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TAME AND WILD SUBSPACE PROBLEMS

PYYHI TA JHKI 3ATJAYI ITPO NNIAITPOCTOPH

Let B be a finite-dimensional algebra over an algebraically closed ficld k, B, = Spec & [B,] the affine
algebraic scheme whose R-points are the B ®, k[B,]-module structures on R %, and M, the canonical
B @, k[B,]-module supported by & [‘Hd]“', Further, let us say that an affine subscheme 9 of B, is
classtrue if the functor F,: X - M, ®,,,, X induces an injection between the sets of isomorphism
classes of indecomposable finite-dimensional modules over k[}] and B. If 'Bd contains a classtrue
plane for some d, then the schemes ‘B, contain classtrue subschemes of arbitrary dimensions. Other-
wise, each ﬂd contains a finite number of classtrue punctures straight lines £{(d, /) such that: For each
n, almost each indecomposable B-module of dimension n is isomorphic to some F , ,(X); furthermo-
re, F 4, 3 (X) is not isomorphic to Fs(Y) if (d, D #(l,j) and X # 0. The proof uses a reduction to
subspace problems, for which an inductive algorithm permits us to prove corresponding statements.
Hexaft B - ckindenHosumipHa anre6pa Han anrebpaiuHo samknenum nosem k, B = Spec &k [B,] —
achinna anrebpaiuna cxeMa, R-Touku sxoie B ®, k([B,]-monyabtnumu crpykTypamuna R 9 i M ==
KaHOoHiYHHA B @, k[B,]-Monynb Ha k[‘Bd]“'. Adpinny nincxemy YV cxemu B, Gynemo HaaMBaTH Bip-
HOIO, AKIO pyHKTOp Fipt X 12 M, @, X innyKye in'eKuilo MK MHOXKHHAMH KJ1acis i3omopdto-
CTi HEPO3KIA/IHHX CKiHveHHOBHMIpHUX MoayniB wan k [V] i B. Axkwe B, MicTuTs BipHy niowmmuy
nns peskoro d, 7o cxemH ‘B, MIicTATH BipHi nificxeMH 0BLILHOT posMipHocTi. Y npoTHBHOMY pasi
koxHa B, MICTHTL CKiHUEHHY KibKicTh BipHHX nepopoBaHHX MpsMHX L{d, §), and AKHX NS
6yAb-AKOro n MaHKe KOKHHA HEPO3KNaAHHA B-Monynb posmipHocTi n izoMopchuni neakomy Fo,
o (X), npraomy Monysb F gy (X) He isomopmnit F oy (Y), axwo (d, ) # (1, /) ta X #0. Jlosenenus
BHKOPHCTOBYE PeAyKIililo /10 3afa4 1po NiANPOCTOPH, A/ AKHX IHAYKTHBHHA AJIFOPHTM Aa€ 3MOry
AOBECTH BIANIOBIIHI TBEPIXKEHHA

1. Notations, terminology, objective. Throughout the paper, k& denotes an algebrai-
cally closed field.

By A wedenote a k-category, i. e. a category whose morphism sets A(X, Y) are
endowed with vector space structures over k such that the composition maps are bili-
near. Furthermore, we suppose that A is an aggregate (over k), i. e. that the spaced
A(X, Y) have finite dimensions over k, that A4 has finite direct sums and that each
idempotent ¢ € A(X, X) has a kernel. As a consequence, each X € 4 is a finite di-
rect sum of indecomposables, and the algebra of endomorphisms of each indecompo-
sable is local. We shall denote by R a spectroid of A, i. e. the full subcategory for-
med by chosen representatives of the isoclasses of indecomposables, by Kg and Kg
the radicals of A and 4.

Typical examples of aggregates are provided by the category projA of finitely ge-
nerated projective right modules over a finite-dimensional algebra A, or by the cate-
gory modA of all finite-dimensional right A-modules. The aggregate projA has a
finite spectroid, mod A in general not,

A pointwise finite(left) module M over A is by definition a k-linear functor
from A4 to modk. For instance, in the examples considered above, each N e

e modA P yields a module P> P®, N over projA, each L € modA a series of
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modules X - Ext; (L, X) over mod A.

With each module M over A we associate a new aggregate M* whose objects
are the M-spaces, i. e. the triples (V, f, X) formed by a space V € mod k, an object
X € A and a linear map f: V — M (X). A morphism from (V,f, X) to (V',f", X') is
determined by morphisms ¢: V — V" and &: X — X’ such that f'¢ =M (E)f.

Let L=(K,/,...) bea bond on M, i. e. a finite set of submodules. We say that
V.f,X) e M* avoids L if fYL(X)) = (0} foreach L e L. The triples which
avoid L form a full subaggregate of M* which we denote by Mi = Mfé.;_m.

When V and X are fixed, the triples (V, f, X) € M* may be identified with the
points of the space Hom,(V, M (X)). The triples avoiding L then correspond to the
points of a (Zariski-)open subset Homj(V, M (X)) which inherits from Hom,(V,
M (X)) the structure of an algebraic variety. Our objective is to examine the “number
of parameters” occurring in an algebraic family of maps fe Homf(V, M (X)) such
that the triples (V, f, X') are indecomposable and pairwise nonisomorphic.

2. Formulation of the main theorems.
2. 1. With the notations introduced above, let ¢ = (¢, ..., ¢,) be a coordinate sys-

tem of an affine subspace § of Hom(V, M (X)), i. e. a sequence of vectors ¢; €
e Hom(V, M (X)) such that the map

k' >Hom(V,M(X)), x—>ey+xe +...+ xge,

induces a bijection k'=S. Then e provides a functor F_ rep Q' — M*, where rep Q'
is the aggregate formed by the finite-dimensional representations of the quiver Q' with
1 vertex and ¢ arrows: F, maps a sequence a € rep Q' of 1 endomorphisms a;: W —
— W onto the triple (W @V, f.(a), W ® X), where W ® X e 4 represents the fun-
ctor Homy (W, 4 (X, ?)}(hcncc, I"®X = X") and

fla) =1, ®ey+a, @ e +...+a,@ e, WO VW MX)=M(W® X).

The functor F, behaves well towards affine subspaces S*C §. Let ¢” be a coor-
dinate system of S’. where ¢} = ¢y + z;iTU,f,- and ¢} = Z::l?}-_.-e,-. 1<j<s.
We then have F,, = F, o ®, where ®: rep Q" — rep Q' is the functor @’ —a defined
by a;=T 1, + Zj Tya’,1<i<t Inthecase §'=§, @ isan automorphism.

S{ I :
2.2. Letnow R be an affine subspace of Hom, (W, W)" with coordinate system
d=(dy.dy, ...,d,), where d;=(d;, ....d;). Then d provides a functor @ repQ’ —

—rep @' which maps ¢ e Hom U, U)" onto b e Hom(U ® W, U @ W ), where
b;=1;®dy+c;®d;+...+c, ® d; Asimple calculation shows that F, e ®, = F,
where f is a coordinate system of a subspace of Hom, (W®V, M(W®X)) and is de-

fined by
fo=lw ® en+dy e+ ... +dy, @ ¢,

and
fi=dy®@ey+...+d;;®e¢, 1<j<s.

All compositions @, o @4 have the form @, Inthe case W= £k and d;; =T;; € k =
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TAME AND WILD SUBSPACE PROBLEMS 315

= Homy (k, k), ®; coincides with the functor @ of 2.1.
Example 1. Consider the affine subspace R of Hom,(k**', k **1)* formed by the pairs of
matrices

0 1 0!0 0] [0 , 0} 0 0
0 0 110 0of [0 0 x,i10 o
0 0 0i0 Of, [0 0 010 Of
S |6 § 5 | 5%
0 0 00 O 0 0 010 O

Let d be the coordinate system of R for which x; is the i-th coordinate of the above pair. The
associated functor @ repQ’ — repQ* maps ¢ & Homy(X, X)’ onto the pair b € Hom, (X**', X**')?
represented by the matrices

01, 0 !00 0 ¢ 0!00
00 1,100 00 ¢! 00
00 0100 | 100 0:!00]
00 0 01, 00 0i0 g
00 0 !00 00 000

It follows that @, factors through the full subaggregate rep,Q* of repQ® formed by the pairs of nilpo-
tent simultaneously trigonalizable endomorphisms. A simple calculation shows that &, preserves inde-
composability and heteromorphism (c, ¢’ € rep Q" are isomorphic if so are the images @, (c), @4(c")).

Example 2 [1]. Consider the affine subspace U of Homy (k% k*)* formed by the pairs of
matrices

0 1 0 0]f0 0 1 O
0 0 0 x|lo 0 0 1
0 0 0 1|[0 0 0 x
0 0 0 0Jl0o 0 0 O

If g is the coordinate system of U for which x; is the i-th coordinate, the associated functor ®g:
rep Q® — rep Q? factors through the full subaggregate repg Q* of rep,@” formed by the pairs of
commuting nilpotent matrices. The functor ®g preserves indecomposability and heteromorphism.

2. 3. We now come back to the module M restrained by a bond L.

Definition. Let S be an affine subspace of dimension t of HomyV, M (X)),
and e a coordinate system of S. We say that S is L-reliable if the functor F_
rep Q' — Mk factors through M L" and preserves indecomposability and hetero-
morphism.

Lemma. Suppose that t = 2, that (V, ey, X) avoids L, and that the restriction
F Irepg Q2 preserves indecomposability and heteromorphism. Then, for each s e
N, there existsa U e mod k,a Y € 4, and an L-reliable subspace of Homy(U,
M (Y)) of dimension s.

Proof. Letusset W= k+! and choose d as in Example 1 and g as in Example
2. Then we have F, o ®; o ®;=Fy, where f is a coordinate system of an affine sub-

,Mx*“*")). since F,|rep§Q? and the fun-

ctor rep Q° — reph Q2 induced by @, o ®, preserve indecomposability and hetero-
morphism, so does Fy.
It suffices now to show that F, maps rep, Q2 into M ). For this purpose, we call

s+1) s+1)

space T of dimension s of Hom, (V‘(
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a sequence
0->W.8, Y)W, g, V)>(W,g",Y") >0

k
of M short exact if the induced sequences
O->WoWoW S50and 05Y 5YY 50
are exact in mod & and split exact in 4 respectively. Now it is clear that e

2 k
repQ — M preserves short exact sequences and that Mf is closed in M f under
extensions (in the sequence above, (W', g, ¥') e ML" and (W”,g", Y") e M: imply
(W.g.Y) & MF). Itfollows that F,'(M}) is closed under extensions; therefore it

contains repg Qz, which is the smallest full subaggregate of rep Qz. closed under ex-
tensions and containing ([0], [0]) e F;I(M :)

2. 4. Definition. The module M over A is called L-wild if, for some V and
X, there exists an L-reliable affine subspace S € Hom,(V, M (X)) of dimensi-
on 2. It is called absolutely wild if it is L-wild for all proper L,Ii. e. for all L
suchthat M ¢ L.

Our objective is to examine the pairs (M, £) such that M is not L-wild. For this
we need the following further notion. Assume that the submodules L € £ contain the
radical RM of M, consider M =M/ KM asamodule over 4 = A/ Ky and denote
by L the set of submodules L =L/RM of M(L e £). We say that M is L-
semisimple if the obvious functor Mf -«»ATI* is an epivalence (i. e. induces sur-
jections on the morphism spaces, detects isomorphisms and hits each isoclass of M- zk ).

First main theorem. Let M be a pointwise finite module over an aggregate A
with finite spectroid. Then M is absolutely wild or L-semisimple for some pro-
per L.

2. 5. For each subset C C k, we denote by rep. Q' the full subaggregate of
rep Q' formed by the endomorphisms with eigenvalues in C. It is clear that rep CQ’

is closed in rch' under extensions. The converse is true: Each full subaggregate of
rep Ql which is closed under extensions coincides with some rep. Ql.
We apply these considerations to punched lines of M, 1i. e. to subsets of some

Homg (V,M(X)) of the form S\E, where S is a line (affine subspace of dimension
1) of Homy(V, M (X)) and E a finite subset of S. If e=(ey, €;) is a coordinate sys-

tem of S, the scalars A e k such that ey + Ae; € S\E form a cofinite subset C of k.
With these notations, the considerations developed above show that F, maps rep. Ql
into M/. Accordingly, we say that the punched line S\E C Homj(V,M(X)) is L-
reliable if the functor rcpCQl — M;‘ induced by F, preserves indecomposability
and heteromorphism.

In the second main theorem below, we say that an M-space (W, g, Y) ispro-
duced by the punched line S\E € Hom(V,M(X)) if it is isomorphic to some image
F (kn, AL, +J,), where J, is a nilpotent Jordan-block,n> 1 and A € C. This means

that there are isomorphisms w: W 5 V" and y: ¥ 5 X" such that M (y)gw ! is the
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linear map V" — M (X") described by the matrix with n diagonal blocks e, + Ae;:

€y + Ml € 0 0 :
0 €y + Ml € 0 :
0 0 €y + M| € E
0 0 9 gt

We also say that a set P of punched lines is locally finite if, for each X € 4, P
contains only finitely many punched lines of the form S\E € Hom,(V,M (Y )). whe-
re Y5 X.

Second main theorem. If M is not L-wild, there is a locally finite set P of
L-reliable punched lines such that:

a) for each X € A, the set of isoclasses of indecomposable M -spaces (V, f,
X) which avoid L and are not produced by a punched line of ‘P is finite;

b) distinct punched lines of ‘P produce non-isomorphic M -spaces.

The perspicuous description of the indecomposable M -spaces given by the second
main theorem confirms us in calling M L-tame (or simply tame in case L =@ ) if it
is not L-wild.

The second main theorem also shows that M is L-wild whenever it admits a
“two-parametric family” of pairwise non-isomorphic indecomposable M-spaces avo-
iding L. Thus, to prove wildness, L-reliability is not needed even in the weak form of
Lemma 2. 3. We owe the following example to Th. Briistle: Suppose that the spectro-

id *} of A hasonly one point w, that M (w) = k4, and that ‘§(w, w) is the subal-
gebra of k44 generated by the matrices

=

o

=}
oo o
ocooo
cooCco

which act on k4 by matrix-multiplication. Then the M-spaces (k2 fy,, W), where

T
flﬂ = [(l) {1) g 3] and A, | € k, are indecomposable and pairwise non-isomor-

phic. Hence, M is wild. But the action of the functor F: rep 92 - M " associated
with the plane { f;,: A, i e k} is already erratic on the 2-dimensional representations
of Q2.

