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THE INFLUENCE OF POLES ON EQUIOSCILLATION
IN RATIONAL APPROXIMATION

BILJIUB IIOJIIOCIB HA EKBIOCITUJISIIIT
Y PAIIIOHAJIBHOMY HABJIM2KEHHI

The error curve for rational best approximation of f € C[—1, 1] is characterized by the well-known equioscil-
lation property. Contrary to the polynomial case, the distribution of these alternations is not governed by the
equilibrium distribution. It is known that these points need not to be dense in [—1, 1]. The reason is the influence
of the distribution of the poles of the rational approximants. In this paper, we generalize the results known so
far to situations where the requirements for the degrees of numerators and denominators are less restrictive.

KpuBa NOXHGOK /1J1s1 pallioHasIbHOro Hailkparoro Haoumkenss f € C[—1, 1] xapakTepu3y€eThest BIJOMOIO
BJIACTHBICTIO eKBiocuusisiin. Ha BigMiHy Bij MoJIiHOMiaJIbHOrO BUMAAKY PO3MOMIJ LIUX 3MiH 3HAKy HE BU-
3HAYAEThCA PIBHOBAXKHUM pO3MOJijoM. Bigomo, 110 1i TOYKM He 000B’A3KOBO MalOTh OYTH LIIJIbHUMH B
[—1,1], mwo 3yMOBJICHO BIJIMBOM DO3MO/iJY MOJIIOCIB PAliOHAJILHUX HAOJIMXKeHb. Y faHiii poboTi y3a-
raJIbHEHO Bi/IOMi pe3y/IbTaTH Ha BUMA/JKH, /Ie Ha CTEMEeH] YHCEeJIbHUKIB Ta 3HAMEHHUKIB HAKJIQJAI0ThC MEHILI
2KOPCTKi YMOBH.

1. Introduction. Let f € C[—1,1] be a real-valued function and let R,, ,,, denote the
family of real rational functions with numerator in P,, and denominator in P,,, where
Pi; is the set of algebraic polynomials of degree at most k,k € Ny. For each pair of
nonnegative integers (n,m), there exists a unique function r}, ,,, € Ry, ,, that is the best
uniform approximation to f on I = [—1, 1] in the sense that

1f = raml <If =rll forall reRpm, r#r,

where ||- || denotes the sup norm on I. Writing r = p,, /¢, where p,, € Py, and ¢, € Pr
have no common factor and ¢,, is monic, the defect of r is defined by

dnm(r) := min(n — degp,, m — deg gm). ¢))
Let us define
Z(T) :n+m+1_dn,m('r); (2)

then I(r) is the dimension of the tangential space with respect to the coefficients of the nu-
merator and denominator as parameter space. We write r;, ., := p;, /q;;, With no common
factors and define for abbreviation

lpm == l(r;‘%m).

Then it is well known that the best approximation of f is characterized by the following
equioscillation property:
There exist I, ,, + 1 points :z:,g"’m),

1< xén’m) <. < x(n’m) <1

ln,nL - ’
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such that
A (1P =)@ ™) = 1 =7l 0 b < L,y 3)
where A, ,, = +1or A, ,, = —11is fixed. Such a point set {xg"’m)} is called alternation

set. In general, it is not unique. Therefore, in the following, we denote by
_ _ f(nm)ylnm
An,m - An,m(f) - {xk k=0

an arbitrary but fixed alternation set for the best approximation ry, ., of f out of Ry, .
Let v, ,, denote the normalized counting measure of A, ,,, i.e.,

#o"™ o< o™ < )

n,m 3 = 4
2 — @
Kadec [1] has shown that there exists a subsequence A of N such that

Un,0 s pu as neA, n— oo, 5)

where p is the equilibrium measure of [—1, 1], i.e., the density of 1 on I is
dx
V122

For rational approximation, Borwein et al. [2] have proved that denseness on [—1, 1] holds

du(z) =

. n
for a subsequence of alternation sets A, ,,, whenever m = m(n) and —— — £ > 1

m(n)
as n — oo. Moreover, they have shown in the case lim = 0 that there exists
n—oo n
A C N such that

E3
Unom(n) — @ n €A, n— o0.

