UDC 517.9

A. K. Prykarpatsky (Inst. Appl. Problems Mech. and Math. Nat. Acad. Sci. Ukraine, L’viv and
Univ. Mining and Metallurgy, Krakov, Poland),

V. Hr. Samoylenko (Kyiv Nat. Taras Shevchenko Univ.),

U. Taneri (Eastern Mediterranean Univ. Gazimagusa, N. Cyprus, Turkey)

THE REDUCTION METHOD IN THE THEORY
OF LIE-ALGEBRAICALLY INTEGRABLE OSCILLATORY
HAMILTONIAN SYSTEMS

METO PEOYKIIA
B TEOPII JII-AJITEBPATYHO IHTEIPOBHIX
TAMUILTOHOBHUX OCIHAJIAIAHIX CACTEM

We study complete integrability of nonlinear oscillatory dynamical systems connected in particular both
with the Cartan decomposition of a Lie algebra 6= X & P, where X is the Lie algebra of a fixed
subgroup K= G with respect to an involution 6: G — G on the Lie group G, and with a Poisson
action of special type on a symplectic matrix manifold.

BuBYAIOTLCS MUTAMNIIA PO MOBIY iITEIPOBIICTE HEJINIMIMX OCUHAAIIHINX JHHAMIYIIHX CHCTEM, IO
nos’ s3aili, 30KkpemMa, AK 3 jiekomnosuiiieio Kaprana ayebpu JIi 6= X @ P, pe X — anre6pa JIi
jiesikoi (dhikcosanol) nijyrpymn K< G crocosiio insosiouii o: G— G srpyni Jli G, Tak i 3 gieo
Hyaccm]a Cl'[CLIjB..I’IhIIBI'O BHIJIAJLY 112 CHMITJIEKTHYIIOMY MATPHYIIOMY M]IO]"OEH,{.ﬁ.

1. Introduction. Symmetry analysis of nonlinear dynamical systems on a smooth
manifold M is well-known [1, 2] to give rise in many cases to exhibiting its many
hidden but interesting properties, in particular such as being integrable by quadratures
due to the Liouville — Arnold theorem [3, 4]. In case when the manifold M can be
represented as the cotangent space T"(K) to some subgroup K of a Lie group G
naturally acting on it, the study of the corresponding flow can be recast via the

reduction method [5] into the Hamiltonian framework due to the existence on 77(X)
the canonical Poisson structure.

Furthermore, if the symmetry group G naturally generalizes to the loop group
G.(\) over Ae Dyc C, then the corresponding momentum mapping /: T"(K) —
— G1(\) provides us with a Lax type representation and related with it a complete set
of commuting invariants. Such a scheme appeared to be very useful when proving the
Liouville integrability of many finite-dimensional systems such as Kowalevskaya’s top
[5], Neumann type systems [6, 7] and other.

Below we study complete integrability of nonlinear oscillatory dynamical systems

connected in particular both with the Cartan decomposition of a Lie algebra G = X @

@ P, where X is the Lie algebra of a fixed subgroup K < G with respect to an invo-
lution ¢: G— G onthe Lie group G, and with a Poisson action of special type on a
symplectic matrix manifold.

2. Integrable systems on T"(K): the general scheme. Let consider a Lie group
G and an involution ¢ on G. If K< G is its fixed subgroup, then the Lie algebra &
of the Lie group G admits the Cartan decomposition G= K@ P with the induced in-
volution mapping 6=id on X and c=—id on P Denotealso G'= X' & P* via
the dual decomposition of the adjoint space G*. The cotangent space T"(K) = K X
x K* results by means of left translations on K.