2. 6. Finally, we consider a finite-dimensional k-algebra B and the tensor-alge-
bra @B=k® B® B ®,B® .... We identify modB with a full subcategory of

mod @ B by the aid of the surjective canonical homomorphism ®B — B. According-
ly, if the right & B -module structures on a finite-dimensional vector space V are inte-
rpreted as points of Hom, (V @B, V), the B -module structures on V are identified

with the points of an algebraic subvariety My(V) of Hom (V ®,B,V).

As in 2. 1, each coordinate system e = (¢, ..., ¢,) of an affine subspace § C
C Homy(V ®,B, V) gives rise to a functor F,: rep Q' — mod ®B which maps a
sequence a =(a,, ...,a,) of t endomorphisms a;: W — W onto the space W ®, V
equipped with the & B -module structure
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1, @e¢)+a, @e +...+a,@ e, WO VOB WO V.

We say that S is B -reliable if F, factors through mod B and preserves indecom-

posability and heteromorphism.
In the case ¢ = 1, we also consider punched lines S\ E, where E is a finite subset

of §. Setting C={A e kie,+Ae, € S\E} asin 2.5 we say that S\E is B -
reliable if F_|rep QI: rechl — mod @ B factors through mod B and preserves
indecomposability and heteromorphism. Under these conditions, the indecomposable
B -modules isomorphic to F (k". AL, +J,). where n>1 and A e C. are called pro-

duced by S\E.

Third main thecrem. If B is a finite-dimensional k -algebra, one and only
one of the following two statements holds:

a) B iswild, i. e. there exists a B-reliable plane;

b) There exists a family of B-reliable punched lines S\E; € Hom(V, ® B,
V.).i e I, with the following properties: For each d € N, the number of i € I sa-
tisfying d = dimV; is finite, and almost all isoclasses of indecomposable B-modu-
les of dimension d consist of modules produced by the S)\E: furthermore if i # J,
no indecomposable produced by S;\ E; can be produced by S)\E;.

In case b), the algebra B is called tame.

A typical example is given by the quotient B = k [x, y]/x, x%y, xy?. y* of the poly-
nomial algebra  [x, y] and by the space V =k (formed by rows with 4 entries in
k). A B-reliable plane (e, ,;a, b e k} of Hom(V @B, V) is then described by
the matrices

1 000][01 0O0][O0T1O0][0O0O0GalfOO0O0TL][OO0O0DH
0100/|/000a|{0O0O0O01]|000O0||00O0O0O)]|00O00O0
001000O0TIL1[|0OO0O0GOSHOO0O0O0OFIOO0O0O0OPOO0O0O0
00O0T1]|/00O0DO0|]|O0O0DO0]|OO0O0ODO0O]|OOODO])]|]OO0OO0O0

(The endomorphisms v+ ¢, ,( @ z), where z runs through the residue-classes of

1, x, v, x2, xy, y2, are obtained by multiplication with the given matrices: compare with
2.2, example 2.)
2. 7. Our third main theorem raises the question of the factorization of the functor

F;: rcpq,',;}r — mod @ B of 2.6 through modB. The answer is surprisingly simple. Let
by = 1p. by, ..., b, be a basis of the vector space B and bb; =X 0 rfj b.1<i,j<n,
the multiplication law. Let us further set ¢,,(v) =¢,(v @ b)) forall ve V,p and i20
(2.6). Then F W, a) liesin modB if andonlyif 3, a,® ey =1y ® 1y and

[i a, @eqj] {\E‘n% ® e,,‘-] = i c,{,-[ia, ® e,;]

q=0 =0 s=0
forall i, j 2 1, where ay = 1y. This condition is satisfied for all (W, a) e rep® Ql.
i.e. for all (W, a) with commuting endomorphisms a, ..., a,, if and only if ey =
= lv. €lIp=... =c,0=0 and

n n
{ _ [
€gj€0i = Z‘“,} €or €0j€pi TE€pi €0 = an'jep.h
=0 =0
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€pepi =0, egepitepe,=0
forall i,j=1 andall p, ¢ such that 1 < p <gq. These equations simply mean that
the affine subspace S of HomyV @ B, V) is contained in the algebraic variety
My(V) (2. 6). Accordingly, if S is a line, we have repcQ' =repQ', and F, fac-
tors through modB if and only if S C Mp(V').

If we require that F (W, a) €« modB for all (W, a) e rep Q', we must further im-
pose the conditions e e,; =0 forall i,j21 andall p,q suchthat 1 <p <g. Thus,

F,:rep o' — mod ® B factors through mod B if and only if § C Mg(V) and
F (k"2 a(p, q)) « mod B for all p,q suchthat 1 <p <g: here we set a(p, q), =0
if s# p,q, whereas a(p, q), and a(p, ¢), are the multiplications by the matrices
[0 o] a5 o

Of course, we can also interpret the equations displayed above by saying that F,
factors through mod B if and only if F_(W, a) € mod B holds for one single (W, a)
such that the endomorphisms 1, a,, and g,a;, 1<i,j<1, are lincarly independent.

In the case =2, for instance, we can choose W= k"3 and

010 0 0 0
a = 0 0 1], iy = 1 0 0f.
0 0.0 010

2. 8. The functor F,:rep Q' — mod B admits the following more traditional inter-
pretation. Let C, =k(x;, ..., x,) denote the free associative algebra generated by
Xy. ...s X, The free left C-module M,=C,®,V is then equipped with a right ®B-
module structure defined by the map

C,®V®B

1®ep +1 ey +... +x, Be, }Cf @V,

where, for each ¢ € C,, ¢ denotesthemap C, = C,,y+> yc. The C,- @ B-bimo-
dule thus obtained gives rise to a functor

repQ' >mod ®B, W, a) > W ® M,
which is isomorphic to F,. (We define aright C,-module structure on W by setting
wx; = a,(w), Vw e W) The argument produced in 2. 8 shows that this functors factors

through modB if and only if the right ® B-module structure on M, factors through B.

Thus, our third main theorem improves results conjectures by Donovan and Freis-
lich [2] and proves by Drozd [3] and Crawley—Boevey [4, 5] with the sophisticated
technique of Roiter’s boxes [6].

3. Preparative lemmas.

3.1. Lemma. The module M : X > X? over the aggregate A = modk is
absolutely wild.

Proof. We must show that M is L-wild for all proper L. For this, we may
assume that £={L,,....,L,} consists of maximal submodules of M, and hence, that

there exist scalars A, 1, v, such that
LX) = {veX>:hv, +Wv,+V,v,=0).

Transforming L by an automorphism of M (i. e.. by an invertible 3 x 3-matrix) if ne-
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cessary, we may assume furthermore that A; # 0 for all i. Under these assumptions,
we consider the plane § € Homy(k, M (k)) = k* formed by the columns [1 a b]T.
If e, e, ¢, are the natural basis columns, the functor F: rep 0* - M- maps (A,B) e
e (k"*")2 onto the linear map k" — M (k") = k3 represented by the matrix
(1 A" BT)". Weinfer that F, is fully faithful. Moreover, since nilpotent simul-
taneously trigonalizable matrices A, B give rise to invertible matrices Al _+pA +
+v,;B, F, maps rep, Q2 into Mf. By Lemma2.3, M is L-wild.

3.2. Lemma. The module M: (X, Y)> X> ®@Y? over the aggregate A4 =
=mod k X mod k is absolutely wild.

Proof. The group of automorphisms of M is now identified with GL,(k) %
x GLa(k). This group acts on the finite sets of proper submodules. We may therefore
suppose that, for each L e £, one of the columns [I 0 0 0]" and [0 0 1 0]"
does notbelongto L(k) C M (k)=4k2 @ k2= k4. The planc § € Hom(k, M (k)
attached to the matrices [1 a 1 )T with coordinates a, b then provides a fully
faithful functor F,: rep Qz—a M * which maps Tepy Q? into M¥.

3. 3. For each natural number 2 1, we define as follows a module M, over a
spectroid "&, with two points x and y. Denoting by k[e, f] the algebra of polyno-
mials in 2 indeterminates ¢ and f, we set 4,(v, x) = kL, (v, y) = k1, |, (v, y) =

-1 .. i .
= _E)Oke’""‘f', 2y, ) =0 and M(x) = ke ® kf, M(y) = _EBUke’_ /f'. The structural
= }=

map from %,(x,y) ® M,{_r} to M/(y) is induced by the multiplication of polynomials.
For instance, if +=4, %, is identified with the k-category of paths of the quiver

_*
x — y, and the linear maps M, (x) = M, (y) associated with the 4 arrows are repre-
-_)

_}
sented in the natural bases by the matrices

[10000]‘" [UIOO(}]T [00100]T [00010]"
01000001 0O0/|0001O0]>|00001]"

Of course, we can interpret ¥, as the spectroid of an aggregate A, whose objects
are the formal direct sums x” @ y?, and M, can be extended to A, by setting
M,(xP @ y9) =M, (xY & M,(y)".

Lemma. The module M, over the aggregate A, is absolutely wild.

Proof. We may suppose that £ consists of maximal submodules L, ..., L, of
M,, where L{y)=M/y) and L(x)= {ue +vf: Au+pp =0} forsome (A;HN,) €
e k2\(0, 0). Because of the obvious equivariant action of GL,(k) on ¥, and M, we
may suppose that A; # 0 for all i. Under these assumptions, we consider the plane
S C Homy (k2, M,(x2 ® y)) formed by the maps k2 — M,(x) @ M (x) ® M (y) repre-
sented by the matrices

1 0 0 1 o o o oF
0 1 a b 0 0 0 1f-
€

f el e"lf ef"‘l f-'
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Choosing a and b as coordinates of these matrices, we obtain a functor F; rep 0% —

- M," whose restriction F,lrepg Q2 factors through MfL, preserves indecomposabi-
lity and detects isomorphisms.
3. 4. The examples produced in 3. 3 admit the following variations. We denote by

:&2 the spectroid with one point x, endomorphism algebra *‘i(x, X)=kl, @ ke"l1® -
@ ke'2fD... ® kf'-1, radical ke1®... ® kf*! and radical square zero. The formal
direct sums xP give rise to an aggregate A4,.

We further denote by M, the A,-module with stalk M,(x) =ke @ kf ® ke! ®

@ ke*lif® ... ® kf' and radical ke' ® ... ® kf' whose structural map %, (x, x) ®
® (ke ® kf) - M,(x) is induced by the multlphcauon of kle,fl.

Lemma. The module M, over the aggregate A, is absolutely wild.

Proof. Use the affine plane of Hom,(k, M,(x)) formed by the maps represemed
by the matrices

b a 0 0 .. 0 b]T.
e f el e;-lf efr-i fr
Remark. Let L denote the submodule (X, Y) > X2 of the module M: (X, Y) H

> X2@® Y over mod kx mod k. Then M is @-wild but not {L})-wild.

3. 5. We now turn to the general case of a pointwise finite 4-module M. Our
objective is to compare the representation types of M and of its factor-modules M /N.
For this sake, we first suppose in 3.5 and 3. 6 that N is a simple module located
atsome s€ ) ([dmN@E=1,Nx =0 if xe § and x#s).

Let (V,2,X) beaspaceover M: =M /N,and e: V —->M (X) a factorization of
€:V— M(X). We call transporter T, of V into N(s) the set of all maps V —
N(s) induced by morphisms W € R4(X, s) such that Im M(ye C N(s). We choose
some basis g;, ..., g, ofasupplement U of T, in HomyV, N(s)), set

V' = Homy(V,N(s)) = T,® U, .
and denote by g the induced composition

(81 £aT" incl, -
V—E s NGy —2y M(sy —> M(s™).
Setting d = [eg]T, we thus obtain an M-space (V, d, X ®s%) which, up to iso-
morphism, does not depend on the basis gy, ..., g, of U.
Lemma 1. (V, d, X @ s*) avoids each submodule L of M such that LN N =
=0.
Proof. Clearly, e /(L(X)) € K: = ﬂKer‘r. Since T, and g, ..., g, generate

1eT,

V= Hom,(V, N (s)), we infer that n (x ﬂKerg,-) = 0, and hence, that d = [e g]T

avoids L.

Lemma 2. If (V, g, X) e MK is indecomposable, then sois (V,d, X ® s™)
= M ’

Proof. We may of course suppose that V # 0. Let us further assume that (V, d,

X 3") €ee M is decomposable. Since (V d, X EB s") e M;‘ 1S the direct sum of
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(V,e,X) and (0,0, s"), (V,d, X ® s™) admits a direct summand of the form (0, 0, s)
and a retraction (0, p): (V,d, X @ s") — (0,0, 5), where p e AX @ s, 5). Since (V,
z,X) € M* has no direct summand of the form (0,0, 5), p| X cannotbe a retraction.
It follows that p|s* is a retraction, i. e., that p |s*=aym, + ... + a®, + K, where the
m; denote the canonical projections s” — s, the scalars a; are not all zero, and K is
radical. This yields

n
0=M@p)d = MPIX)e+M@pl)g=M@PIX)e+ Y ag,
I=n
where M (p|X)e e T,. This provides the wanted contradiction, since gy, ..., g, iSa
basis of a supplement of T,.

3. 6. Lemma. Consider fixed maps ey, €1, e, € Homy(V, M(X)) and variable
spaces W e modk equipped with commuting endomorphisms a, b. Let further
e, bW VoW MX)S MW ® X) denote the map Ly @ eg+a ® e +
+b® ey and T, ;) denotethe associated transporter of W @ V ‘into N ().
Then there is a nonzero polynomial p in two indeterminates and a fixed subspace
U of V'=Homy (V,N(s)) such that

Hom(W® V,N(s) S W ® V'=T,, , ® W ® U-
whenever p (a, b) is invertible .

By W' we denote the dual of the vector space W.
Proof. Letus denote by u and v the compositions

RaW ® X, 5) —=2 5 Hom, (M (W ® X), M (s)) —=2 5 Homy (W ® V, M(s))

and s
Homy(W ® V,N(s)) —2L 5 Homy(W ® V, M (s )) —== Coker,

where we set f* = Homy(f, M (s )). The transporter T, s then equals Kerv. On the
other hand, u and v are identified with the compositions

1®ef +a' @ef +b1@e]

W' ® RatX, s) —22 5 W' ® Hom,(M (X), M (s))

1®eh +aT @ep +bT ®el

> W @ Homy(V, M (s))
and

W' ® Homy(V, N (s )) —-2inck

W' Homy(V, M (s)) 3 Ciikcor .