More quantitative results were obtained by Kroé and Peherstorfer in [3]. Namely, let
us denote by N,, ,, (v, §) the number of points of A4, ,,, in [, 5]. Then the main result
can be stated as follows: let m(n) < n, then

Nn,m(n) (Oé, 6)
n—m(n)

logn

Z ,UJ([O[7BD —C ) (6)

n—m(n)
where c is an absolute constant independent of f and n.

Braess et al. [4] considered the case m(n) = n + k, K € Z, fixed. Their re-
sults were based on the number 7, (g) of poles of best approximants lying outside an
e-neighbourhood of [—1, 1]. Roughly speaking, if -y, (¢) is sufficiently big, then there is a
connection of the distribution of A,, ,,, with the equilibrium distribution .

The intimate relation between A,, ,,,(f) and the poles of rfhm was investigated in [5].
To be precise, let f be not a rational function and let n and m(n) satisfy

m(n) <mn; m(n) <m(n+1) <m(n)+ 1. (7)
Moreover, let
Qn (@) = Gy (@) L1y (@) = [ [ (& = i) (8)

i=1
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be the product of the denominators of r:;m (n) and Hm(n41)’ then

() P €AY

Kn

denotes the normalized counting measure of all finite poles of rfmn( ) and r} Hm(n1)
counted with their multiplicities. Then it was proved in [5] that there exists a subsequence

A C N such that
Vn,m(n) — O‘n?n - (1 - aTL)M — 0 as n— 0, nE A7 9

in the weak*-topology, where
_fn

and 7,, denotes the balayage measure of 75, onto [—1, 1]. The purpose of the present paper
is to obtain a convergence result of type (9), where the restriction m(n) < n is weakened
to m(n) < n + 1. We point out that this weaker condition implies that the original proof
in [5] has to be substantially modified. Moreover, the weaker condition m(n) < n + 1
allows to apply and to understand examples of [2].

Borwein et al. [2] have proved in the case m(n) = n + 1 that there exists a function
with no alternation points in a certain interval.

It is a challenge to generalize results of type (8) to m(n) > n + 1.

2. Main results. We assume that m(n) depends on the parameter n € N. Let

Ap =

En,m(n) = ‘I'ERiil,f;n(n)Hf - ’I"” = ||f - Tn,m(n)”

and define for abbreviation
Ty = T:L,m(n)7 pn = Pz,m(ny Iy = q:;,,m(n)7
En=FEnmm)y, ln=lomm)y dn=dnymn),
O I R SR

Again, we use the normalized counting measure v, of the alternation set {9512;”)}2":0
and the normalized counting measure 7, of the union of the (finite) poles of v}, and 7, , ;.
All poles are counted with their multiplicities. For any finite Borel measure v, the loga-
rithmic potential of v is defined by

U”(z) = /log o dv(t).

|2 — ]

A crucial role is played by the balayage measure 7,, of 7,, onto [—1,1]. 7, is the unique
measure supported on [—1, 1], for which |7, || = ||, || and

Ur(z)=U™(2)+¢, z€[-1,1],
where
c= /G(t, 00)dTy (t)

and G(z, a) denotes Green’s function of Q@ = C \ [~1, 1] with pole at a €  (cf. [6]).
Furthermore, 7, has the following properties:
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a) U™ (2) <U™(2) +¢, 2z €C;
b) if h is continuous on C and harmonic in €, then [ hdr, = / hdT,,.

Our main result can be formulated in the following theorem.
Theorem. Let [ be not a rational function and let the parameters m(n), n € N,
satisfy

m(n) <n+1, mn)<mm+1) <mn)+1. (10)
Then there exists a subsequence A C N such that
Vn—ozn?n—(l—ozn)uLO as n—oo, neEA,

where

_ deggqy, +degg, g
! In+1 '

We note that condition (10) is less restrictive than (7).

It is possible to formulate the above result in a more concise manner such that only the
alternation counting measure v, and pole counting measures of 7. and 7, are involved.