Assume now that the natural group actionof G on T*(K) is extended to that of
the loop group G,.(A), A € Dy, where Dy C ! is a disc containing zero. Let
G.(\) be the analytical Lie algebra of the loop group G, (A) acting on the cotangent
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bundle T*(K) = K x KX*. If the action is Hamiltonian [1], one can define the cor-
responding momentum [7] mapping I: T"(K) = Gi(A).
Here the adjoint space Gy (A) is defined with respect to the following invariant
and symmetric scalar producton G(A, A7'):
(€A MMy = respep, 1/AEA), A g €))

for any E(A), n(A) e G(A 2™, where <‘-’)§ denotes the standard Killing form

on G.
Any orbit passing through a point [(u, v; A) e g:(x) with (u,v)e T"(K) being
fixed, is defined naturally as

Span {Pr Ads, . com @A) ¢, @)
x(ligﬁ,(?»){ GI(M( exp(—x(A)) )}

where Prﬁm: G* (A X1 = GI(M) denotes the projection upon Gy(A) parallelly
to the subspace G=(A), G (A A7) := Gi(M) ® GZ(A) with

G = {;% wX Ny e G oou; = D)™ for all fEZ+}
and
G.(A) = {g} xN: xeG ox = (-1)'x; for all iez+},
s0 )
Gi(A) = {zyjl_j: ¥, €G", oy; = (-1)7y; for all jeZ_,,}.
jez,

Denote now by [-,-]z anew Lie bracket (R-structure [8]) in G(A, 3._1) defined
as

(1) 2, W)]g = [Rx W), x,M)] + [x,(A), Rea W),
where x;(A), x,(A) € G(A, A™") and forany x(A) e GOLX)
(Rx)A) = Prg gyx(A) - Prg_ayx().
Thereby with respect to this new Lie productin  G(A, A™') one can find the corre-

sponding momentumn mapping for the modified group action G+(7L)><T'(K) Ei

T*(K). Having, for inslance, taken
L) = ah+v+ X0 e GIOV),
one can derive that
Lp@0sA) = AR oy lp@ vid) = ak + v() + AAdY b (3)
forany (u,v)e Kx XK with u:=expxpe K and a, be (_.’7", where we denoted by

Ad®* the corresponding modified adjoint action on G~ (A, i 3
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Consider now an element ake G*(A,A™'), where a€ G is constant. Since also
(an [6:00. Gy )_, = O @

forany ae G, we see that the element ale G*(A,A") is an infinitesimal character

of the Lie subalgebra G, (A).

Based now on the well known Adler —Kostant—Symes (AKS) theorem [9-11],
one can formulate the following theorem.

Theorem 1. All functional

d

N vy, v) = releDn(S'c"l;‘_b(u, v; ?\.)) s, neZ,
where

Lo, h) = ak + v(u) + l_jAd:_lb (5)

are involutive on the contangent space T (K) = K x K* with respect to the
" standard Poisson bracket on T*(K).

Since under the involution Ksu— u"'e K and T*(K)sv > we TH(K) com-
bined with the permutation G '3a<>be G the element Lip(u, ) = by, (u, Wi A),
making it possible to represent the flow on T"(K) generated by the invariant
'yi‘fﬁl)”(u, v) € D(T*(K)), ne Z,, as the one generated by v“5, (u, w).

In case when a Lie algebra & is the Lie algebra of the connected subgroup G of
SO (4, 3), the maximal compact subgroup K < G with the Lie algebra X is isomor-
phic lo so (4, 3). Thereby this pair (G, &) can be used [12, 13] for constructing inte-

grable flows quadratic in momenta on 77 (K), in particular the four-dimensional top
and its generalizations.

3. Oscillatory dynamical systems on 7 (K): an example. Consider now the
case when a loop group G_(A) actson T*(K)=Kx K", where Ae D_ and D_
< C is an open disc containing the infinite point.

Put G_(A) the Lie algebra of the group G_(A) and gf(l) its adjoint space w?th
respect to the scalar product

EMLMAN = resyn (ER), M g

forany £(A) e GE(A) and n(A) e G_(A).
As before, let

G.(A) = {Z YN 3 €6 oy =1y, ieZ+},

ieZ,

G.A) = { Y X x e G oox; = <DPx;, fez+}.

ieZ,

The adjoint space

G = {Z aX: e, oq = (-1)a, ieZ+}

i€z,
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contains one-parametric orbits of the Ad™action, which can be interpreted as some
finite-dimensional integrable Hamiltonian systems on 7" (K).