Interpreting aT and b7 as mulﬁplicatiomby x and y in W equipped with a module
structure over A = k|[x, y], we obtain a description of # and v as tensor products
W ® Allg and W e AVg. Where 1y and v, are the A-linear compositions

1®can. 1@ej +x®ej +y®e3

A® Ry, s) — =2 5 A ® Homy(M (X), M (s))

5

1®ep +xBe] +yRe; s A® HOmk(V M(s))
and

A ® Homy(V, N (s)) —=2_, A ® Homy(V, M (s )) —=2—5 Coker up.

Now, there is a nonzero polynomial g € k[x, y] such that the kernels, images and co-
kemnels of A[g!')®,upand Alg1)® v, are free. This implies that
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T, 1y = Kerv 5 W' ®pr11Ker(Alg™1® 4vp) > W' ® 4Kervy,

whenever g(a, b) is invertible.
To conclude, we choose arbitrary scalars &, n e k satisfying ¢(€, n) =0 and an
arbitrary supplement U of T,y in Homy(V, N (s)). The canonical map
wo: Kerv, © A ®@ U——> A® Homy(V,N(s)) ’

then becomes bijective if we “specialize” x, y to &, 1. Hence, there is a nonzero po-
Iynomial r such that A[r1] ® AW 18 bijective. So we may finally set p =gr.
3. 7. We now return to the case of an arbitrary submodule N of M and denote

by L =(L/N:Le L and LD N) thebondon M =M /N induced by abond L
on M. :

Proposition. M is L-wild if M /N is L -wild.

Proof. For each L e L notcontaining N, let ‘si e 4 be such that L(s;) does
not contain N (s, ). Let further €= (€p, €, &) be a coordinate-system of an Z -re-
liable plane in Hom,(V, M (X)), and e= (eg €1, €5) a system of factorizations of the

g through M (X). Restricting X to the finite full subspectroid formed by the support
. . . .
of X and all points s;, and proceeding by induction on the length of N, we are redu-

ced to the case where N is simple and Iocated at some s. Let then p e k[x, y] and
U C Homy(V, N (s)) be chosen according to Lemma 3. 6. Let finally g, ..., g, de-

note abasis of U, g: V — N(s)" C M (s") the induced map, and rep; Q2 the full

subcategory of rep Q2 formed by the (W, a, b) such that a, b commute and that
p(a, b) isinvertible. Setting

dy = [eo g]T e Homy(V, M (X & s™)
and d, = [¢ O]T', dy = [ey O]T, we prove that the restriction
Fy | rep$, 0% rep’, 0* —— M*

preserves indecomposability and heteromorphism and factors through Mﬁ. Our pro-
position will then follow from Lemma 2. 3 applied to a coordinate system (d, + &d; +
+1d,, dy, d,), where (§,n) e & satisfies p (§,m) #0. Y
The composition
rep 0° P IOV . v

maps (W, a, b) into Fz;(W,a, b) ® (0,0, W @ s"). Since FE preserves heteromor-
phism, so do F,; and Fy|rep$ Q%

In order to prove the remaining two statements, we consider some (W, a b) e
€ rtep, Q? and set

@b=10 7§+a@+b®H WO V— WO MX)S> MW® X),
e@b)=1®e+a®@e +b® ey WOV— WO MX)S>SMW S X).
On account of Lemma 3. 6, W'®Uisa supplement of the transporter Te{a‘ p Of

W ® V into N(s). The M-space (W ® V, [e(a, b) tp]T, We XeWwe s pro-
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vided by a basis ¢y, ..., 9, of W' and the associated map

QWO V— N(y™, w® v [¢iw)gv)]

avoids L by Lemma 1 of 3. 5. By Lemma 2 it is indecomposable if so is (W, a, b). It
is isomorphic to F W, a, b) as shown in the next diagram

wev —2%8 5, we NuH"

\ Ik LU ® 2) = (9071,

N(S)M xn

4. Proof of the first main theorem.

4.1. Lemma. Let 9 be an ideal of an aggregate A with spectroid 3, M a
pointwise finite left module over A, N the annihilator of 9 in M, and M the
module M | 9IM over A = A/ 4. We further suppose that the induced maps 9 (x,
y) = Homy((M /N )), (M )(y)) are surjective for all x, ye R, Then:

a) either 92M = 0, the induced functor P: M )fr —SM ﬁ;w is quasi-surjective,
and the indecomposables annihilated by P are isomorphic to some (0, 0, s), where
sed, M(s)=0and 1, & 9; ' '

b) or 9 contains the identity 1, of one point t € X such that dimM ()=
=1, the induced functor Q: M¥ — M* is quasi-surjective, and the inde-
composables annihilated by Q are isomorphic to (0,0,t) or to some (0, 0, s),

where se€ %, M(s)=0 and 1;€ 4.

The proof of the first main theorem uses Statement a) only. Statement b) will be
used in Section 9. '

Proof. We first show that Q induces surjections of the morphism spaces. Let

(V.f,X) and (V. f", X’) be two objects of Mﬁr, and ¢ € Homy(V, V'), € e A(X, X")

two morphisms which induce a morphism (¢, E): (v, ,X) = (V', 7, X)) of M § .

By definition, we then have M (x)f —f’¢ = ig for some g € Homy(V, (IM)X)),

where i: (IM)(X") — M(X") denotes the inclusion. Since (V,f, X) avoids N, the

obvious maps e
& (X, X) — Homy((M/N)X), (IM )(X")) —— Homy(V, (IM)(X"))

are both surjective and g is the image of some 1 € 9(X, X’). This means that ig=
= M M) and implies M & —n)f = f'¢. We infer that (¢, E): (V, f,X)—= (V', f, X)
is the image of (¢, & —n): (V. £, X) = (V".f, X").

Now, in case 9°M =0, P maps Mf\; into fr?ﬁw,f, and P is surjective on the
objects. This implies a). '

In the case 9°M 0, % admits a point 7 such that (9M)(¢) is not contained in
N (t). The image of Hom, (M /N)(), (9M)(t)) in End,M (1) then contains an idem-
potent of rank 1. A pre-image of this idempotent in 9(z, 7) must be invertible in R (z,
t), because R(r,1) islocal. We infer that 1, « 9 and that dimM (t) = 1. The last
statement of b) now follows from the fact that ‘% contains no point r # ¢ such that
1, e 9 and M(r) # 0. Otherwise, there would be morphisms c & 9(¢, 7) and p =
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e a&‘,}“) such that M (po) = lp), and the simple ‘8(, 1)-module M (1) would not
be annihilated by the radical. So it remains to prove that Q hits each isoclass of M*.
Indeed, for each M-space (V, f,X), we can choose a factorization f: V — M (X) of
f and an isomorphism g:V 5 M (14, where d = dim V; then (V, [f g]T,X ® 14
avoids N, and its image in m* is isomorphic to (V, fX)

4. 2. Remarks. a) The assumptions of our lemma remain valid if we factor the

annihilator of M outof 4. Hence, we might restrict ourselves to the case where M
is faithful. In this case, the maps

9(x,y) — Hom, (M/N)®), (IM)()
are bijective. In subcase l?) it follows that 9(x, y) is identified with 4(, y) ® e R,
t). In both subcases, d can be completely “described” in terms of the vector spaces

Ix)=(IM)(x) € N(x) © M(x) (where x#¢ in case b). Accordingly, formal
examples are constructed with ease.

b) Our concrete examples are the following. We start with a morphism - (s,
t) such that M (): M (s) — M (¢) hasrank 1. Setting 'S =Im M (), we denote by Cj

the submodule of A(?,¢) which consists of the morphisms & X — ¢t of 4 mapping
M (X) into S. Then we claim that the assumptions of our lemma are satisfied by the

ideal 9 generated by any submodule C of Cg which contains . Indeed, for all
x,y = 4, the composition of ‘§ maps ‘itf’,)') ®,C(x) onto 9(x,y),and N (x) is the
annihilator of C(x) in M(x). Hence, the obvious map (M./N )(x) — Hom, (C(x),S) is
injective, and the transposed map C(i:) — Hom, (M/N)), S) is surjective. Taking

into account that (9M)(y) is the image of (7, y) ®,S, we infer that the double-
headed arrows of the diagram :

M i} M
A, O C(x)—»4(r, y) ®Hom,, ([-&——)(x), S }—)Hmmc ({F}x), 4@, e C(x)}

I(x, ¥) - >Homy (M /N )(x), (9M )(3))
are surjective._ Hence, so is the lower arrow. t .

4. 3. Let us now consider pairs- (4, M ) formed by an aggregate 4 and a point-
wise finite A-module M. We say that two such pairs (4, M ) and (A, M") are
equivalent if there exist a k-linear equivalence E: 4 —— A’ and an isomorphism
M 5 M’E. And we say that the A-module M. is climacteric if the Pair (A/ Ny,
M ), where N}, denotes the annihilator of M in A4, is equivalent to one of the abso-
lutely wild pairs'examined in 3.1, 3.2, 3.3, and 3.4.

Lemma. Let M be a pointwise finite module over an aggregate A with finite
spectroid X. If M is not semisimple and has no climacteric quotient, ‘& admits
a morphism W € Ry(x, y) such that M (W): M (x) > M (y) has rank 1 and
MQOp)=0=M@uv) forall A e Ry(y,2),V e RaC, x),and z « 4.

Proof. a) Reduction to the case of height 2: Let us assume that M has height
h>2, and that the proposition is true for modules of height 2. We then denote by §;

the annihilator of K% in M. Thus M = M /S, , M has height 2. If it admits a cli-
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macteric quotient, then so does M. Otherwise, thereisa p € Kalx, y) such that
M (p) has rank 1 and vanishes on (RM)(x). Since pM (x)#0, we have OpM (x) #0
for some o©. e Q(f{'z(y, z).-On the other hand, op e R_g{l (x,z) annihilates
(‘RM )(x), and M (cp) admits a factorization '

M @) s M6)/ (5,.M)0) —2— M @).
where p, isinducedby p and o, by o. We infer that M(op) has rank 1.
b) Finally, we suppose that M has. height 2. Factoring out the annihilator of M

in A4 if necessary, we may suppose that the module M is faithful. We then consider 4
cases.

If M /SM has an isotypic component of dimension 1 supported, say, by x & §,
then each nonzero radical morphism p:x —y of ‘R suits.

If M /SM has an isotypic component of dimension > 3, then M has a climacte-
ric quotient of type 3. 1.

If M /SM has at least 2 isotypic components of dimension 2, then M has a cli-
macteric quotient of type 3. 2,

If M /SM is isotypic of dimension 2 and supported by x € ‘3, then we choose

any y « ‘% suchthat Rgx, y) #0 and consider two subclasses. If M (i) has rank 1
for some |1 & Rq(x, y), then W suits. If M (p) has rank 2 for all nonzero p e Rg(x,
¥), we denote by M’ the sum of the isotypic components of S;M not supported by " y.

Then N=M /M’ has a quotient of type 3. 3 or 3. 4 accordingas x#y or x=Yy:
To prove this, we choose two vectors e, f € N (x) whose classes modulo SN

form a basis of (N /SN )(x). The module structure of N then provides two maps &,

¢: Ralx, y) —_-; (51N )(y) defined by e(p) =pe and @(p) = pf. Since M (p) has rank
2 for each p #0, ae + by is injective for all (a, b) e %2\ (0, 0). By Kronecker’s clas-
sification of pairs of linear maps, we can therefore choose bases n = (ng, ..., n,) of
(SIN)() and r=(r); « ;1 of Ralx, y), where I C (0, 1, ..., t— 1}, such that re =
=e(r)=n; and r;f=@@)=n;, forall iel A typical example is

/\'/\ A

. ny na n3 ng ns
where t=5 and I= {0 2 3}.

Now we choose natural numbers a <b such that {(xe N:a<x<b} CI and a-—
—~14 I be¢] (forinstance a=2, b=4 in the case of our diagram). Factoring out the
basis vectors n; for i < a and for b < i, we obtain a quotient N’ of N such that

“(N"/SIN')x) S ke © K and (SIN')() :)as?sbhl" If Mﬁenoles the annihilator of

N’, the pair (4/A,,N") is equivalent to one of the pairs (A, 4, M, ) or (A, -,
M ,_,) examined in 3.3 and 3.4.

4. 4. Proof of the first main theorem (2.4). We procee:d by induction on the
length of M. If M is not semisimple and has no climacteric quotient, we choose a

morphism | € Ra(x,y) according to Lemma-4. 3 and denote by 9 the ideal of 4
generated by p. Then the annihilator N of 9 in M is a maximal submodule of M,
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and M /N is supported by x. By 4. 2 b), the assumptions of 4. 1 a) are satisfied. If
M = M /9M is considered as module over A = 4 /9, the canonical functor
M ,f. M f; 19M "is an epivalence. By induction hypothesis, M admits a bond X for-

med by submodules L;/ $M D RM /9M, 1 <i<r, such that 5"4;( - Hg—c is an epi-

valence with the notations of 2.4 (M = M /RM = M/RM...). If weset L= {L,,...
L,N} and L= %xU (N}, Lemma 4. 1 implies that the composition Mj‘: -y

ok gk . :
—r ME, — M7 is an epivalence.

5. Pencils. As in Sect. 4, 4 here denotes an aggregate with finite s{;ectroid S

If M is a pointwise finite module on 4, we denote by M: = {x € % (RM)(x) #
# M (x)) the generation-indicator of M. Foreach p € M, we write M, for the sub-

module of M such that Mp(p)z (RM )(p) and Mp(x)=M(x) if xe d\p.

5. 1. Definition. A pencil over A is a pointwise finite A-module F restra-
ined by a proper bond X such that:

a) P isnot K-wild,

b) there is no proper bond B on P for which P has aﬁmre spectroid.

The condition b) obviously implies that P admits 1nﬁn1tely many maximal submo-
dules or, equivalently, that dimP /P,;=2 for some d = P. Proposition 4. 3 implies
that such a d is unique and satisfies dimP /P ,.=2. We therefore call d o=d the

double-point of P; any other point s € P satisfies dimP /P, =1 and will be called
ordinary. '
Proposition. Let (P, X) be a pencil with double-point d, and (u_,)mﬁ\d a

family of elements u_< P(s)\(RP)(s). Let us further suppose that 'K is not empty
and that P is Kosemisimple. Then

u+ 2 uJEP[d(‘B @S)
seP\d

generates a maximal submodule of P for each ue P(d)\KUx K(d).
€

We recall that, according to our terminology, each K € X contains KP (2. 4).
Proof. If Q is the module generated by u + qu_r =: v, it suffices to show that

0D RP if ue P(d)\y K(d). Tothisend, weset 3 = d ® @ s and consider any
F

r € (RP)(x), x € X. The P-spaces (k, [’ O]T,ZEBx) and (k, ' 1%, Z GBx),

where v/(A) =Av and r(\) = Ar, then avoid X and give rise to the same P -space.

