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D-HOMOTHETIC DEFORMATION
OF NORMAL ALMOST CONTACT METRIC MANIFOLDS

D-TOMOTETHYHA JE®OPMALIA
HOPMAJIBHUX MAWKE KOHTAKTHAX MHOT'OBH/IIB

The object of the present paper is to study a transformation called the D-homothetic deformation of normal almost contact
metric manifolds. In particular, it is shown that, in a (2n 4 1)-dimensional normal almost contact metric manifold, the
Ricci operator Q commutes with the structure tensor ¢ under certain conditions, and the operator Q¢ — ¢(@ is invariant
under a D-homothetic deformation. We also discuss the invariance of n-Einstein manifolds, ¢-sectional curvature, and the
local ¢-Ricci symmetry under a D-homothetic deformation. Finally, we prove the existence of such manifolds by a concrete
example.

Mertoto mi€i cTarTi € BHBYECHHS IEPETBOPEHHS, IO HA3MBAETHCS D-TOMOTETHYHOIO Ie(hOpMAIli€l0 HOPMAIBHUX Maibke
KOHTAKTHUX MHOTOBHJIIB. 30KpeMa, MoKa3aHo, mo y (2n + 1)-BUMipHOMY HOPMAJIbHOMY Mai’Ke KOHTAKTHOMY MHOTOBHJII
oreparop Piudi () KoMyTye 3a IEBHHX YMOB i3 CTPYKTYPHUM TEH30pPOM ¢, a orieparop Q¢ — ¢ € inBapianTHUM 111070 D-
roMoTeTH4yHoi Aedopmarii. Tako)K pO3MISTHYTO MUTAHHS MPO 1HBAPIAHTHICTH 7)-€WHIITEHHIBCbKUX MHOTOBU/IB, (-CEKLIHHY
KPHUBHUHY Ta JIOKaJIbHY ¢-cuMeTpito Piuui mpu D-romorermuniit nedopmamii. IcHyBaHHS Taknx MHOTOBHIIB JTOBEAEHO HA
KOHKPETHOMY HPHUKIA.

1. Introduction. Let M be an almost contact metric manifold and (¢,&,n) its almost contact
structure. This means, M is an odd-dimensional differentiable manifold and ¢, &, n are tensor fields
on M of types (1,1), (1,0) and (0, 1) respectively, such that

P*=—-I+n®E nE) =1, ¢£=0, nog=0. (1.1)

Let R be the real line and ¢ a coordinate on R. Define an almost complex structure J on M x R
by

d d
J (X,)\dt> = <¢X — /\§,n(X)dt> ) (1.2)

d d
where the pair <X , )\dt) denotes a tangent vector on M x R, X and /\ﬁ being tangent to M and

R respectively.
M and (¢,&,n) are said to be normal if the structure J is integrable [1, 2]. The necessary and
sufficient condition for (¢, £, n) to be normal is

(¢, 9] +2dn® € = 0, (1.3)
where the pair [¢, ¢] is the Nijenhuis tensor of ¢ defined by
[0, 0)(X,Y) = [6X, 9Y] + ¢°[X, Y] — ¢[¢X, Y] — ¢[X, Y] (1.4)

for any X,Y € x(M); x(M) being the Lie algebra of vector fields on M.
We say that the contact form 7 has rank r» = 2s if (dn)® # 0 and n A (dn)® = 0 and has rank
r=2s+1ifn A (dn)® # 0 and (dn)**t! = 0. We also say r is rank of the structure (¢, &, 7).
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A Riemannian metric g on M satisfying the condition

9(¢X,9Y) = g(X,Y) = n(X)n(Y) (1.5)

for any X,Y € x(M), is said to be compatible with the structure (¢,&,n). If g is such a metric,
then the quadruple (¢, £, 7, g) is called an almost contact metric structure on M and M is an almost
contact metric manifold. On such a manifold we also have

n(X) = g(X,¢) (1.6)

for any X € x(M) and we can always define the 2-form ® by

(Y, 2) = g(Y,0Z), (1.7)

where Y, Z € x(M).

A normal almost contact metric structure (¢, &, 7, g) satisfying additionally the condition dn = ®
is called Sasakian. Of course, any such structure on M has rank 3. Also a normal almost contact
metric structure satisfying the condition d® = 0 is said to be quasi-Sasakian [3].

In the paper [8], Olszak studied the curvature properties of normal almost contact manifold of
dimension three with several examples. Also in [4], U. C. De and A. K. Mondal studied three
dimensional normal almost contact metric manifolds satisfying certain curvature conditions.

