

on test function @ € CS (Rd).

Similarly, the asymptotic expansion can be obtained for the next two terms in (31),
(32)

F,f(x) = Jf‘}(df)[f:z[(v) — I] = —Sm(x)A(v) + 83sz(x) [1&(1))]2 + 8392()6, V),
0

(34)
with the negligible term
AP
05 (x.v) = e[AW)| F5(x),
Fi(x) = [FOOTS wydr,
0
on test function @ € CS(Rd).
Analogously,
£ o R A _ o2 A 2nE
FE(x) = [F(@n[A,, —1] = €m0 A©) + e%65(v), (35)
0

with the negligible term
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0%(x) := [A(u)]3582(x), F5(x) = [FPdn A, dr,
0

on test function @ € Cg (Rd).
At last we analyze the next term

F5y(x) 1= [F@n[T5, (60— 1][TS, @)~ 1] = T%(x, v)T8 ) Eijy (),
0
o e’ e’
Eiy(x) = JEG#{IFﬁLvﬂBITf@ﬁk]=
0 0 0

= 2¢4 j FP@nTs (x,v)TS ) + €465, (x).
0
Hence, by (21) and (22), we get

FE(x) = —e2my(x)To(x, v)TW) + €265, (x), (36)

with negligible term 6%, (x) on the test function @ € c? (Rd).
It can be easily verified that the last three terms in (31), (32) are negligible on test
functions ¢ € C3’2(Rd X Rd). As a consequence, gathering the extensions (33) —

(36), the asymptotic extension (23) — (28) for the compensating operator is obtained.

In the next step in the proof of Theorem 1, the limit generator (11) is calculated by
using a solution of singular perturbation problem for the compensating operator (23)
(see, e.g., [4, 6]).

Lemma 3. A solution of singular perturbation problem for the generator (23)

Lg(ps(u, v, x) = Lo(u,v) + 92(14, v, X), 37

on test function (pg(u, v, x) = o, v) + €9;(u, v, x) + 82(p2(u, v, X), and negligible
term Gi(u, v, x), is realized by the generator 1L given in Theorem 1, formulae
(11) - (13).
Proof. According to [4, p.51] (Lemma 3.3), the limit generator in (37) is
represented as follows:
LI = T (x,v) PRy T(x,v) PTT + MLy (x, v) PTT + TTA PII,

where the projector Il is defined as follows:

Mo(x) = [m(dx)(x).
E

Let us calculate
L,I1 = MT(x,v) PRy (x,v) PTIQ(u) = MT(x,v) PRy T (x, v)(ur) =
= TIT(x, v) PRy a(v; x)¢'(u).
By the definition of potential operator R, [4], we have

ORy = RyQ =11 -1,

or
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q)[P—1]Ry =TI -1,

hence, PRy = Ry + m(x)[I1-1].

So, we can write
LT = TIT(x, v)[Ry = m(x) [a(v; x)@'(u) =
= TT(x,v) Ry a(u; x)'(u) — Ma(v; x)m(x)a" (v; x)@”"(u) =
= Ta(v; x) Ry a(v; x)9”(w) — Tim(x)a(v; x)a" ©v; x)@”(u).

Hence, the first term is

Lio(u) = % By) " () — %AO(U) 0" (u), (38)

where

By() := 2jn(dx>zz(u; X) Rya(v; x),
E

Agv) = ZJn(dx)m(x)Zl(U; x)a*(v; x).
E

The next term is

Ly (x, v) PITow) = b, u; x)¢" (1) + %HBI(U; Q") = Lo@) o),

where

Lo@) () = b(v, )¢’ (u) + %Bl(v)(p"(u), (39)

and

Bi(v) = [m(d)py(x) B (v %),
E

functions B;(v; x), b, u), b(,u;x) and H,(x) are defined respectively in (28),
(12), (27) and (29).

Hence, setting together (38) and (39) we obtain the generator I of Theorem 1.
The last step of the proof concerns the relative compactness of the probability

measures of the processes where it can be realized by the standard scheme as it is given
in [7] and [8].
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