They are therefore connected by a morphism [ 1, [g g] ] which is congruent to the

identity modulo R 4 (2.-4). This means that 1:“ ﬁ][}ﬂ = ["] and implies that yv =

) r
=r with ye R4Z, x).
5. 2. Proposition 5. 1 only concerned the module structure of a pencil. 'We now
examine its bond.

.Proposition. For each ordinary point s€ P of a pencil .(P, .'ZO P_ belongs
to K
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Proof. Suppose that P, ¢ K andset N=P, N P,,}—’ =P/N and X = {(K/N:N
C Ke X}, where d=dp. Then P is a semisimple pencil supported by d and s.
The functor F: resz — P* associated (2. 1) with the 2-parametric affine farnily of

1000i0100[1]F
X
y

01 00i0 010

0 01 0:0 001
preserves indecomposability and heteromorphism. The P -spaces represented by the
displayed matrices avoid all proper submodules of P except P, =P,/N ¢ K. We
infer that P is .'!_C-wild, and P K-wild (3. 7).

5. 3. From now on and throughout Section 5, M denotes a pointwise finite A-
module restrained by a bond L for which M is not L-wild. All submodules P
of M are implicitly supposed to be restrained by the ttace LN P:={L N P:L e L}
of L. Our objective is to investigate the pencils of M, i. e. the submodules P of M

such that (P, £L N P) is a pencil. Our first result is easily derived form 5. 2. y
Corollary. If P is a pencil of M with double-paint d, P [P, is the socle of

M [P,. As a consequence, P [ RP is the socle of M | RP.

Proof. Replacing M > P by M /P; D P /P, and applying 3. 7, we are reduced
to the case where P is semisimple and P = {d}. Letthen Q denote the socle of M.
Since Q isnmot LN Q-wild, Q is a pencil of M which satisfies dy =d. In case
Q # P, QO has asimple point ¢ outside P and L contains an L such that LN Q =
= @, D P: acontradiction to the assumption that £\ P a proper bond on P.

5. 4, Our next result rests on the classical submodule algorithm [7]. Starting from
a submodule P of M we consider anew aggregate 4= Pj._i’n p and modules R on

4 associated with submodules R of M and defined by
RW,g,X) = (g(W)+RX))/g(W)C MX)/gW) = MW, g X).

With £ we denote the bond on M formed by P and the submodules £,L L.
Thus, we obtain a functor -

E: Mf - M, (V, £.X) 1 (VIV/, £, (V' f, X)),

where V' equals flP(X)) and f:V' > PX), f:VIV' > MX)/f{V") are
induced by f. This functor is an epivalence, and even an equivalence if L= @.

Proposition. If P is a pencil of M, P (X)=M(X') holds for all x € P.
Accordingly, M contains only finitely many pencils.

Proof. Restricting M, P andall L e L to P, we may suppose that P = L. Ar-
guing by contradiction and replacing M by a submodule if necessary, we may further
suppose that M /P is simple, i. e. that dim M (x) = 1+ dim P (x) for some x € } and
M@)=P(y) forall ye ‘& /x. Setting N=Pa.ﬂ P, and replacing M by M /N, we
are reduced to the case where P is semisimple and where ‘% consists of two points
d # x or of one point d = x.

a) Case d# x. For each submodule R of M, we then denote by R’ the restri-

ctionof R to the full subaggregate A’ of A = an p Whose spectroid consists of
the indecomposables (0,0,x) e 4 and p= (3, p,d* ® x° ), where
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100 T

=010 ,
0 1

0
The module M’ admits a submodule @ such that @(0, 0, x) = P(0, 0, x) = P(x) and
Q(p)=M(p)=M@ ® x> /ImF D P’(p). To prove this, it suffices to show that
each morphism (0, w): (&, p,d* ® ) — (0,0,x) maps M{d* ® x3) into P(x). For
this, it is enough to show that j: d* @ x> — x is radical. This is due to the fact that a
section o of p would provide a section (0, @) of (0, 1.

The restriction £/ = {L:L e £} U (P} of £ to M’ induces a proper bond
LNQ on Q, because P’=P'NG#Q and L'N P’# P’ foreach L € L. There-
fore, it suffices to show that dimQ(p)/(RQ)(p ) 2 3 (3.1). This follows from
dim M /P) @ @ x*)=dim (M /P)¢?)=3 and from (RQ)(p) C P (@ @ x3)/Imp.
The inclusion is due to the fact that each morphism (0, 0, x) — (&3, 7, d* ® x3) of A’
maps Q(0, 0, x)=P(x) into P (d* ® x3), and that each radical endomorphism of p is
induced by a radical endomorphism of d* @ x® which annihilates (M7P)@d* @ x3).

b) Case d=x. Then the argument is simpler. We focus on the sole indecompos-

-~ H T ~
able g=(k?, g,d°)of A, where § = [6 {1) 88 {1) ﬂ . Each element of £ in-

coo
—_—Ooo

‘0
i 0
0

OO
(=T e
Ll =g =
SO

X o~Q

g

duces a proper subspace of M (q) = M (d®) /Im g, and each radical endomorphism of ¢
maps M (q) into P (g). Replacing M by its restriction M.” to the full subaggregate

A of A definedby g, we infer that dim M‘(q)/(RM)(q) = dim M (d®)/P(@) = 3
and we conclude with 3. 1.

5.5. Proposition. Let K be maximal in L and not contained in the pencil P of
M. Then Y dimM(x)/K()=1. -

xebP
Proof. Suppose that the statement is wrong. Then we can find submodules R, C

€ Q, of MIP whichcontain K| P and are of colength 2 and 1. We denote by Q,
the maximal submodule of P such that Qo! Pz Q,,by R the maximal submodule of
Q =0, + K suchthat Rl P =R,. (Of course, R contains K.)

Weset d=dp and 2= ?s, where s € P \d. Up to isomorphism there is a unique

indecomposabie P-space of the form p = (K3, p,d* ® £3) which avoids all maximal
submodules of P. Applying the submodule-algorithm to P C M, we denote by M’
and £ the restrictions of M and L to the full subaggregate A of 4 = Pin P
whose spectroid consists of p and of the (0,0, y), where y e R. The wanted contra-
diction will follow from the fact that M’ is £/-wild.

To prove this, we consider the submodule N of M’ such that N(p )= 0(d* ® X3)
modIm 7 and N(0, 0,y) = R@y) if y R. Such a submodule exists because each
morphism (0, W): (&, 7, d* @ $3)— (0, 0, y) maps Q(@* @ ¥3) into R(y). Other-
. wise, | would induce an isomorphism of a summand y’ of d* @ 23 onto y, and
(0, p) would admit a section., '

Let X’ denote the submodule of M’ induced by a submodule X of M. Then N is
not contained in K’, because p avoids each proper submodule-of P; hence, R@* & 33)
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and Q(d* ® 33) are identified with their images in M(d* ® ¥.3)/Im 7, and we have
K'(p) C R(@* @ T3)# Q(d* @ T3) 5 N(p). On the other hand, each L e (L\K) U
U {P} intersects R properly; it follows that L'(0, 0, y) = L(y) # R(y) = N(0, 0, y) for
some y € R andthat L’ is a proper bond on N. Hence, it suffices to prove that

dim(N / RN)(p) =2 3 which implies that N is absolutely wild and M’ £'-wild.
The announced inequality is due to the fact that each radical endomorphism of p is

induced by a radical endomorphism of d* ® 33 and maps N(p) = Q(d* @ X3) into
R (@ ® T3). We conclude that (RN)() < R (@* @ 33) and that

dim(N / RN )p) = dim(Q /R)@ ® T3 =4 or 3.

5.6. If L denotes the set of all maximal elements of £, it is clear that M i =M E.
Therefore we may always restrict ourselves fo the case where L is irredundant, i.e.
where L= L.

Corollary. Suppose that L is an irredundant bond on M and that s € P is
an ordinary point of a pencil P of M. The conditions L € £ and L(s) # M(s)
then imply LN P=P_. ‘

5.7. Corollary. Let K be a submodule of M which is neither contained in the
pencil P of M norinany L e L.Then 2 dim M(x) / K(x) < 1.

xepP
Proof. The corollary follows from Proposition 5.5 applied to a new bond

LU(K)}.

5.8. Corollary Suppose that the L-pencils P and Q of M. are not compa-
rable. Then dp ¢ 0 and dQ ¢P.

Proof. Suppose that dg ¢ P and that u e Q(dQ) #M(dQ) lies outside L(dQ)
whenever L e L satisfies L(dy) # M(dy). Let further K denote a maximal submo-
dule of @ such that uEK(dQ)#M(d ). Then K is not containedin P and LN K
is a proper bond on K. On the other hand, we have K(dg)vtM( ) and K(s) = Q(s) #
# M(s) for some s e P, hence

Y dim M(x)/K() = 2
xepP -

in contradiction to 5.7.
5.9. Corollary. If the L-pencils P and Q of M are not comparable, then

(RP)(s) = (RQ)(s) forall s« PNQ.
Proof. Indeed, s is ordinary by 5.8. If L is maximalin £ and such that L NP =

=P, (5.2), wehave LN Q=0  by5.6; hence, (RP)(s) = L(s) = (RQ)(s).

5.10. For each submodule N of M, we set KI = (x e ]: N(x) = M(x)}. Thus we
have P C P if P is a pencil of M.

Corollary. If P,(Q,and R are 3 pairwise incomparable pencils of M, the equa-
lity P\R=0\R implies R\P = R\Q.

Proof. Let s € P N QO be such that R(s) # M(s), and L a maximal element of
L suchthat LNP=P;, and LNQ=Q, (5.6). If 1 € R is such that M(t) = R(t) #

L(t), we have P()=P,@) C L() and O() = 0,() C L(t), hence, R\P = (1} = R\Q.
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6. Proof of the second main theorem (reduction). Our objective is to propose a -
general “construction” of locally finite sets D= ZXM, £) of L-reliable punched lines
which satisfy the conditions a) and b) of the second main theorem. Our sets 2D are the
unions of subsets D, = D, (M, L) formed by punched lines DRRC E Hom, (V,
M(X)) whose points have space-dimension dim V = n. We construct the slices
D, (M, L) by induction on n and simultaneously for “all” non-wild pairs (M, £). The
construction is rather precise and rather involved, as nature seems to be.

In order to classify the indecomposable M-spaces, we can examine the finite full

r

subspectroids ‘¥’ of %} -separately and focus on the M-spaces with “support” X
We are thus$ reduced to the case examined in the present section where the spectroid
R of A is supposed to be finite. From 6.2 until the end of the section, we suppose
that M is not L-wild.

6.1. Since our construction proceeds by induction on the space-dimension, we first
example the indecomposable M-spaces with space-dimension 1. For this purpose, no
restriction is needed on the representation type of (M, L).

Proposition. The map (V, f, X) — Af(V), which assigns to (V, f, X) -the .mb-
module of M generated by f(V), induces a bijection between the set of isoclasses

" of indecomposables in M i with space-dimension 1 and the set of submodules N

of M for which LN N is a proper bond. -
Proof. The inverse bijection is obtained as follows. For each N, we choose a pro-

jective cover n: A(X,?) — N and set n’ = n(X)(1,) € N(X). To N we then assign the
isoclass of (k, M, X) e M.

6.2. Let us now return to the case where M is not L-wild. Each pencil P of (M,
L) with double-point d gives rise to a one-parametric family of maximal submodules
Q of P suchthat P, C Q C P. The other maximal submodules of P have the form
P,,where s is an ordinary point of P; their number is finite, and the induced bond
LN P, is not proper (5.2).

Proposition. Besides maximal submodules of pencils, M contains only finitely
many submodules N for which LN N is a proper bond.

Proof. We proceed by induction on the number of pencils of (M, L), which is
finite by 5.4. If M contains no pencil, we denote by A the set of all N € M such
that LN N is proper. Each element of A has finitely many (direct) predecessors

Since A has finite height and (at most) one maximal element, A( is finite.
If M contains pencils, we consider a minimal pencil P (with double-point d) and

maximal submodules Q,,..., Q, (s=1) of P containing P, and such that each u e
e P(d)\ U:___;Q,» (d), satisfies the statement of Proposition 5.1. Then eacl_l non-maximal
submodule of P is contained in some Q; or some P, with s€ P \d. And each non-
maximal submodule N € P for which £ N N is proper is contained in some Q.
Together with Q,,..., O, these N form a poset A which has finite height and a

finite number of maximal elements. Since each element of N[ has a finite number of
(direct) predecessors, A is finite.

On the other hand, since (M, LU {P}) admits less pencils than (M, L), we know
by induction that there are only finitely many submodules N’ which are not contained
in P, which are not maximal in a pencil of (M, L) and for which £ N N’ is proper.
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- 6.3. The construction of D;. For each pencil P of M, we pick vectors u s €
€ P(s)\(RP)(s), se P \dp, and a basis (u, v) of a supplement of (KP)(dp) in P(dp).
Thus we obtain a straight line

Dp = {u+hv+ Y u: Aek

of M(dp ® ©s) - Hom,(k, M(dp ® ®s)) whose associated functor F: rep ol - Mk
preserves indecomposability and heteromorphism. Erasing from D, the points lying
in the various subspaces L(dp © E?s), L e L, we get an L-reliable punched line,
which seems to be a good applicant for a position in D,. Unfortunately, if the lines
D, are to be retained, the present state of our technology urges us to overpunch them
as will be explained below. )

First we consider the minimal pencils of M, which we stack up in a finite set P

equipped with an arbitrary linear order. If P# (3, we construct an ideal 7 of A and
abond X on M which satisfy the statements of Lemma 6.4 below. Finally, for each

P e P, we construct a proper bond .'I(P on P, formed by maximal submodules N
such that P is .‘KjP-semnsmple and that ve N(dP) for some N. The submodules N
give birth to a bond '
Lp = (LNPUKNP)U K, U (X:P>X e P)
on P and to a finite subset
Up,, NL(dp ® ®s)
LeL,

“of the straight line Dp. The associated punched lines }',I[,,\x'i.“JD are the first selected co-
nstituents of D,.