An almost contact metric manifold is said to be n-Einstein if its Ricci tensor S is of the form

S=Xg+umen (1.8)

where A\ and p are smooth functions on the manifold.

The notion of locally ¢-symmetry first introduced by T. Takahashi [9] on a Sasakian manifold.
Again in a recent paper [5] U. C. De and Avijit Sarkar introduced the notion of locally ¢-Ricci
symmetric Sasakian manifolds.

A three dimensional normal almost contact metric manifold is said to be locally ¢-Ricci symmet-
ric if

*(VxQ)(Y) =0,

where @) is the Ricci operator defined by ¢g(QX,Y) = S(X,Y) and X,Y are orthogonal to .

Let M (¢,£,7n,g) be an almost contact metric manifold with dim M = m = 2n + 1. The
equation 1 = 0 defines an (m — 1)-dimensional distribution D on M [12]. By an (m — 1)-homothetic
deformation or D-homothetic deformation [10] we mean a change of structure tensors of the form

_ -1 - _
n = an, 525& p=0¢, g=ag+ala—1)nan,

where a is a positive constant. If M (¢, &, 7, g) is an almost contact metric structure with contact form
1, then M (¢, ,1], ) is also an almost contact metric structure [10]. Denoting by W, the difference
I_“; E = F; .. of Christoffel symbols we have in an almost contact metric manifold [10]

WOELY) = (L= ala(1)oX +a(00v]+ 5 (1= 1) (Tan0) + Tyl (19)
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for all X,Y € x(M). If R and R denote respectively the curvature tensor of the manifold
M(¢,€,m.g) and M(9,&,7,3), then we have [10]

R(X,Y)Z = R(X,Y)Z + (VxW)(Z,Y) — (VyW)(Z, X)+

+TWW(Z,Y),X) - WWI(Z,X),Y) (1.10)

forall X,Y,Z € x(M).

In [10, 13] the authors used D-homothetic deformation on a Sasakian and K-contact structures
to get results on the first Betti number, second Betti number and harmonic forms. Hence the D-
homothetic deformation can be used to get the results on the first Betti number, second Betti number
and harmonic forms of the normal almost contact structure. A plane section in the tangent space
T,(M) is called a ¢-section if there exists a unit vector X in 7),(M) orthogonal to £ such that
{X, X} is an orthonormal basis of the plane section. Then the sectional curvature

K(X,9X) = g(R(X, X)X, ¢X)

is called a ¢-sectional curvature. A contact metric manifold M (¢, £, 7, g) is said to be of constant
¢-sectional curvature if at any point p € M, the sectional curvature K (X, ¢X) is independent of the
choice of non-zero X € D,,, where D denotes the contact distribution of the contact metric manifold
defined by n = 0.

The model spaces of contact metric structure are complete and simply connected Sasakian mani-
folds of constant ¢-sectional curvature H. These Sasakian manifolds admit the maximal dimensional
automorphism [14]. The Riemann curvature tensor R of Sasakian manifold of constant ¢-sectional
curvature is determined by Ogiue [7]. The geometry of contact Riemannian manifold of constant
¢-sectional curvature is obtained by Tanno [15]. If the ¢-sectional curvature H is constant on a K-
contact Riemannian manifold M (¢, £, 7, g), then H can be deformed by a D-homothetic deformation

. H+3
of the structure tensors [11]. If H > —3, then choosing a constant § = T+, we get a K-contact

1
Riemannian manifold M (qﬁ, 55 00,09 + (6% —0)n® n) of constant ¢-sectional curvature [11].

Hence Tanno posed a natural question that does there exist contact metric manifolds of constant ¢-
sectional curvature which are not Sasakian [11]. Since the normal almost contact metric manifold
contains both the Sasakian and non-Sasakian structures, the existance of a non-Sasakian manifold of
both constant and non-constant ¢-sectional curvature is ensured in our paper, which gives rise to the
answer of the question of Tanno [11] as affirmative.

In a Sasakian manifold, the Ricci operator () commutes with the structure tensor ¢, that is,
Q¢ = ¢Q. But in (2n + 1)-dimensional normal almost contact metric manifold Q¢ # ¢Q, in
general.