Let
p
Ry=rp -1y = 7

where p and g have no common divisor. Then the degree of P'is defined by
q
p.
deg = := max(degp, degq).
q

Then the number of zeros, resp. poles, of R,, in the closed complex plane C is deg R,,,
where all zeros and poles are counted with their multiplicity.
We define the normalized pole counting measure opole,n, Of Ry, in C by

#{polesof R, in A} —
= A
deg R, (AcC)

Upole,n(A)

and the normalized zero counting measure 0,¢r0,, 0f Ry, in C by

#{zerosof R, in A} —
= A :
deg R, (4cC)

Taero,n(A)
Corollary. Under the conditions of Theorem 1, there exists A C N such that

Ogero,n — Opole,n 50 as n—oo, neA.
Especially,

—~ *
Vn — Opole;n — 0 a8 nm—o00, n €A,

if 1im 70
n—oo n
Let us discuss the second part of the corollary in Kadec’s case, i.e., (n,m(n)) =

(n,0). Then R, = p;, .| — p}, and p,,, p;, | are the best approximating polynomials to f
with respect to P,,, resp. P41 and R,, has a pole of multiplicity n+1 at oo if p}; # p;; , ;.

<1
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THE INFLUENCE OF POLES ON EQUIOSCILLATION IN RATIONAL APPROXIMATION 7

Now, for the Dirac measure . at the point at co we know that the balayage mesure d, is
just the equilibrium measure p (cf. [6]). Moreover, all zeros of py | — p;, are separating
the alternation points. Hence, Gyero0,n, = Ozero,n and

TIILI{}O Ozero,n — ﬂh_l:Iolc Vn,o = H

neA neA

from the corollary. That is Kadec’s result (5).
3. Proofs. Since lim F, = 0, by a well-known argument, there exists a subsequence

n—oo
A C N such that

En + En—i—l

By — Byt <n? for neA (11)

(cf. [7, p. 243], Lemma 7.3.3). In particular, for n € A we have r} # ;1 and, by (3),
(=1 (g1 = 3 (@") > By — B (12)

for 0 < k < I,,, where we have assumed without loss of generality that the number
An,m(n) = 1in (3). Writing

Rt g Pl =Pl Pu Py
" i " 4 dntt Gdne1  @n ’
we obtain
(—1)*Ru(2{") > By — Bnt1, 0< k<1, (13)

In the following, we assume that a,, is the highest coefficient of P, (x), i.e.,

Po(x) = apz!" +... .

Py . . iy
By (13), P, or R,, = — has atleast [,, zerosin (—1, 1). Since r, # r;; |, condition (10)

implies that all zeros of P, are in (—1,1). As in [5], our next intention is to reconstruct
the polynomial @,, by interpolation at the points x,&n), 0 <k <l,. Since

kp = deg @, = degq) +degqy 1 <m(n) —d, +n+2=10,+1,

the degree of (), is, in general, too big to be reconstructed by interpolation at x,(cn), 0<
<k <l,.

In the case ,, < l,,, we can use the method of proof in [5]. Therefore, we can restrict
ourselves in the following to the case k,, = [, + 1.

First, we have to modify the polynomial P, (x): Let £, be such that

§n 2 nmax(L [y, lyal, - - [y, 1), (14)

where y1, . .., yx,, are all zeros of @, (z) in C. Then we define

Po(z):= (x — &)P,(x) and R, : P,

= — 15
Qn (15)

Then

degﬁn =degQ, =1,+1
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and we can reconstruct ,, by interpolation at the points m,g"), 0 <k <1, and at the

point &,,. We obtain

S Quawz)  QulE)w(z)
Z:O (’rl) ( ](:)) + (Z —fn)w’(fn)’ (16)
where
In
k=0

For z #£ &,, x (") , 0 <k <,, relation (16) can be written as

l

Qu(z) & Q) Qu(&n)
- ; (= o @) | (=€)

(18)

By definition, we have
IRl < f = 7ol £ 1Lf = rhgall < Bn + Enga
and, therefore,

< (§n + D(En + Enya). (19)

Moreover, by (13) we get
(1 ' Ru (@) > (6 — D(En — Ens). (20)

Next, we consider the function
B(z) i=log |Fon(2)| = D Glzw) + G2, 60).
i=1

The function /() is subharmonic in C; hence, the maximum principle applies and

h(o0) < max h(z) = maxlog En(z)‘ = log || Ry |,

zel zel
and we obtain
h(o0) =1log lan| — Y G(00,y:) + G(00, &)
i=1
Therefore, with (19)