The restraint lmposed by X will permit us to prove Lemma 6.4 below. As a result
of the insertion of XP into Ly, all maximal e!emenrs._ of LP and all proper sub-
modules K of P for which L;, N K is proper are maximal in P (5.1). Accor-
dingly, each u+ Av+ Z‘ u, € Dp\P, generates a maximal submodule of P.

In order to puncture the lines Dp when P is not minimal, we now set P;: =P

.and X:= X We denote by P, the set of minimal pencils of (M, LU fPi) or, equ-
ivalently, of (M, LU X U P,), by P, the set of minimal pencils of (M, LU P, U
P,)... .Replacing L by L; = LU X, U P,, we constructabond X, which satisfies
the statements of Lemma 6.4 for (M, L,). Adapting the recipe above to the new data,
we obtain a proper bond L; oneach P e P, and the associated finite subset Ep, <
C Dp. Then replacing £; = LU K U P, by L, =L, U K, U P,, we construct bonds
X3 on M and .L',;, on each P e P, thus obtaining finite sets Ep, C Dp forall P e

e P,... If P, is the last non-empty set of pencils constructed in this way, we finally
set
DM, L) = {DP\EP:P e® 1<i<h].

If M contains no pencil, D,(M, L) is empty.
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6.4. Lemma. Let M be a pointwise ﬁnfre module over an aggregate A with fi-
nite spectroid X, L a bond on_M ’ﬁch that M isnot L-wild, P a non-
empty set of pairwise incomparabie pencils (5.1) of M and R = mPE?Q{P the
intersection of their radicals. Then there z's an t’deaf JI< ﬂiﬂ and a bond K on M .
such that: .

a) JM C RC BNP#P and (j'M)(x)— (RP)x) for all Be X, all Pe P
andall x € P;

b) if M/ IM is considered as a module over A[ 9 and K/ _?M denotes the
set ofall B[ IM, B € K, then the canonical ﬁmctor MK — (M/)‘VM)K;M is an

. epivalence.
Thr: proof of the lemma is given in 7.1 below

6.5. The construction of D,, r 22. The construction is based on a sequence of
submodules of M which we must present beforehand. First supposing P, # @, we
consider the submodules X such that: a) £ N X isaproper bondon X; b) X is con-
tained in a module belonging to X=X, or to some Xp, where P e P=P; (6.3).
These submodules form a ﬁnfrec set (6.2), which we denote by Oy = Oy(M, L) and

-equip with some linear order < such that X C Y implies X <Y. By construction, O,
contains all the non-maximal submodules N of P, P'e P, for which LNN isa
proper bond.

Replacing L by L;=LU X, U Py, thenby L, =L, UK, U P,,...., L=
=L, U XK, U B, we may repeat the construction o'f Op and obtain further linearly
ordered sets O, = 0y(M, L,), O,= OyM, L,),... = 0yM, L, ,). To these sets
we add a set O,, formed by the submodules N of M for which £, N N is proper,

and also equipped with a linear order < such that X € Y implies X <Y. Together
with the linear orders imposed onto P, P,, ..., P, we finally obtain a finite linearly

ordered ser Q which has M as maximum and is formed by the disjoint intervals
O)<P<0<F<0,<.<P <0,

_ If M contains no pencil, Oy denotes the set of all submodules' X of M for which
LN X is proper. We then set Q= Q.
Our construction of D, (M, £) now results from an application of our main algo-
rithm to each submodule N e Q, and to the associatedbond BN=L U {X e Q; X <
<N} on M. For this sake, we introduce the aggregate 4V = N’fmn” , its spectroid

%V, the module MM on AN defined by MN(W, g, X) = M(X)/g(W) and a bond Q§N
on MV which consists of the submodules of MY induced by N and the modules X
BN. The resulting epivalence M %w - M %‘3 will allow us to lift various slices of the

wanted D (M, L) from MYV, ’EH\T) to (M, BN). We distinguish two cases:
1) Case N e O, Then BN N N contains all maximal submodules of N. The
spectroid ‘¥ is finite and contains one point (k, g, ?N‘ s) with space-dimension 1.
&

The remaining points of %V have the form (0.0. 1), t € . _
Obviously, MY is not' BN-wild, because two-parametric families of indecomposa-
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bles could be lifted from (MY, ‘.}§N) to (M, L). Proceeding by induction on r, we may
therefore suppose that the sets fDJ(MN ,'BN) are at our disposal for all s < r. Here we

are concerned with ‘2§N—reliablc punched lines formed by M"-spaces (U, h, Z) whose
bases Z=(W, g, X) e N',_ﬁwn” have a space-dimension dim W =: ¢ 2 1. These lines

form a subset D.(MN, BN) of D MY, BN). Lifting the lines of D'_,(MN, BN)
from (M, BN) to (M, BN), we finally obtain a set D'_,(MN, BN) of L-reliable
punched lines and the requested contribution of N to DM, L):

r-1

U DY, BN).
{=1

2) Case N e P.- We then proceed as in case 1, the difference being that &V is

infinite. According to Lemma 6.6 below, %V contains a finite full subspectroid ‘&f
which supports the bases Z = (W, g, X) of all indecomposables (U, k, Z) € Mg;

suchthat 1 <dim U and dim W < r. (More precisely, ‘&f is formed by the points
(0,0,1), t € 4, and by at most 5(» — 1) points of the form (W, g’,X") with 1<
<dim W’ <r.) Since "55 is finite, our induction provides us with finite sets 'D‘(MN |

‘iiv, BN | %™y for s <r. As in case 1, these sets are partitioned into subsets 2, (M|
‘if, BN | {f). Lifted from (MY, ‘3§N) to (M, L), these subsets give rise to finite

sets of BN-reliable punched lines denoted by D' (MY, BN).
Putting together the various pieces obtained above, we finally set

r-1 s
oM, D= J U Dia", BN). *)
NeQ, =1 :
The fact that Qj(M, L) = Urzl DM, L) satisfies the statements of the second main
theorem is easy and will be checked in 6.7.

6.6. Let us provisionally consider an arbitrary pointwise finite module M’ over an -
aggregate 4’ and abond £ on M’. We then say that an indecomposable s € 4’ is
(M’, L)-relevant if s is a direct a summand of the base X of some indecomposable
V.£,.X) e M.

Lemma. With the notations of 6.5, let N be a pencil of M and r = 2. Then
there are at most 5(r— 1) isoclasses of indecomposable N-spaces (W, g, X) which

avoid BN N\ N, satisfy 1<dim W<r and are (MY, BN)-relevant.
6.7. Checking the statements of the second main theorem. The statements result
almost immediately from the construction.

Since ‘& is supposed to be finite, the finiteness of the cardinality of D, (M, L)
follows from 6.5 (¥).
In order to prove statement a), we denote by v,(M, £) the number of isoclasses of

indecomposable M-spaces (V,f, X) e ME’ which have space-dimension r and are
not produced by punched lines of ZXM, £). We shall prove that v, (M, L) is finite by

induction on r. Clearly, Vo(M, L) is equal to the number of points of ‘3. So let us
assume r = 1. By 6.1, the isoclasses of the indecomposables (k, f, X) = Mi with
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space-dimension 1 correspond bijectively to the submodules X = A4f(k) for which
LN X isproper. Incase Af(k) ¢ Q, (k f, X) is produced by D(M, £) and Af(k) is
maximal submodule of a pencil. We infer that v,(M, £)=1QJ.

In the case r>2, let (V,f,X) e MY be an indecomposable with space-dimension
¥ which is not produced by XM, L), and let N be the smallest element of Q such
that ¢t = dim f~ (N(X)) 2 1. If N is not a pencil, our mductlon hypothesm and the
finiteness of XY imply that M g: has a finite number, say, v;_ (M", BN), of iso-

classes of indecomposables (U, A, Z) not produced by DMV, 53N )} and such that
dim U =r—t and that Z has space-dimension {2 1. The contribution of N to v(M,
L) is therefore equal to E:=l vi_ ¥, BN). (Werecall that vy (MY, BN) =0 in the
considered case r=2.)

If N is a pencil, the numbers v/_ (MV, BN) € N U (e} can still be defined.
Now vj(MN, BN)=1.1In case 1<t<r, the finiteness of vl Y, BN) follows
from the fact that the bases Z of the indecomposables (U, h, Z) considered above are
supported by a finite subspectroid ‘if of &N (6.5, case 2, and 6.6). It follows that

N still has a finite contribution . _ V¢ _, (MY, BN) and that

V.M, L) = 2 Zv, (MY, BN).
NeQ, =1

Finally, in order to check statement b), we prove by induction on r that indecom-
posable M-spaces (V,f, X) E,ME and (V,f,X)e ME cannot be isomorphic if they
are produced by different punched lines D and D’ of D, (M, L): = U,¢, D, (M, L).
This is clear by construction if D € D,(M, L) or D’ € D|(M, L). Otherwise, r is > 2.
Then we consider the smallest elements N and N” of Q which are not avoided by (V,
f.X) and (V',f, X’), respectively. Our claim is clear if N #N’. Inthe case N #N’,D
and D’ are obtained by lifting punched lines defined on finite spectroids XV or *&f{ ;
These punched lines consist of MY-spaces with space-dimension < r. They produce the
MVY-spaces associated with (V, £, X) and (V/,f, X’). Since these M"-spaces are not iso-
morphic by induction-hypothesis, (V,f,X) and (V,f,X") are not isomorphic either.

7. Simultaneous eradication of incomparable pencils.

7.1. Theorem. Let M be a pointwise finite module over an aggregate A with
finite spectroid X, L abond on M such that M is not L-wild, P a non-em-
pty set of pairwise incomparable pencils of M, and R = (\pcp RP the intersection
of their radicals. We suppose that R(q) # 0, where q € R satisfies R(q) = M(q)
or belongs to the generation-indicator P = {x € R P(x) # (RP)(x)} of some P € P.
Then R - contains a simple submodule S such that the transporter Transp (M, S),
i. e. the ideal of A formed by the radical nwrphisms W: X =Y satisfying ].LM(X) <
C S(Y), annihilates no P « P.

Before entering the proof of the theorem, we show that it implies Lemma 6.4
given above:

In the notations of 6.4, we proceed by induction on d = Zx dim R(x), where x €
e Upep P. Incase d=0, weset 7= {0} and K= @.In case d> 0, we apply our theo-
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rem setting 9 = Transp (M, S) and B =N + R, where N is the annihilator of ¢ in M.

Considering M =M /S=M/ 9M as a module over A = A/ 94, we then obtain an
- epivalence M§ — M§,s (4.2.b). Applying the induction hypothesisto # and P =
={P/S:PeP),wegetanideal 7 of 4 andabond X on M which satisfy the
statements Ef the lemma mutatis mutandis. For 7, it then suffices to choose the inverse
image of 7 in A4, for X the set formed by B and by the inverse images of the

submodules in %K.
7.2. Beginning of the proof of Theorem 7.1. The proof occupies the whole Sec-

‘tion 7. We are really interested in the case g = P; the alternative R(g) = M(q) only
serves our inductive argument.

If P has cardinality |P|= 1, we apply Lemma 4.3 to P and use the fact that
P(x)=M(x) forall xe P (5.4). Hence, we may suppose that | 2| >2 and proceed by
induction on |Pl. Weset P =Upc, P andcalla point seP double if s=dp for

some P e B, otherwise, s is called ordinary.

Lemma. For each p e P and each x & P, we have R(x) = (RP)(x). Accor—
dingly, R(x) has codimension 1 in M(x) if x is ordinary and codimension 2 if
x=d P

Proof, Considerany Q e P\P.If x e O, x is ordinary (5.8), and we have
(RO)(®) = (RP)(x) by 5.9.1f x ¢ O, we have (RQ)(x) = Q(x); on the other hand, the
restriction QP is a maximal submodule of PIP (5.7); it follows that Q1P O
D RPIP) = RP)I P, hence Q(x) D (RP)(x). Accordingly, (RQ)(x) contains
(&P)(x) in all cases.

7.3. First reduction. Let T denote the full subspectroid of ¥ formed by P
and by the points x & ‘§ such that R(x) = M(x). Let further n €« IN be such that
R._’{” annihilates all R(x), x & 7, whereas &g (, )R(1) #0 for some 7 € T and some
s & }. Denoting by R’ the annihilator of K% in R, wereplace M by M / R, L by
L/R'= {L/R:R°CLef) and Pby 2/R' ={P/R:PeP.

We claim that our theorem is true if it holds for M/R’, L/R’ and P/ R’. Indeed,
let N/R’ be a simple submodule of R /R’ such that the transporter 7 of M /R’ into
N /R’ annihilatesno P/R’, P = P.If N/ R’ islocated at x e ‘3, there is a morphism
pe Ri(x, y) and a simple submodule § of M. such that S(y) = JWN(x) # 0. Our claim

then follows from the observation that the ideal 4 such that 9(z, y) = p%(z, x) and
Jz,£) =0 incase t#y is contained in Transp (M, S) and annihilates no P € 2.

Thus we are reduced to the case where X annihilates all R(r), t € 7, and R(g) is
#0 for some ¢ = T Restricting M to the full subspectroid of 3 formedby 2 and
g, we are further redueed to the case where R is semisimple. Factoring out the sub-
module R’ of R such that R'(q) =0 and R'() =R(1) if t#q, we are finally reduced
to the following situation, to which we restrict ourselves int the sequel: R is a
semisimple module vanishing outside some point q & *R; the set of points of ‘X is P
U (q); finally, M(q) = RM)@) = R(g) if q ¢ .

7.4. Second reduction and dichotomy of the proof. Suppose that there is an ordi-
nary point s P such that P(s)=M(s) forall P € P and Ky(s, g)M(s) # 0. Then
we have

Ry(s. OM(s) € (), , (RP)@) = R(@),
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and each p & Ryq(s, g) satisfying pM(s) # 0 determines a simple submodule S of R

such that S(g) = pM(s) (7.2). Since Transp (M, S) contains |L. it annihilatesno P e P.
Thus, we are reduced 1o the case considered in the sequel where Ry(s. q)M(s) = 0
for each ordinary s e P such that P(s)=M(s), VPe P
From now on, we fix a pencil F e P subjected to the sole condition that q € F
if ge ®. Since we have M # F and M) =F(n forall t € F (5.4), the generation-

indicator M of M is not contained in F.Thus M \ F contains a double or an ordi-
nary point. The two cases are examined separately in 7.5 and 7.6 below.