The present paper is organized as follows: After preliminaries in Section 3, we prove some
important lemmas. In Section 4, we study the properties of the expression Q¢ — ¢@ in (2n + 1)-
dimensional normal almost contact metric manifolds and prove that Q¢ = ¢Q) in these manifolds,
provided «, 3 are constants. Beside this, in this section we also prove that the expression Q¢ — ¢Q
of these manifolds is invariant under a D-homothetic deformation, provided « is constant. Section 5
deals with the study of (2n + 1)-dimensional 7-Einstein normal almost contact metric manifolds and
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prove that these manifolds are invariant under a D-homothetic deformation, provided o = 0. Section
6 is devoted to study ¢-sectional curvature tensor in a (2n + 1)-dimensional normal almost contact
metric manifold and we show that there exists a (2n + 1)-dimensional normal almost contact metric
manifold (non-Sasakian) with non-zero and non-constant ¢-sectional curvature. Section 7 deals with
locally ¢-symmetric three dimensional normal almost contact metric manifold and we prove this
manifold is also invariant under a D-homothetic deformation, provided @ = constant. Finally in
Section 8, we set an example of a three dimensional normal almost contact metric manifold which
verifies some theorems of Section 6.
2. Preliminaries. For a normal almost contact metric structure (¢, £, 7, g) on M, we have [8]

(Vxo)(Y) = g(0Vx&,Y) —n(Y)oVxE, 2.0

Vx§ = alX —n(X)¢] — BoX, (22)

where 2a = div ¢ and 268 = tr (¢pV¢E), div§ is the divergent of ¢ defined by div § = trace {X —
— Vx¢&} and tr (¢VE) = trace {X — ¢V x&}. Using (2.2) in (2.1), we get

(Vx9)(Y) = alg(oX,Y)E —n(Y)pX] + Blg(X,Y)E —n(Y)X]. (2.3)
Also in this manifold the following relation holds:

R(X,Y)¢ = [Ya+ (a® = B2)n(Y)]¢*X — [Xa+ (o - B%)n(X)]¢*Y +

+[Y B+ 2apn(Y)]pX — [X B + 2a8n(X)]0Y, (2.4)
S(X,8) =-Xa— (¢X)B — [(a+2(a® — B%)|n(X), (2.5)
€8+ 2a8 = 0, 2.6)

where R denotes the curvature tensor and S is the Ricci tensor.
(Vxn)(Y) = ag(¢X, ¢Y) — Bg(oX,Y). 2.7
On the other hand, the curvature tensor in a three dimensional Riemannian manifold always satisfies
RX,Y)Z=SY,2)X —S(X,2)Y +g9(Y,Z2)QX — g(X,Z)QY —

r

2[9(KZ)X_9(X72)Y]7 (2-8)

where r is the scalar curvature of the manifold.
By (2.4), (2.5) and (2.8) we can derive

S(v,2) = (5 +€a+a® = 82) g6V, 67)-
—n(Y)(Za+ (62)8) — n(Z)(Ya + (6Y)B) — 2(a® — (Y )n(Z). 2.9)
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From (2.6) it follows that if «, 3 = constant, then the manifold is either 5-Sasakian or a-Kenmotsu
[6] or cosymplectic [1]. Also we have a 3-dimensional normal almost contact metric manifold is

quasi-Sasakian if and only if a = 0 [8].

3. Some lemmas. In this section we shall state and prove some lemmas which will be needed to

prove the main results.

Lemma 3.1. [n a normal almost contact metric manifold M the following relation holds:

9(R(X,Y)pZ, W)+ g(R(X,Y)Z, W) = (Xa)[g(¢Y, Z)n(W)—

—9(oY, W)n(Z)] + (XB)[g(Y, Z)n(W)—

—g(Y,W)n(Z2)] + (Ya)lg(¢ X, W)n(Z)—

—9(oX, Z)n(W)l + (Y B)[9(X, W)n(2) — g(X, Z)n(W)]+

+(o? = B)g(¢e X, W)g(Y, Z) + g(¢Y, Z)g(X, W)~

—g(oY, W)g(X, Z) — g(¢X, Z)g(Y, W)] + 2aB[g(¢Y, W)g(¢ X, Z)—

—g(¢ X, W)g(oY., Z) + g(X, W)g(Y, Z) — g(Y,W)g(X, Z)].

3.1)

Proof. Differentiating (1.7) covariantly with respect to X and using (2.3) and (2.7) we obtain

(Vx®)(Y, Z) = alg(¢X, Z)n(Y) — 9(¢ X, Y)n(Z2)]+

+Bl9(X, Z)n(Y) — 9(X, Y)n(2)].
Again differentiating (3.2) covariantly and using (2.2), (2.3) and (2.7) yields
(VxVy®)(Z, W) = (Xa)[g(¢Y, W)n(Z) -
—9(¢Y, Z)n(W)] + (XB)[g(Y, W)n(Z)—
—9(Y, Z)n(W)] + o®[g(¢Y, W)g(¢X, 6Z)~
—9(0Y, 2)9(¢ X, oW) — g(oX, W)n(Y)n(Z)+
+9(6X, Z)n(Y )n(W)] + 8%[9(6 X, W)g(Y, Z)~
—9(6X, Z)g(Y, W)] + aBlg(oX, W)g (Y, Z)—
—9(¢X, Z)g(¢Y, W) + g(Y, W)g(¢X, ¢Z)—
—9(Y, Z2)g(o X, oW) + g(X, Z)n(Y)n(W)—