Kn

log|a| <log (€0 + (B + En) ) + 3 Gloory) = Gloar): @D

Next, let us consider the approximation of the function P, (x) at the points

2™ 0<k <y,

o . . . . 1
with interpolation at the zero &,, with respect to P;, and the weight function Q—() It
x
n

turns out that de la Vallée Poussin’s theorem implies together with (20) that the minimal
error p satisfies
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THE INFLUENCE OF POLES ON EQUIOSCILLATION IN RATIONAL APPROXIMATION 9

On the other hand, for any P € P;, with P(§,,) = 0, we have
|zk_ al)

)

(23)

where

5, = w’ (xé")) = (m,in) - fn) H (x,in) - xEn)) (24)
k

Now, fix the polynomial P € P; by P(&,) = 0 and P(xfcn)) = Pn (:c;”)) 1<k<l,.
Hence,

In

(Po = P)(x) = an(z — &) [J (@ — =)

k=1
and, therefore,
ln
(15” _ P)(:Cén)) = an(z (") H (n) _ (”)
k=1
By (22)—(24) we obtain
p= = (fn 1)( n n+1)'

S Q)

Using representation (18), for z ¢ I we get

Qn(2) N (n) L |@n(&)
w( Z) I;J |ﬂan(fEk )l + |Z — fn| w/(fn) -
|an‘ 1 Qn(gn)
< DG) o= D(En— Burt) | 2=l | w(&n) | =
where
Diay — RO
(2) oI |2 Ty,

Since Kk, =1, + 1 < 2n + 3, for n > 2 we obtain

’Qn(g) R I NG . Fn(l—i—l/n)r"g

L e L

1+1/n\™ 1+1/n\"™
(i) =(5h) == .

where c; is independent of n.
In the following, we consider the level line

1
[y i= {z € C:G(z,00) = log (1+ ﬁ)}
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10 H.-P. BLATT

of Green’s function G(z, c0). Then for z € I'y /,,, n > 2, we have

1
< log T + ¢2,

1

where c; is independent of n. Since

log |

Z—00

lim (G(z,oo) + log% —log |z|) =0

and lim &, = oo, there exists c3 > 0 such that

n—oo

log < —G(&n,00) 3

|z —&al —
for all n > 2. Then from (26) we obtain for z € T'y /, and n > 2 that

L Qe
bg(v—su

w' (&)
where ¢4 > 0 is independent of n.
Define for abbreviation

) < ¢q — G(&n, 00), 27

‘an‘
A, = . 28
@ —D)(Ew = Bnr) 8

Then inequality (21) together with (11) implies

gn + ]- En + En+1 il

log A,, < log

and for z € 'y,

log(D(2)Ay) < eslogn+ Y G(oo,yi) — G(00, &) (29)
i=1
forn € A, n > 2, with some constant c5 independent of n.

Comparing the right-hand sides of (27) and (29), we conclude from (25) that, for
nelA,n>2andz el

log ‘ ?UH(S) ‘ < cglogn + ; G(00,yi) — G(00, &) (30)

with an absolute constant ¢4 independent of n.

The last inequality can be written with the logarithmic potentials U~ (z), U™ (z) and
the Dirac measure d¢,, at the point &, as

Vn, _ Tn n <
U (z) —a,U™(2) + T U~ (2)
1 -
< i) — .
S (cs logn + ;:1 G(00,¥;) G(oo,§n)>

ISSN 1027-3190. Ykp. mam. xypH., 2006, m. 58, N° 1



THE INFLUENCE OF POLES ON EQUIOSCILLATION IN RATIONAL APPROXIMATION 11

Next, we use the balayage measure 5A§n of J¢,, onto the interval [—1, 1]. Since
U% (2) SU% (2) + G(00,6n), 2 €C,

we obtain for z # &,

Kn

celogn + Z G(oo,y;) |. 3D

i=1

Uvn(2) = U™ (2) + Uen (2) <

ln+1 Iy +1

Taking into account that we can choose the point §,, arbitrarily large on the positive real
axis and

lim /5\5” =U
En—00

in the weak*-sense (cf. [6], Chapter II, formula 4.46), we can choose &,, such that
1) i 1
|U% — UH(2)] < - z€Tl/p.
Then we obtain for z € Ty /,, that

logn

Un() _ [JTn(s) <
Un(z)—U™(z) <c -

1 &
"i=1

The last inequality is of the same structure as inequality (30) in [5]. Hence, the remaining
proof follows the same lines as in this paper and is therefore omitted.
The proof of the corollary is left to the reader.
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