7.5. First half: Suppose that M \ F contains the double point d = dy of some
Ye®?

Let us then examine any X e P different from Y. Since d ¢ X (5.8), we have
X(d) = (RX)(d) C (RMXd) # M(d) = Y(d). Since the restriction X N Y'Y is a maximal
submodule of Y 1Y (5.7), X(d) = (RM)(d) 1is a hyperplane of M(d) containing
(RY)(d) = R(d). Thus, we can choose vectors u € M(d)\X(d) and v € X(d) \R(d)
such that M(d) = ku ® kv @ R(d) and R(g) C (5{_1")((;) = Rad, @u + 3, Rals,
q)Y(s), where s runs through the ordinary points of Y (5.1).

If X, e 2 differs from Y and X. we have X,(s) = M(s) = X(s) for all ordinary s
e Y. Using 7.4, we infer that Ria(s. @Y(s) =0 and (R¥)q) = Rys(d, g)u. On the
other hand, we have Rs(d, g)v C R(g) because v belongs to Y(d) = M(d) and to all
X,(d) = (RM)(d) = X(d).

Now set E = (i & R,4(d, q): pu € R(q)}. Since Ryg(d. q)u = (RY)(g) contains
R(g). the multiplication by u provides a surjection 7u: £ — R(g). This implies that the
representation 7w, 7v: E =3 R(g) of the double-arrow is a direct sum of tubular and

preinjective indecomposables. We distinguish two cases:

a) Case 7v # 0. Our representation then admits an indecomposable summand which
is isomorphic neitherto 1,0: ¥ =3 & norto 0,0, k 3 0. Such a summand contains
vectors M,V e E satisfying O#pu=vv=:r and pv e kr. Accordingly, if S C R is
the simple module such that S(g) = kr, |t belongs to Transp (M, §), and Transp (M, §)
does not annihilate Y. On the other hand, each X e P\Y satisfies some relation v =
e gw+ R(d), where w & X(s), s € X and ¢ € Rg(s. d). From voM(s) C vX(d) = kvv
and vpw =vv =r we infer that Transp (M, §) contains v¢ and does not annihilate X.

b) Case ?v = 0. Then we apply our induction hypothesis to P\Y. Since g satisfies
R(g) =M(q) or q € F where F e P\Y, we infer that R contains a simple submodule
S located at ¢ and such that Transp (M, S) annihilates no X € P\Y. On the other
hand, since S(g) € R(g) © R(d. q)u, there existsa ¢ € K(d, g) suchthat gu =0 #
# Qu e S(g); thus, Transp (M, S) also contains ¢ and does not vanishon Y,

7.6. Second half: Supposethat M\ F contains an ordinary point y.

Our premiss implies the existence of pencils X,Y & P suchthaty ¢ X and ye Y.
hence, X(y) = (RX)(y) C (RM)(y) # M(y) = Y(y). By 5.7 there is a unique point xy =x €
e X such that Y(x) # M(x) = X(x); by 5.10 Xy depends only onX and y. but noton Y.

Let us now examine the points = € Y \y such that Rz q)M(z) # 0. By 5.7 =
satisfies X(z) = M(z) = Y(z): by 7.4 z is the double-point dy of Y or sausfies ¥ (z) #
# Y(z) for some Y, & P. whose indicator ¥; runs through y (5.7). In both cases.
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z ¢ X This follows from 5.8 if z=d,, from Y (z) # M(z), Y (x) # M(x) and 5.7 if
not. We conclude that
M(z) 2 (RXXz)= Y, Ryglt. )X(1) = Ry, )X(x) = Ryg(x. )n (%)
reX

Sfor all n e X(x)\ Y(x). The last equalitics result from the fact that each ¢ e X \x
satisfies X(1) = Y(r) (5.7); hence we have R-&“' 2)X(1) € R(¥YNz) = R(z) (7.2) and
?(,s(x’ 2)Y(x) © R(z); but y € F implics z ¢ F (as we have seen above in the case of
X),hence z# ¢ and R(z)=0.

When Y varies, the points z € ¥ considered above give rise to a subset of P
which we denote by Z. The contribution

R7=Y Ryl M)
el
of Z to M(q) is contained in R(gq). Indeed, this is clear if R(g) = M(g) and
follows from
R?=Y Ry, @Rylxp DF(xp) € (RE)q) = R(g)
el
if g & F (Lemma 7.3). On the other hand, we have R(g) € R? + Rg(y. ¢)M(y) beca-
use each Y satisfies
R(@ € (RN(@) = Y, Rals. M(s) = R QMO + Y. Ryz. QM(2).
ze¥ eZNY
Thus we are lead to distinguish the following three cases:
a) Case RZ + R,g(y. ¢)M(y) # 0. The nonzero intersection then contains some
re Z om =@m #0,
€Z o
where ¢, € Kq(s.q) and m_e M(s). If § C R denotes the simple module such that
S(q) = kr. @y clearly belongs to Transp (M. S). On the other hand, for each X e 7
satisfying y ¢ X andeach z € ZN ¥, m_ can be written as m_=y_n with y, e
R4 (xy, 7). where n e M(,tx}\UY{.tX} (sce (*) above). We infer that r = @ n, where
Y

¢ .= Z‘P:‘Pz vanishes on Y(xy) together with y_, hence has rank 1 and belongs to
€2
Transp (M, S).
b) Case RZ=0,i.c. Z=. In this case. we have

R(g) € (RY)(q) = Ry, M (y)

forall ¥ « @ such that y e ¥, Removing these Y from 2, we obtain a set P’ of
smaller cardinality which contains F and satisfies the assumptions of Theorem 7.1 be-
cause R(g) # M(g) implies g € F. The induction hypothesis then guarantees the exis-
tence of a simple submodule § of R such that Transp (M. S) annihilates no X € 7,
andno Y € P\ P’ because of 0# S(g) € R(g) € Ry(y. M), Ry, @IR(y) =0
and dim M(y)/ R(y) = 1.

¢) Case RZ#0 and R N Ry(y, ¢)R(y)=0. Then weset P ={YeP.yeVY},
and accordingly, P’ = Uy Y. We denote by R’ the full subspectroid of % sup-
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ported by {gq} U P’, by A’ the corresponding full subaggregate of 4. We finally set
Y=Y A& foreach Y e P’ M = ZY”, Y’ and R’ = ﬂu-ﬂ“’- Thus we have

R'(s)=0 if se P’'\q and
R'(@) = R? @ Ry(y, 9M(y) = (RM)(q):

in particular, R'(g) = M’(g) holds if (RM')(q) = M’(g), hence if g & P’. It follows that
M and P'| A ={Y:Y e P} satisfy the assumptions of Theorem 7.1. (But we may

of course have g ¢ P’ even if ¢ € P’. Here is precisely the point where the
alternative R(g) = M(g) of Theorem 7.1 enters the inductive argument.)

The assumptions of 7.1 pass from M” and P14 to M”"=M'/N and P’ =
= (Y /N:Y e ?’), where N denotes the submodule of R’ such that N(g) = Rs(,
q)M(y); we then have

R:= (KT =F/N.
Te?
Applying our induction hypothesis to M” and P”, we find a simple submodule §” of
R’ such that Transp (M”, S”) annihilates no T =Y’ /N. Since RZ. 5 R"’(g), S” can
be “lifted" to a simple submodule S’ of R’ such that $'(g) € RZ. Extending S’ by 0
to A4, we finally obtain the required § C R. Indeed, the construction implies that each
Y € P’ contains apoint z € ZN Y suchthat M(z) is not annihilated by Transp (M,
S). Since z satisfies M(z) = 9(.5(.";;. )M(x,) foreach X e P\ P, Transp (M, S) does
not annihilate X either.

8. The case of a semisimple pencil. Our main objective in this section is to prove
Lemma 6.6 above.
Sticking to our previous notations and assumptions, we further suppose throughout

the Sections 8.1, 8.2 and 8.4 — 8.10 that M is a faithful module over Aand P a
semisimple L-pencil. This implies that P is the socle of M (5.3) and that the points
x e % satisfy either 0# P(x) =M(x) or P(x)=0# M(x) (54).Incase 0 # P(x), we
keep the basis chosen in 6.3, setting M(x) = ku, if x is an ordinary point of P and
M(d) =ku ® kv if d =d, is the double-point. Finally, we set K= (L e L: L(d) =
= M(d)}.

To help intuition, we may and shall choose A as the aggregate of all finite-dimen-
sional projective modules over some finite-dimensional algebra. Accordingly. if ,‘?Ip

denotes the full subaggregate of A4 formed by the objects isomorphic to p”, where
p e P isfixed and n ranges over IN, the inclusion ﬁlp — A admits a canonical
right adjoint which maps X € 4 onto the largest submodule XP belonging to ﬂl,,;
moreover, if p is an ordinary pointof P and Y e ﬂp. each vector subspace of M(Y)
is identified with M(Z) for some submodule Z e HP of Y. .

8.1. We first apply our main algorithm to the submodule P of M and to the bond
K defined above. As usual, we set A = Phenp, LW, h, Z) = (L(Z) + k(W) | h(W)
for all submodules L © M andall (W,h,Z)e 4, and K = (L: L e K U (P}. The

canonical epivalence Ma-_ - E;k (5.4) then reduces the investigation of M;( to

-~

H;t and we are lead to examine 4.
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The relevant part of XN P consists of the maximal submodules P, where se

P\d (5.2). In order to choose a spectroid of a = Pf(m,. we consider a pair of
adjoint functors

R
(PlLaY ——— P~
s
The right adjoint R is defined by R(V, g, Y) = (V, g, Y,). where g, is the d-compo-

nentof g:V—P(¥)= @, P(Y,). The left adjoint is such that S(W.h.Z)=(W. h.Z @
P

® W®ZX) where Z=@®se 4 isthesumofall se P\d and & maps x € W onto
(h(x).(x®u ) ePZ)® (E? W @ P(s)).

This left adjoint factors through Pf&'ﬂ? and is fully faithful and exact (for the short
exact sequences considered in 2.3). Accordingly, the indecomposables A . TZ,‘ v, of

(P1A4,)* are associated with pairwise non-isomorphic indecomposables of Pﬁ-np of
the following form:

SA, = W '.a, d"®x"), a,=(1, 0101, 7.
ST) = (k.. dn @ T, rhy=(1,I01,+/,1T.

STy = (.i.d ). fy=[J,11,",

2 H— n n"I— 0
SV, = (R 2. a1 &2, :,m,=[0 l' J

n-1

The scalar A ranges over &, n is 21, J, anilpotent Jordan-block. a,z k' — P(d")
the component of a, relative to d, ... .

As a spectroid ‘i of 4= P;(m, we choose the indecomposables SA . ST}. SV,
(n=1,\ e kU o) and the P-spaces (0.0, x),x € 3\d.

Proposition. There are at most 4 “scalars” A € kU o such that STf,‘ is (M,

i)»re!emm (6.7) for some n=1.
Sections 8.4 — 8.9 are devoted to the proof of the proposition. Heretofore, we shall
show that the proposition implics Lemma 6.6 above.

8.2. Proposition 8.1 deals with a lopped bond X on M, not with the given L. So
it remains for us to adapt the arguments of 8.1 to L. First. we must replace a-=
= Pf,mp by a full subaggregate 4 = Pf(np‘ The corresponding spectroid % s ob--
tained from % by deletion of some SV, and some STi, For each submodule L of
M. the A-module L is then replaced by its restriction L = L1A.and M is res-
trainedby £ = {L:L e £} U (P}. The resulting aggregate 1\?"‘5 is identified with a
full subaggregate of 'ﬁfk Thus we finally obtain the following corollary of Proposi-
tion 8.1.

Proposition. With the preceding notations, there are at most 4 scalars h € kU e
such that Sll"i,L is (M. L)-relevant for some n=> 1,

8.3. Proof of Lemma 6.6. The lemma follows dircctly from Proposition 8.2 when
M is faithful and N = P semisimple. Our objective here is to reduce the general case
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to the particular one. If N € P, with ¢ > 2, we first replace £ by L, | (6.3) and arc
thus reduced to the case of a minimal pencil N e P, We may also replace £ by LU
KU U.‘DE % Kp , hence, suppose that O, =@ (6.5). Our further reduction consists of
3 steps.

First Step. Here we factor out the ideal 7 of 6.4, replacing 4 by 4 = A/ 9. M
by M =M/IM and N by N =N/ IM. The bond BN is replaced by the set of all
X /M such that M C X e BN. This sct equals ‘BN if L is replaced by the corres-
ponding bond on M . Applying the main algorithm to the submodules N and N of
M and M . we obtain the diagram

k F Tk
Mpy —— My

Nk G a7 Nk
My —— Mg

Since some Y & BN give no contribution to BN, it is possible that F is not an
epivalence. But it is the restriction of an epivalence to a full subcategory. Hence it is
surjective on the morphism-spaces and detects isomorphisms. Since the vertical arrows
of the diagram are equivalences, G preserves indecomposability and heteromorphism.
We infer that &V (6.5) has fewer “relevant points™ than ‘5N, and the required state-
ments can be lifted from M 10 M.

Second Step. We supposc that (RN)(x) = 0 for all x € N. Under this condition,
wenowset M =M/ RN, N =N/ RN and equip M with the bond formed by all
L/ KN, where RN € L e BN. Applying the main algorithm to NC M and N C
C M, we obtain modules MY and M " over some aggregates with spectroids &V
and *&N. The induced functor 4V —» ‘&N is an isomorphism because, for cach Z =
=(W.g.X) € 4V with space-dimension dim W > 1. X is supported by N which is
disjoint from the support of RN. Accordingly, if RN denotes the submodule of
MM associated with RN, we have (RNW(Z) = 0, and we may identify &V with ‘&N
and MY/ (RNYWY with MY . The equality (RNW(Z) = 0 implies that, for any M-
space (U, h, Z"), the canonical map

MNY(U L b, ). (0,0, 2)) = MY (U h, 2'). (0. 0. Z))

is bijective. Therefore, Z is relevant with respect to (MY, 'f;N) if it is so with respect
to (MY, BN ). Thus we arc reduced from M to M.