—g9(X, Win(Y)n(Z)] + alg(oVxY, W)n(Z)—
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D-HOMOTHETIC DEFORMATION OF NORMAL ALMOST CONTACT METRIC MANIFOLDS 1335

—9(¢VxY, Z)n(W)] + Blg(VxY, W)n(Z) — g(VxY, Z)n(W)]. 3.3)
Using (3.2) and (3.3) we obtain
(VxVy@)(Z,W) = (VyVx®)(Z, W) = (Vixy1®)(Z, W) =

= (X)[g(oY, W)n(Z) — g(oY, Z)n(W)]+
+XBlg(Y, W)n(Z) — g(Y, Z)n(W)] -
—(Ya)lg(oX, W)n(Z) — g(6X, Z)n(W)]—
—(YP)g(X, W)n(Z) — g(X, Z)n(W)l+
+(a? = B2)[g(8Y, W)g(X, Z) — g(6X, W)g(Y, Z)~
—9(X,W)g(oY, Z) + g(Y, W)g(¢X, Z)] + 208[g(6 X, W)g (Y, Z)—

—9(¢X, Z)g(oY, W) + g(X, Z)g(Y, W) — g(X, W)g(Y, Z)]. (3.4)

Then using (3.4) and by Ricci identity we easily obtain (3.1).
Lemma 3.2. Let M(¢,&,m,g) be a normal almost contact metric manifold of dimension (2n +
+ 1). Then for any X, Y, Z and W on M, the following relation holds:

9(R(X,Y)9Z, W) = g(R(X,Y)Z, W) + (Xa)[g(Y, Z)n(W)—
—g(Y,W)n(Z)] = (XB)[g(¢Y, Z)n(W)—
—9(eY, Wn(2)] + (Y o) [9(X, W)n(Z)—
—9(X, Z)n(W)] + (Y B)lg(¢X, Z)n(W)—
—g(6X, Wn(2)] + (a® = B7)[g(X, W)g(Y, Z)~
—9(X, Z)g(Y, W) + g(¢X, Z)g(¢Y, W)~
—9(0 X, W)g(oY, Z)] + 2aB[g(Y, W)g(¢X, Z)—

—g9(X,W)g(9Y, Z) + g(X, Z)g(¢Y, W) — g(Y, Z)g(¢ X, W)]. (3.5)

Proof. Replacing W by ¢W in (3.1) and using (1.1), (1.6) and (2.4) we easily obtain (3.5).
Lemma 3.3. Let M(¢,&,n,g) be a normal almost contact metric manifold of dimension (2n+
+1). Then for any X, Y, Z and W on M, the following relation holds:

9(R(¢X,9Y)0Z,¢W) = g(R(X,Y)Z,W) + (o — B*)[g(Y, Z)n(X)n(W)—
—9(X, Z)n(Y)n(W) + g(X, W)n(Y)n(Z) — g(Y, W)n(X)n(Z2)]+
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1336 U. C. DE, S. GHOSH
+2a5[29(p X, W)g(Y, Z) — 29(Y, W)g(X, Z)+
+29(0Y, 2)g(X, W) = 29(¢X, Z)g(Y, W)+
+9(@Y, W)n(X)n(Z) — g(6X, W)n(Y)n(Z)+
+9(0 X, Z)n(Y (W) — g(8Y, Z)n(X)n(W)]+
+(Za)[g(X, W)n(Y) — g(Y, W)n(X)]—
—(ZB)[g(oY, W)n(X) — g(oX, W)n(Y)l+
+(Wa)[g(Y, Z)n(X) — g(X, Z)n(Y)]+
+(WB)lg(eY, Z)n(X) — g(oX, Z)n(Y)]+
+(@Xa)lg(dY, Z)n(W) — g(oY, W)n(Z)]—
—(XB)g(Y, W)n(Z) — g(Y, Z)n(W)]+
+H@Y a)lg(oX, W)n(Z) — g(6 X, Z)n(W)]+
+eYP)g(X, W)n(Z) — g(X, Z)n(W)]. (3.6)
Proof. Putting ¢X and ¢Y instead of X and Y respectively in (3.5) and using (1.1), (1.6) and
(3.5) we easily obtain (3.6).

Proposition 3.1. In a (2n + 1)-dimensional n-Einstein normal almost contact metric manifold
M(p,&,1,9), the Ricci tensor is expressed as

S(X,Y) = [i o+ (a®— 52)} 9(X,Y)—

— |55 + (@n+ Déa+ 20+ 1)(a? = 4] n(On(Y). (3.7)
Proof. From (1.8) we have by contraction
r=2n+ 1A+ p, (3.8)
where 7 is the scalar curvature of the manifold. Again putting X = £ in (2.5), we obtain
A p = —2nfa —2n(a® — B?). (3.9)

Solving above two equations we get
. T
- 2n

A +éa+ (0 =57, (3.10)
and
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,u:—i—(2n+1)§a—(2n+1)(a2—62). (3.11)

Putting the values of A and u in (1.8) we get (3.7).

Proposition 3.1 is proved.

4. Properties of the expression Q¢ — Q. In this section we investigate the properties of the
expression Q¢ — ¢Q in a (2n + 1)-dimensional normal almost contact metric manifold M.

Let {e;, ¢e;, &}, 1@ = 1,2,...,n, be a local ¢-basis at any point of the manifold. Then putting
Y = Z = ¢; in (3.6) and taking summation over i = 1 to n, we obtain by virtue of n(e;) = 0,

— Y OR(¢X, dei)dei = > R(X,ei)e; + n(a” — B2)n(X)é+

=1 =1
+[(n — Dgrad a — (¢ grad 3)|n(X)+

+4(n = 2)af(¢X) + (X )¢ + (n — 1)(¢XB)E. (4.1)

Again putting Y = Z = ¢e; in (3.6) and taking summation over ¢ = 1 to n then using (1.1) and
n(e;) = 0, we obtain

- zn; OR(6X, ei)e; = zn; R(X, pe;)dei+
+n(a? = B2)n(X)€ + [(n - 1)grad a — (¢ grad B)]n(X)+
+4(n — 2)aB(¢X) + (Xa)¢ + (n — 1) (s XP)E. (4.2)
Adding (4.1) and (4.2) and using the definition of Ricci operator, we obtain
—¢Q(¢X) + 9R(9X,£)§ = QX — R(X, §)E+
+2n(a? — Bn(X)E + 8(n — 2)aB(¢X)+
+2[(n — 1)grad a — ¢(grad 8)|n(X) + 2(Xa)§ + 2(n — 1)(¢X B)E. (4.3)

From (2.4) by virtue of (2.6), it follows that

R($X,6)¢ = —[ta+ (a® — *)](¢X). (4.4)
In view of (2.4), (2.6) and (4.4), the relation (4.3) takes the form
—0Q(pX) = QX +2n(a” — B7)n(X)é + 8(n — 2)aB(¢X)+
+2[(n — Dgrada — ¢(grad B)]n(X) + 2(Xa)¢ +2(n — 1)(pX B)E. (4.5)
Operating ¢ on both sides of (4.5) and using (1.1) we get
QX — dQX = S(¢X,£)¢ +8(n — 2)aBf(¢° X)+
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+2[(n — 1) (grad ) — ¢°(grad 5)]n(X). (4.6)
From (2.5) we have
S(6X,€) = —(6X)a — (¢ X)B. 4.7)
By virtue of (4.7) and (2.6), (4.6) reduces to
[Q¢ — $QIX = (XB)E — (n — 2)(44B)X — ($X)é+

+(dn = T)(EHM(X)E + 2[(n — 1)d(grad a) — ¢*(grad B)]n(X). (4.8)

Hence we state the following theorem.

Theorem 4.1. In a (2n + 1)-dimensional normal almost contact metric manifold Q¢ = ¢Q,
provided «, 3 are constants.

By virtue of (2.7), the relation (1.10) reduces to

WEY) = (L= @V )ox +a(00v]+ (1= 1) alo(ry) - n0nle. @9)

In view of (2.2), (2.3) and (2.7), the relation (4.9) yields
(VxW)(Y, Z) = (1 = a)[e{g(¢X, Y)n(Z)&+
+9(0X, Z)n(Y)§ + 9(X, Z)9Y + g(X,Y)pZ—-
—n(X)n(Y)pZ —n(X)n(Z)¢Y —2n(Y)n(Z2)eX} + B{g(X,Y)n(Z)&+