Third Step. Herc we may suppose that RN = 0. But formally we still have to
reduce our statement to the case where M is faithful. For this sake, we denote by a
the residue-category of A4 modulo the annihilatorof M. If M and N are the a-
modules associated with M and N, the canonical functor M%; - .J'b_fgé is quasi-

surjective. Therefore, the isoclasses of “relevant” points of &V correspond bijectively

to those of &~ .
8.4. We now return to Proposition 8.1. Before entering its proof, we examine the
notion of relevance. Let us provisionally consider an arbitrary pointwise finite module

M’ over an aggregate 4 and abond £ on M’. Equipped with the short exacl seque-
nces defined in 2.3, M”}:, is an exact category. Accordingly, an M’-space (V. f. X) e
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e M’%, iscalled (M, L)-injective if, for each short exact sequence
00— W.,g.Y) —5 Woe ) —0 W, g".Y")——> 0

formed by M’-spaces avoiding L', each morphism from (W', g, Y’) to (V.f, X) fac-
tors through (i, j). It is equivalent to say that, for each (W, g, Y) € M’%. each linear
map m: W — M(X)/fV) is a composition of the from

W —E5 M(Y) M5 Mooy —22 5 MX) / f(V).

The indecomposable (M’, @)-injectives are easy to describe: they have the form
(k,0,0) or (M’, (5), 1, 5). The general case L # @ seems to be more intricate. In the
following lemma we examine indecomposables s € 4" such that (0,0, s) is (M, L)-
injective; then we simply say that s is (M’, L')-injective.

Lemma. An indecomposable se A’ is (M’, L')-irrelevant if and only if 5 is
(M’, L')-injective and satisfies L'(s) = M'(s) for each maximal element L" of L',

Proof. a) The condition is sufficienr: if (V, [fg]T,Y ® s5) avoids L', the
equalities L’(s) = M'(s) considered above imply that (V,f, X) = Mf(,». Hence, we have
a short exact sequence

00— (0,0,5) — (V. [fgl.Y®s5) — (V..1) —— 0

of M'%., which splits because s is (M’, L')-injective.

b) The condition is necessary. In order to show that s is (M’, L )-injective, it
suffices to prove that the exact sequence

00— (O,O,S)W(V~U8]T-Y°5)—-M—lm1]—)(v|ﬂy)—90

splits if (V, £, Y) is indecomposable. But this is clear if (V,f,Y) = (0, 0, 5). If not, ¥
has no direct summand isomorphic to s. Decomposing the middle term into indecom-
posables, we obtain an isomorphism

V,[fg].Y®s5) —— (V.4,Y)®(0,0,5)

whose components are, say (e, [ab]) and (0, [c d]). The composition of i with (0,
[04]T) is a section with components (0, b) and (0, d). Since b cannot be a section,
d is an isomorphism, and our short exact sequence splits.

Let us now turn to a maximal L e L', In case L’(s) # M'(s), we consider the sub-
module N° of M" which is generated by L’ and M’(s). Since the generation-indica-
tor of N’ contains s, the indecomposable M’-space associated with N’ in 6.1 has the

form (k. f, Y @ s5) and avoids L. This contradicts our assumptions that s is (M’, L')-
irrelevant.
8.5. We now return to the assumptions of Proposition 8.1 and start with the proof.

By 5.6,each L & X satisfies L N P =P for some ordinary point s e P. It easily
follows that K(ST}) = P(ST) = M(ST}) holds for each K e K. Hence, ST is
(M', K )-relevant if and only if it is not {A:I. f()-injeclive.

Thus, our objective is to show that Ext (X, (0, 0, S'If‘}) =0 forall X e ﬂ;t

provided ) avoids some finite set e. The extension-groups Ext (X, (W, h, Z)) con-
sidered here can be computed within the surrounding category M* with the help of an
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injective resolution of (W, h, Z) in M* of the following form:
0 —— (W. h,Z) —> (Ker 4, 0,0) ® (M (2), 1, Z) —> (Coker A, 0, 0) ——> 0.

The resolution shows that Ext is right exact on the short exact sequences of M* con-
sidered here (2.3).

We display the spectroid ‘5, of .‘3 (8.1) in such a way that all morphisms from the
right to the left vanish (s € {\d, A & k| =):

(0,0, 5), SA,, SA,, SA,, ..., ST}, ..., 8V, SV,, §V,.
In particular, Hom (SF, (0,0,5)) =0 forall se §\d andall Fe (P| A It
follows that each A e 4 gives rise to a canonical split sequenﬁ:c
0 »Ap—— A—— A/A, > 0,

where A, is isomorphic to some SF, and A/AP tosome @ (0,0,s;) with 5, € }\d.
iel

Accordingly, each (U.f, A) e Mk gives rise to an exact sequence

OA{O‘D’AP)W(U‘ﬁA)W(U' can O_f‘Af(AP)——)O (‘)

of Mk, In case (U,f,A) e Mf(, the end terms (0, 0, Ap) and (U, can of.A/AP) also
belong to f;f% because L (SF)= M(SF), ¥V L e K, V F e (P | 4,)}. We shall denote
by M’ft and ﬂ?; the full subaggregates of [ff; formed by the (U, f, A) such that
Ap=A and Ap =0 respectively.
Now, since we have Ext ((0,0,4,), (0,0, ST,,)‘)) =0 by the definition of the exact
sequences of Mk, we infer that the map
Ext (U, f, A), (0,0, ST,})) « Ext (U, can o f,A/A).(0,0, ST M),

is surjective, and we are reduced to proving the following lemma.

Lemma. If M is not L-wild, there exists a subset e C kU o of cardinality
<4 such that Ext(X.(0,0,ST ") =0 forall X e M% all n>1 andall X e (kU
U eo)\e.

8.6. Lemma 8.5 concerns the aggregate A«-f;c Our next step brings us back to M g‘(
via the rum functor

®: My - My, (U.£,(W,h,2)) > (V. 8, Z) ® (Ker h, 0,0),

where V C M (Z) is the inverse image of f(U) C M (Z)/h(W) and g the inclusion.
This functor induces a bijection between the sets of isoclasses of M and M.x It is
a quasi-inverse of the classical equivalence Mx — Mf( if X3, i.e. if P \d = Q.
In general, the main virtue of ® is to be exact, whereas A'ff; — My is not because

Mi- has “more” exact sequences than A:f; In fact, forall A;. A, e M’; @ induces
an injection
Ext (4,,A|) = Ext (PA,, PA)),

whose image consists of all classes of short exact sequences
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0- Q’Al = (V|, g1 Z]) = {V:‘, 4 23} —> q)AZ = (V?.' £, ZE) -0
of M.i- such that the induced sequence
0 — (g7'(PZ)). 8. Z,) > (85'(PZ3), 83. Z3) - (83'(PZy). 25.Z,) > 0

is split exact in 4 = PL:CHP' Such exact sequences of M.i- will be called P-exact.
In particular, if (U, f, A) ranges over A:f; the images of the sequences (*) under

@ are short exact sequences of M{. Up to isomorphism, they can be described di-
rectly as follows. Let us consider the two pairs of adjoint functors

k

s
F —3 pk _—
(P1a) ” Pxnp = My,

where R, S are defined as in 8.1, S’ is the functor (W, h, Z) > (W, h, Z) induced by
the inclusion P — M, and R’ is the trace-functor (V, g, Y) > (g”'(PY), ¢’ Y) alrea-
dy considered above. With each (V, g, Y) e Mi-. the adjoint pair (RR', §'S) associ-
ates a canonical short exact sequence

0 (gUPY. 5., V) 0 (v, g, V) 125 (V/g W(PY). ", YY) 50, (*%)
of M;. where Y=Y, ® g !(PY) ® X. These sequences arc related to the short exact
sequences (*) of 8.5 via the rum @, If we denote by M{ and M5 the full subag-
gregates of M; formed by the pairs (V, g, ¥) which induce isomorphisms (v, 1)
and (@, ) respectively, then S’S induces an equivalence (P | A 5 M}, whereas
M;_’ is equivalent to M;('HP’ where M’, X', P’ denote the restrictions of M, X, P

to 2 \d. The functor @ : :'l:fi -y M; maps M{ into M{ and induced an equiva-

lence a’fd% — M’é‘. Moreover, in the case A, e M} and A, e M}, all short exact se-
quences
0>PA, 5 E—>SDPA, >0

of M{ are obViously P-exact. Hence, @ induces a bijection
Ext(A,.A|) 5 Ext (®A,, PA)).
and Lemma 8.5 is reduced to the following lemma, where we set E3 = §'SE for all
Ee (PlA).
Lemma. If M is not L-wild, there exists a subset ¢ C kU e of cardinality < 4
such that Ext (H, ]“}ﬂ) =0 forall He M%.,all n>1,andall A e (kU =)\e.

8.7. In order to prove Lemma 8.6, we start with an arbitrary H e« M* and some &
=E% e M}, where Ee (P A,)*. For the exact structure defined in 2.3, M* admits

almost split sequences [8, 9]. If T/ denotes the cotranslate of /, we know that

Ext(H, F) = Hom(F, tH)T,

where W1 denotes the dual of a vector space W and Hom (F, t/) the residue-space
of Hom(F, TH) obtained by annihilation of the morphisms factoring through injectives
. of M* Now,since F admits an injective resolution whose indecomposable injective
summands have the form (k, 0.0) or (M(p ), 1.p), p = P, itsuffices to annihilate
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the morphisms factoring through these injectives, But t©H has no nonzero injective
direct summand. It easily follows that all morphisms from (k, 0. 0) or (M (p ), 1.p)
to TH vanish and that

Ext(H, F) = Hom(E'S, tH)T 5 Hom(E, (t1),)"

if we set K,=RR'K e (P14, forall K e M*,

Now, in case H e M%. the following lemma states that (t/), is a direct sum of
indecomposables A, and T,,’”. where A belongs to some subset ¢ C klJ o of
cardinality <4. If follows that Hom (E, (t/),)=0 if E=V, or E=T} with p C
C kU =\ e. So it remains for us to prove the following lemma.

Lemma. Let ¢ € kU o be the set of all A € k U o such that, for some n =
21 and some H = M;. T,tJL is isomorphic to a direct summand of (tH), Then

the cardinality of e is < 4. Furthermore, if H e M%. (tH), has no direct sum-
mand isomorphicto V,, n2 1.

8.8. Lemma 8.7 will finally result from the virtues of some restriction M of the
module M examined in 8.1. Let & denote the finite full subspectroid of % formed
by SA; andall (0,0,s), s € §\dp. Let A be the full subaggregate of 4 formed
by the points of %, all isomorphic indecomposable, and their finite dircct sums. The
restriction M=M| 4 and X = {KIﬁ:Ke ﬂt} then satisfy the following lemma.

Lemma. M isnot K-wild.

Proof. We know that the module M of 8.2 is not _ L-wild. It has a submodule N
which vanishes at SA;, SA,, SA ,andall (0,0,s) with se ¥\d,, and which takes

the same values as M at all other points of ‘i By 3.7 M /N isnot (L /N)-wild if
we set L IN={K/N:NCKe £ }. The condition N € K eliminates all K of the
form K= L with L(d,) # M(dp). Hence, only X contributes to L /N,and M, X

are identified with the restrictions of M /N, L /N to 4.

8.9. Proof of Lemma 8.7. a) Obviously, ‘W;t can be identified with the full
subcategory of ;':f:-( formed by the !t:f-spaccs (U,f. A) such that A, (8.5) is a direct
sum of copies of SA,. Setting X=(U,can o f,A [Ap) € ﬁ:f; and denoting by

e e Ext(X, (0,0,4,)) = Hom,(Hom(Ap, SAy), Ext(X, (0,0, SA,))
the extension associated with an M -space (U, f, A) e .‘Ir_l;t and with the sequence

00— (0.0,4p) — 5 U.fLA)—gm> X=WU.can e fA[/Ap) —> 0

in 8.5, we obtain an epivalence
Wi Me® —— E*. (U.f,A) > (Hom(A, SA4), €. X),
where E is the module on ff!;np such that é'(X) = Ext(X, (0, 0, SA,)). This epiva-

lence can be composed with an equivalence E* S E* which results from the equiva-
lence ﬂ:f:-( - M; and from the invariance
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Ext(A,. A,) 5 Exq(®A,, ®A)), A, € M} A, « M
examined in 8.6. By E we here denote the module
H > Ext(H, A}) 5 Hom(A,, (t) )T

which is defined on the aggregate M;*® (8.6).
b) In the epivalence H%op — E* derived above, the point is that E is free of any

bond. Before exploiting this point, we must transfer “tameness” from M to E.
Lemma. E is not wild,
Proof. 1t suffices to prove that £ is tame. If not, there is a plane coordinate
system

€ €1, €, € Ext((U, g, B). (0.0, WT ® SA;)) > Hom, (W, EU, g B)

such that the induced functor repQ? — E* preserves indecomposability and hetero-
morhism. The extensions e, are the classes of short exact sequences which we may

write as follows

h
0—> (0.0, W ® Ay o> V. [ | W @ 57,0 B)— s W.5.B) — 0

where 1 and 7 are the canonical immersion and projection. Setting f, = [hyg]7 and
fi=1[h; O] for i= 1.2, we obtain a plane coordinate system

fof1-f, € Hom (U, M (WT @ SA,@ B)).

The induced functor F rirepQ® > M k" factors through ,'-7;‘: by construction. We
claim that the composition

repQ? —5—> (1epQHP —— My™ —5— X,

where D is induced by the duality of vector spaces, is isomorphic to F,. This implies
that F; preserves indecomposability and heteromorphisms, a contradiction to Lemma

8.8. ;
Our claim follows from the observation that the map

Hom, (U, M (C)) — Ext((U, g, B).(0,0,C)), h> h,
where h denotes the class of the short exact sequence

0— (0.0.0) ——> (U, [’;] COB)—g=—> (U.g.B) —>0, (***)

is k-linear forall C = W' ® SA,. To ascertain this point, we compute the extension
group using the injective resolution

0 —(0,0.C) 5 (M(O), 1, O)—5* (M(C),0.0) —> 0
of (0,0,C) in M*. The induced kinear map
Hom((U, g, B). (M (C), 0,0)) — Ext((U, g. B), (0,0, C))

maps (A, 0) onto the induced pull-back of the chosen resolution. This pull-back is
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isomorphic to (***).

¢) Let us now suppose that Lemma 8.7 is false, and ler H Mg be such that
(tH), has a direct summand of the form V,. Then we may further assume that H is
indecomposable and denote by H the full subaggregate of M% formed by the objects
-isomorphic to H", r e IN. If m is the smallest number satisfying Hom(V , (xH) ) # 0.
then Hom(V _, (tH),) @ V,, is identified with a nonzero direct summand of (tH),, and

X+ Hom(V, , (tH),) @ Hom(A4. V)
with a subrmodule of

ET1%{: X > Hom(As, (tH),) > Ext(X, A3)T.