+9(X, Z)n(Y)E — 9(¢X, Z)9Y — g(¢X,Y)9pZ — 2n(Y)n(Z) X }]+

a—1
+

—L(Xa)lg(¥, 2) (Y m(Z))e ~ “Lalofg(X, Vin(2)e+
+9(X, Z)n(Y)§ + g(Y, Z)n(X)§ — g(V, Z) X +n(Y)n(Z2) X -
=3n(X)n(Y)n(2)&} + B{g(Y, 2)¢X — g(¢X, Z)n(Y )¢~

—9(oX, Y )(2)E — n(Y)n(Z)pX }]. (4.10)

Using (4.9) and (4.10) into (1.11), we obtain by virtue of (2.4) and (2.7) that

R(X,Y)Z = R(X,Y)Z + (1 - a)le{g(¢X, Z)n(Y)E—
—9(¢Y, Z)n(X)E + 29( X, Y)n(2)§ + 9(X, Z)¢Y — (Y, Z)pX +
+n(X)n(Z)eY —n(Y)n(Z2)eX} + B{g(X, Z)n(Y)§ — g(Y, Z)n(X)E—
—29(¢X,Y)0Z — g(¢X, Z)9Y + g(¢Y, Z)9X — 2n(Y )n(Z) X+
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a—1
+2(X)N(2)Y}] + ——(Xa)[g(Y, 2)~

L Ya)lg(X, 2) — X2+ T aladg(Y, 2)X -

—9(X, 2)Y +n(X)n(2)Y —n(Y)n(Z2)X }+
+8{9(X, 2)9Y — g(Y, Z)pX +29(¢X,Y)1(Z) + g(¢X, Z)n(Y )&~
—9(¢Y, Z)n(X)§ +n(Y)n(Z)pX —n(X)n(Z)¢Y }+
+(1 = a)’(X)n(2)°Y —n(Y)n(Z)$*X]~
(1—a)

[afg(6Z, X)n(Y)E — 29(¢X, Y )n(Z)E+
+9(Y, 2)¢X — g(X, Z)¢Y +n(X)n(Z2)9Y —n(Y)n(Z2)¢X + g(¢Y, Z)n(X)E}].  (4.11)
Putting Y = Z = £ in (4.11) and using (1.1) we obtain

R(X,€)¢ = R(X, €& +2(1 - a)[3(¢°X) — a(¢X)] — (1 — a)’¢*X. (4.12)

Let {e;, ¢e;, &}, i = 1,2,...,n, be a local ¢-basis at any point of the manifold. Then putting
Y = Z = ¢; in (4.11) and taking summation over ¢ = 1 to n we obtain by virtue of 7(e;) = 0,

ZRXezz ZRXezz

~(1= a)la(n — 1)(@X) + B{nn(X) ~ 3X}] + 2 (n — 1)(Xa)é+

e x - s ex - L7 - 1ex, (4.13)

a a a
Again, putting Y = Z = ¢e; in (4.11) and taking summation over ¢ = 1 to n then using (1.1)
and 7n(e;) = 0, we obtain

ij X, gei)e; = ZR (X, peq) e
i=1 =1

=L 1)(Xa)e+

—(1 = a)la(n = 1)(6X) + f{nn(X)§ — 3X}] +

+a;1a2(n—1) “ =1 - 1ygx - L=V

a(n —1)¢pX. (4.14)
Adding (4.13) and (4.14) and using the definition of Ricci operator we have
QX — R(X,6)¢ = QX — R(X,£)¢ —2(1 — a)[af(n — 1)pX }+
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(e 333 + 20D pyrae + 20 Moz 1x -

2(@—1)@

2 a(n—1)¢X. (4.15)
a a

In view of (4.12) we get from (4.15)

S(X,Y)=9(X,Y) —2(1 — a)[ang(¢X,Y)—

—B{g(¢*X,Y) + nn(X)n(Y) — 3g(X,Y)}]+

2(a—1)

—afg(¢X,Y) — (a — 1)ag(¢X,Y)], (4.16)

(n = DI(Xa)n(Y) + ag(X,Y)~

which implies that
QX = QX —2(1 — a)[andX — B{P*X + nn(X)¢ — 3X}]+

2(a—1)

(n— D[(Xa)¢ + a?X — aB(¢X) — (a — 1)a(oX)). (4.17)
Operating ¢ = ¢ on both sides of (4.17) from the left we have

PQX = pQX —2(1 — a)[an(¢*X) + 45(6X)]+

2(a—1)

(n = D]a*(¢X) = aB(¢?X) — (a — 1)a(6*X)]. (4.18)
Again, putting X = ¢X in (4.17) we have
QoX = QdX —2(1 — a)[an(¢*X) + 45(¢X)]+

2(a—1)

(n = D[(¢Xa)¢ + a*(9X) — aB(6*X) — (a — 1)a(4°X))]. (4.19)

Subtracting (4.18) and (4.19) we get

(0Q — Q)X = (6Q — Q)X —

2(“; Y~ 1)(6Xa)e. (4.20)

Therefore we can state the following theorem.

Theorem 4.2. Under a D-homothetic deformation, the expression Q¢ — ¢Q of a (2n + 1)-
dimensional normal almost contact metric manifold is invariant, provided o is constant.

In view of (4.20) we state the following corollary.

Corollary 4.1. Under a D-homothetic deformation, the expression Q¢ — ¢Q) of a 3-dimensional
normal almost contact metric manifold is invariant.
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5. n-Einstein normal almost contact metric manifolds. Let M (¢,&,m,9) b + 1)-

ea (2n
dimensional 7-Einstein normal almost contact metric manifold which reduces to M (¢, £,7, g) under
a D-homothetic deformation. Then from (4.16) it follows by virtue of (3.7) that

S0 Y) = (X Y) + an()a) + 2 - (xay) -
— — _— 2 —
- [2(1a“)an + 2(221)@5(71 —1)+ 2(‘La21)(n ~1)a| g(X.Y), (5.1)
where A, ji are smooth functions given by
A= % [% +ea+ (a® - 52)} _gl ; Vg 2<“ag Y (0~ 1)a? (5.2)
and
= —“;1 |5 +€a+ (o= 8 —%{i+(2n+1)<£a+a2—62>}+
_ _1)2 _1)\2
+25(n+1)1a2a _gple al) 2a2(n1)(aa21). (5.3)

In view of the relation (5.1) we state the following theorem.

Theorem 5.1. Under a D-homothetic deformation, a (2n + 1)-dimensional n-Einstein normal
almost contact metric manifold is invariant, provided oo = 0.

6. @-Sectional curvature of normal almost contact metric manifolds. In this section we con-
sider the ¢-sectional curvature on a (2n + 1)-dimensional normal almost contact metric manifold.

From (4.11) it can be easily seen that

a—1

K(X,¢X) - K(X,¢X) = 3 — o”] (6.1)

and hence we state the following theorem.

Theorem 6.1. Under a D-homothetic deformation, the ¢-sectional curvature of a (2n + 1)-
dimensional normal almost contact metric manifold is invariant.

If a (2n + 1)-dimensional normal almost contact metric manifold M (,&,7,g) satisfies
R(X,Y)¢ = 0 for all X, Y (for example the tangent sphere bundle of a flat Riemannian manifold
admits a contact metric structure with R(X,Y)¢ = 0), then it can be easily seen that K (X, ¢X) =0
and hence from (6.1) it follows that

K(X,¢X) =

—L3as—a? £0

for a # 1 and o? # 3aB, where X is a unit vector field orthogonal to ¢ and K (X, ¢X) is the
¢-sectional curvature. This implies that the ¢-sectional curvature K (X, ¢X) is non-vanishing and
non-constant for @ # 1 and o? # 3af3. Therefore, we state the following theorem.

Theorem 6.2. There exists (2n + 1)-dimensional normal almost contact metric manifold (non-
Sasakian) with non-zero and non-constant ¢-sectional curvature.
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7. Locally ¢-Ricci symmetric three dimensional normal almost contact metric manifolds. In
this section we study locally ¢-Ricci symmetry on a three dimensional normal almost contact metric
manifold.

Differentiating (4.17) covariantly with respect to W and using (2.3) we obtain

(VwQ)(X) = (Vw@)(X) —2(1 — a)(Wa)pX —

—2(1 = a)afa{g(eW, X)§ — n(X)oW } + B{g(W, X)§ — n(X)W }]—

—(1 = a)*(Vwn)(X)€ = (1 - a)*n(X)Vwe. (7.1)
Operating ¢? on both sides of (7.1) and taking X as an orthonormal vector to & we obtain
& (VwQ)(X) = ¢*(VwQ)(X) +2(1 — a)(Wa) (9X). (7.2)

In view of the relation (7.2) we state the following theorem.

Theorem 7.1. Under a D-homothetic deformation a locally ¢-Ricci symmetry on a three di-
mensional normal almost contact metric manifold is invariant, provided o = constant.

8. Example. We consider the three dimensional manifold M = {(z,y,z) € R3, 2z # 0}, where
(x,y, z) are standard coordinate of R3. The vector fields

(b 0N o
= or Yoz ) 27 oy’ %= 0z

are linearly independent at each point of M.
Let g be a Riemannian metric defined by

gler,e3) = gle1,e2) = g(ea,e3) =0,

gler,e1) = g(e2,e2) = g(es,e3) = 1.