Accordingly, each simple submodule § of X - Hom(V . (tH),;) provides a
semisimple submodule S ® Hom(A4. V) of ET|# such that

dimS(H) ® Hom(A,, V, ) =dimHom(A, V, )=m+2 >3,

We infer that E | H°P has a semisimple residue-module whose dimension at H is >
3; and hence, that E is wild in contradiction to the lemma of part b).

d) Let us finally suppose that A, Ay, Ay, Ay, Ag are distinct scalars and H is
an object of Mnf such that, for each i, (tH), has a direct summand of the form
T,:" . We then denote by # the full subaggregate of M§ tormed by the objects iso-

morphic to direct summands of A", r « IN. The restriction ET | contains a direct
sum of 5 nonzero submodules of the form

X > Hom(T} | (tH),) ® Hom(A,, T},

Accordingly, if S; is a simple submodule of X 1> Hnm(T,l‘ L(tH)y). EVIH has a
semisimple submodule of the form

5
& §;® Hom(Ay, 1),
1=

and E | H°P has a semisimple residue-module of length 5. We infer that £ is wild in
contradiction to the lemma of part b).

9. From subspaces to modules. In the present section, we apply our second main
theorem (2.5) to a finite-dimensional k-algebra B. For this sake, we consider a proper
quotient T ofa spectroid 7 of B and reduce mod B 5 mod T to a “subspace-ca-
tegory” M,'f,. where M and N are suitable left modules over mod 7 .

9.0. Since we prefer working with finite spectroids rather than with finite-dimensi-
onal algebras, we first adapt the language introduced in 2.6 to the case of a finite
spectroid ‘T.

First, we introduce the k-category @ ‘T whose objects are the points of 7 and
whose morphism-spaces are defined by

(®T)(r,5) = DTx, |, 9.8, Tx|, xp) O Tr, xy),

where x ranges over the sequences of points of T of length n > 0. (In case n = 0, the
displayed tensor-product coincides with T(r, 5).) The composition of @7 is induced

ISSN 0041-6053. ¥Yxp. mam. xypk., 1993 m. 45 N°* 3



348 P. GABRIEL, L. A. NAZAROVA, A. V. ROITER, V. V. SERGEICHUK, D. VOSSIECK

by tensor-multiplication.

Let mod® T and mod T denote the categories of all finite-dimensional right mo-
dules over @T and 7, i.e. of all contravariant k-linear functors from ®7 and T
to modk. An object of mod® 7 is given by a family U = (U(s)),eq of “stalks”

U(s) € mod k£ and by a family of linear maps lying in

Hyi= ]‘[‘r Hom,(U(r) ® T(r, 5). U(s)).
r,s €

We shall identify mod7 with a full subcategory of mod® T by the aid of the canoni-
cal functor ® T— T.
Each coordinate system e = (e,..., ¢,) of an affine subspace § C H; gives rise to

a functor F,:repQ’ — mod® T which maps a sequence a = (a,..... a,) of t endo-
morphisms a,: W— W onto the family W®U = (W® U(s)),e7 equipped with the
linear maps

1,®e(r,s)+a,;@e(r,s) + ... +a®e,r,5) : WOU(r®Tr, 5) » WU(s).

The space § iscalled T-reliable if F, factor through mod7 and preserves indeco-

mposability and heteromorphism. And 7 is called wild if it admits a T-reliable pla-
ne. If not, 7T is tame.

Lemma. Let B be a finite-dimensional algebra with spectroid T. Then B is
wild if so is ‘T.

Proof. We may suppose that the points of 7 are projective B-modules €,B....,

.... €, B, where the g, denote primitive idempotents. Choosing an isomorphism

B> E'él(e,.m"' of mod B, we then identify the algebra B with the matrix-algebra
=

D (eB ey ™"

iJ

Now let U = (U))gisy be a family of stalks and ¢, e,, e, € [ Hom(U; ® eB e,
i}
Uj) be a coordinate system of a T-reliable plane. If V denotes the direct sum of the

spaces U,—lxn' formed by the rows with n, entries in U, we obtain a coordinate sys-
tem f,. f,.f, € Hom,(V ® B, V) of a B-reliable planc by setting

T = 5y
fp(v®b) (’:zlv eP(I'J'b ))15_,65»16 ;eluj

forall v=(v) e ®U™" =V andall b= (b’) = ® (e, B &)"*" = B. Here
] i
ep(i,j; by e Hom (U, Uj)”'x"‘
denotes a matrix whose entries are defined by
e, J; by, (x) = e, ® b;{)_

In the case ¢ = 1, we also consider punched lines S\E, where E is a finite subset of
S. Setting C= (A e k:ey+ Ae, € S\E) asin2.5and 2.6, we say that S\E is T-re-
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liable if F,:repe Q! — mod @ T factors through mod T and preserves indecompos-
ability and heteromorphism. As in the case of reliable planes considered above, T-re-
liable punched lines give rise to B-reliable punched lines whenever B is a finite-di-
mensional algebra with spectroid 7. Thus, in order to prove our third main theorem, it

suffices to construct suitable Z-reliable punched lines whenever 7 is tame and to car-
ry them over to B. As a corollary, we obtain the converse of the lemma above (B is

tame if so is TJ, which of course could also be proved directly.

9.1. Let 7T be an arbitrary finite spectroid over k, ¢ € R (s, t) a nonzero radical
morphism of 7 such that R (1, x)0 = 0 = 6K (x, s) forall xe T,and T = T/o.
For each X € modZ, we denote by X the largest submodule of X annihilated by o©.
Concretely, X satisfies X (x) = X(x) forall x € T\t, whereas X (1) is the kernel of

X(o) : X(r) — X(s). Accordingly, X /X is semisimple and located at r. The obvious
exact sequence

0 > X > X » X/ X > 0,

therefore, provides a linear map
ey € Hom,(Hom (1, X / X ), Extfr(r - X)) & Exlfr(X /X, X),
where ~ e mod7 is the simple module located at 1. Finally, we obtain an epivalence

G:mod T—> My, X —— (Hom (1~ X/X). gy X).

where M and N are the left modules over 4 =mod7 such that N (Z) = Ext:f{r‘.
Z) C M Z)=Ext; (17, Z) ([9].4.2).
Our proof of the third main theorem uses the epivalence mod T—> M} . the second

main theorem and the following statement. There, ind T denotes the chosen spectroid

R of A=mod T.
Proposition. With the notations above, suppose that M is not N-wild. Then,

for each d e N, ind T contains only finitely many (M, N)-relevant modules of
length d (6.6).
The proposition will be proved in 9.6,

9.2. Proposition. T is wild if M is N-wild.
Proof. Let e = (e, e,.e¢,) be a coordinate sysicm of an N-reliable plane in some

Hom(V, M (X)) & Exl,'r{‘l«-’? 1=, X)(V € modk. X € 4). To produce a T-reliable
plane, we start from the tensor product

0-—-——)‘/?3-—-9‘/?;) —>V?:‘-——-—>O (*)
of V' with the obvious sequence (9.1) associated with p = T(7. 1),
The induced connecting homomorphism HUHIT(V? p.X)—> Exlfrtl’ég =, X) is

subjective and maps f: V? p — X onto the class of the pushout of (*) along f.

Choosing the preimages A, of the given e, we construct the commutative diagram
with exact rows

ISSN 0041-6053. ¥xp. smam. awypu., 1993, m. 45, N° 3



350 P. GABRIEL, L. A. NAZAROVA, A. V. ROITER, V. V. SERGEICHUK, D. VOSSIECK

0 - W®V®p —» WRV®p —» WRV®r - 0
3 & k k k k
1w ® ho+ay ®hy +by Oh, 1 r:l I L (%)

0 > W& X b5 v, - WeVer — 0

where ay, and by map w € W onto wa and wb.
For Y, ,. we choose the following concrete construction. Let Y = (Y(g)) be a fa-
mily of stalks such that Y(1)=X()@® V and Y(r) = X(r) if r#1 Weset ¥_,(g)=

=W ®, Y(q) forall ¢ e T. Thus, the stalks of W ® X are subspaces of the stalks
Y, »(q): on these subspaces, the structure maps

L @)Y, (@) ® Tr, q) —— Y, ()

coincide with those of W ® X. Accord’mgl)'r. d 1is an inclusion, and it remains for us
to describe ¢ and the restriction

Y, 5(0) @ Rylr, 1) —— ¥ ,(r)

of f,,(r,#). The morphism ¢ is determined by the commutativity of the left square of
(**) and by the equations c(w @ v @ lp) =w @ v. These equations imply

fapr, DWw®v) = w® hy(v @ p)+wa ® h(v®p)+wh ® hy(v @ )
for all p & Kg(n, r). Thus, we have

Fopri@) = 1y, @ fi(r,q) +a @ fi(r, q) + b @ fy(r. q),
where f,(r, ). f,(r, ¢) vanish on X(g) ® T(r, q), whereas fy(r, ¢) coincides there
with the structure map of X. In other words, we have Y, , = F(W, a, b) where f= (f;,
fify) € Hy (9.0).
Furthermore, the construction of Y, , as a push-out shows that the composition

rep 0 5 mod T —— M‘:,

of F, with the epivalence G of 9.1 coincides with F,. Since F, preserves indecom-
posability and heteromorphism, so does Fj-

9.3, Proof the third main theorem. Supposing that ‘T is not wild, we shall con-

struct a family of Z-reliable punched lines which (mutatis mutandis) satisfy statement
b) of 2.6 (see 9.0 above).

Using induction on the dimension Z dimTa, b) of T, we may suppose that
abeT

such a family is already available for T =1, / ©. Hence we restrict our attention to the
“new” indecomposables which are not annihilated by o, i. e. are transformed by
mod7 — M:, into M-spaces with nonzero first components. By 9.2, M is not N-
wild. By 9.1, the full subaggregate 4, of A “generated” by the indecomposables X
of dimension < d which are (M, N)-relevant, has a finite spectroid for each d = 1.
Denoting by M, and N, the restrictions of M. and N to A there exists a locally
finite set 79 of N -reliable punched lines which, for each X e 4, produce almost
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all indecomposables of (M, )i,d of the form (V, f, X) up to isomorphism. Of course,
we may and shall assume that D! € 22 C...

Now let S\E be an element of D= Ud?_,D", e= (¢, ¢;) acoordinate system of
S and C={X ekley+re, € S\E}. As in the proof of 9.2, we can constructa T-re-
liable punched line with coordinate system f= (f;. f}) € H? such that the composition

F,
repQ' —L 5 mod T—C Mf, is isomorphic to rep ~ Q! Loy M;,. It is easy to
check that the punched lines arising in this way from 2 “parametrize” the new inde-

composables over T as wanted.
9.4. We now turn to the proof of Proposition 9.1. Our first objective is to shake off

the bond N = Exlli,-(r =7 on M= Exllr(f =, N. For this sake, we resort to the in-

jective Tmodule i = X5, 7)T. The largest submodule i of i annihilated by o is

identified with T (s, ?)T,and i /i can be identified with 1~ via
i)y = Ts.)0 =k, f f(0).

It easily follows that 0 = N () © M ({) = kg, where g; denotes the extension
associated with the exact sequence 0 - [ — i — 1~ — 0. As a consequence, the
submodule of M generated by € & M ({) coincides with IM. where 9 is the ideal
of A=mod T generated by 1,. In the following proposition, M : =M / IM is con-
sidered as a module over the aggregate 4 = A/ 9, whose spectroid % is obtained
by deleting the point i from the quotient 2 /14, of the spectroid & = indT of A=
=modT .

Proposition. The canonical functor M;, — M* is quasisurjective. Up to iso-
morphism, it annihilates just one indecomposable (0,0, [) Mi,.

We postpone the proof to 9.7.

9.5. Proposition. With the notations of 9.4, suppose that M is not wild. Then,
for each d e N, M vanishes on almost all modules in Y of length d.

It seems advisable here to recall that the points of *’.‘1 are genuine modules over
T , even though the morphisms of 2 are classes of morphisms of mod T .

Proof. Let us denote by “&d the full subspectroid of % formed by the modules
of dimensign d, by M , the restriction of M to _“id. By the lemma of Harada and
Sai ([9], 3.2 Example 2), the radical K, of &, is nilpotent. If M ,(x) # 0 for infi-
nitely many x e :_-ihd, we infer that (R Ed/ﬁj“ﬁ?d) (x) #0 forsome n e N and
(at least!) 5 points x = Ed. This means that Ed has a subguotient which is a sum of
5 non-isomorphic simple modules. Hence, the subquotient is wild, and so are J\Td

and M.
9.6. Proof of proposition 9.1. a) We first that M is N-wild if M is wild.

Indeed, let ﬂﬁf_ denote the quotient M / 9M considered as a module over A. If M
is wild, it is clear that ﬂﬁ is wild. Since ;{5_4 is a quotient of M and N does not

contain 9M, Proposition 3.7 implies that M is N-wild.
b) Let us now suppose that M is not N-wild. Then M is not wild. Hence, for
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each d e N, R has a finite number n(d) of points x of dimension 4 such that
M (x) # 0. Of course, all these x € R\ i are (M, N)-relevant. On the other hand. if
ye %\i is (M, N)-relevant, M:, admits an indecomposable (V,f, y ® Y) such that
V # 0. Since this triple is also indecomposable as an object of M* (9.4), we have
M (y) # 0. We infer that, besides i, 2 has n(d) points of dimension d which are
(M, N)-relevant.

9.7. It remains for us to prove Proposition 9.4, which follows from 4.2 b), 4.1,
and the following lemma.

Lemma. The annihilator of 9 in M= Exlir(t “NisN= Exl;‘r(r = L
Proof. For each Z e A4, the annihilator of 9 in M (Z) consists of the classes of
short exact sequences 0 hlirep X =Yl » 0 of mod7 whose push-out

splits for each | € Homy(Z, ). If the class belongs to modT . Y isa 7T -module and

the push-out splits because | is injective in modT . Hence, N is contained in the
annihilator.,

Conversely, suppose that the class of (1,7) is annihilated by 9. Since each P e
Homg(Z, i) factors through Y, the first row of

0 — Hom,r(r_.;‘) - Hom,r{Y.g'} — Hum,T(Z,g') - 0
l d l
0 - Homg (i) - Homg(Y.i) — Homj(Zi) — 0

is exact. Since the first and the second vertical arrows are invertible, so is the second.
Since i is, up to isomorphism, the only indecomposable injective ZT-module outside

modf. we infer that ¥ € mod T .
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