Let n be the 1-form defined by n(Z) = g(Z, e3) for any Z € x(M). Let ¢ be the (1,1) tensor
field defined by

pler) = ez, Plea) = —e1, ¢(e3) =0.
Then using the identity of ¢ and g, we have
77(63) =1,
$*Z = —Z +n(Z)es,

9(@Z, W) = g(Z, W) —n(Z)n(W)

for any Z, W € x(M). Then for e3 = &, the structure (¢,&, 7, g) defines an almost contact metric
structure on M.
Let V be the Levi— Civita connection with respect to the metric g. Then we have

1
[e1,e3] = yea — 2%e3, [e1,e3] = —-a and [eg,e3] = — e
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The Riemannian connection V of the metric g is given by

20(VxY,Z)=Xg(Y,Z)+Yg(Z,X) - Zg(X,Y)—

which is known as Koszul’s formula. Using (8.1) we can easily calculate the following
1 22 1
v61€3 = _;el + 5627 v6162 = _522637 velel = ;63)
1 1 1 1
Veses = ——ea — =2%€1, Ve,ea =ye1 + —e3, Ve,e1 = =27e3 — yey, (8.2)
z 2 z 2
L, L,
Vese3 =0, Vegea = —5% e, Ves€1 = 5% €2

From (8.2) it can be easily seen that (¢, &, 7, g) is a normal almost contact metric manifold with

1
(X:—f%oandﬁz—fZQ%O.
z 2

It is known that
R(X,Y)Z =VxVyZ —-VyVxZ — V[X,Y}Z. (8.3)

With the help of (8.3) and using (8.2) we can easily calculate

3241 324 1

Rer,e2)er = ( — + — + y? ) ea+ (yz*)es, Rle,er)ea = = + — + y? e + g€3,
4 z 4 z z
42 42
R(e1,e3)e3 = <Z4 — 22> e1, R(ez,e3)es = <Z4 - 22> e2,

4 2 > y
— | es — Zey.
z

1
z 2 z
) e3 — (yz°)ez, Rles,e)es = <4 ~ 2

R(es,e1)e; = (4 =

From the above expressions of the curvature tensor we obtain
23 9

S(e1,e1) = g(R(e1, ez)ea, e1) + g(R(e1,e3)es, e1) = 5 T 2

Similarly we have
4 4
4
S(ez, e2) = —% - % —y? and S(es,e3) = % R

Therefore
! — E — 22

r==S(e1,e1) + Slea, e2) + Sles e3) = =5 —

Now using (2.9) in (2.8) we get
9(R(X.Y)Z,W) = |5+ €a+ (a” = 8)| [9(6Y, 62)g(X, W)~
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—9(6X,0Z)g(Y, W) + (X, oW)g(Y, Z) — g(¢Y, oW )g(X, Z)]—
—{Xa+ (¢X)B}g(Y, Z)n(W) — g(Y, W)n(Z)—
—{Ya+ (6Y)B}Hg(X, W)n(Z) — g(X, Z)n(W)]—
—{Wa+ (eW)B}g(Y, Z2)n(X) = g(X, Z)n(Y)] -
—2(a” = B%)[g(X, W)n(Y)n(Z) — g(Y, W)n(X)n(Z)+
+9(Y, Z)n(X)n(W) — g(X, Z)n(Y)n(W)]—

—59(Y. Z)g(X, W) = g(X, Z)g(Y. W)).

In view of the above relation we get
r
K(e1, per) = K (e2, pez) = 2(8% — o) — 2(€a) — >

Now, in this example we have

K(e1, ¢e1) = g(R(e1, per)er, ger) = g(R(e1, e2)er, e2) =

3z 1 9 9 9 r
:T+Zﬁ+y =2(8" — « )*2(504)*5-
Similarly we have
3z4 1 r
K(e2, ges) = 7 =T y* =2(8° - o) —2(¢a) - 5
Again from (4.11) it can be easily shown that
- 324 1 a—1
K = e a2 =
(e1,001) = =~ + 5 +9° + ———(3af — )
a—1 3az? 1\?
- K _ _(_Z
(elv¢el) + a < 9 < Z> ) )
which implies that
- a—1 9
K(e1, ¢e1) — K(e1, ¢er) = (3aB — o).
Similarly, we have
- a—1 9
K (ea, pe2) — K(ez, pez) = (3aB — o).

Therefore such a normal almost contact metric manifold satisfies the relation (6.1) and hence Theorem
6.1 is verified.
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