For this to be a lot more clarified, let us consider an element ar’ + b e gi(x)
with a, b e P and calculate its orbit under the usual action

Adexp—xiiy : G-V = GZOV),

where x(A)ye G_(\) is some element specified by a point (u, v) € T*(K). We find
therefore that the orbit of the element aA”+ b € g‘f(l) has the form:

Ls( s 2) = a¥ + Mxg,al + [x,a] + %[xa, [xg all + b, 6)

in which one can make identifications [xp,a] =g € Kﬂ,‘ and [x,al=pe SPaJ‘ with
u:= (expx;) € X and x5e IPGJ', x| € .‘Kﬁ; due to the natural isomorphisms ada:

o _’E‘“J‘ and ada: fPJ' - QC‘L
Similarly one can represent the forth element in (6) as

a(g) = Preﬂa[(ad 2™ g,4), "M

where evidently o : K'L - P,
Having assumed further that an element a € P is such that [Cjal, Cj(}L] c G, or
cquivalant]y g gﬂ @ g,} (the symmetric expansion), one ecasily verifies that

ﬂ ’Kl] C ar
alq) = %[(aﬂ ay'q, 4]

since a(g)e P, forall ge Kz
In virtue of the isomorphism between 2;- and KL, the orbit (6) evidently is dif-
feomorphic both to Kﬂ; @ P and to the cotangent space T (Kt

The space T" (Ki') is endowed with the canonical Poissonian structure being equ-
ivalent to the standard Lie — Poisson structure upon the orbit (6):

{ging;} = (L[VgM), Vg;(D]o = O, ©))
(L [V, Vp; 1o ([fj: &), a)g,
{pnpj) = LIVED, Voo = (Ufi £i) @)g,

forall i, j=Ln and any (g,p)e T*(X3), where V: D(T*(KE) » K, de-

notes the usual gradient mapping on D(T*(X3)).
When deriving (8) we made use of the following relationships:

n n
q = Xqe P = Z}P,-fn
i=l

i=l

1l
1l

{gi pj} -

where
{ej =[f;;,a]ef!'C;}: j=1_,_n} and {ﬁei"j‘:jzl,_n}

are orthogonal bases in Kf; and i%l correspondingly, that is
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(3,-, EJ)g = 5& = (_ﬁ,_,ﬂ)g for all I., j = i‘:—
As was mentioned in [14, 15] the elements a € P satisfying the property G=
=G, @ Cfﬂl can be found easily enough if one to consider a dual compact Lie algebra

G= K@ iP. Then the Hermitian symmetric expansion G= G, ® G holds and the

problem reduces to recounting all involutions o: §— G in G commuting with the
above Hermitian expansion and equal to ”—id” upon the center of the Lie algebra

gfﬂ'

The condition G= G, ® G; involved above on an element a € P implies obvi-
ously that Qj‘ =ada(G)=ad a(gf;), since by definition ada(G,) = 0. Thus the
element a € P defines the projection operator : G— G on G compatible with
the involution ¢: G— G, thatis P,c = oF, whele P2 = P,. The latter appears to

be useful for practical calculations on which \:r:: shall not dwell here.

To end this section, let us write down the corresponding Hamiltonian flows on
T*(K;}) in the component-wise form. The vector (g, p)e T (K1) is a set of cano-

nical coordinates on the orbit (6) since due to the imbedding [Eﬁj‘, 2 c KX,, the

bracket {p;, pj }=0 forall i, j = 1, n. As aresult one obtains the following expres-
sion for the orbit point (6):

Lp(@ pih) = aX’ + 7“.2;@"‘"* (Zm‘ + = Zq,qJ [en £ J ©)

!.,r—
where in virtue of (8)

lang;} =0={pp}ts Apmngy} = 5 fidg (10)

forall {, j = 1n.
Evaluating the functional

H(g,p) = reslep_, K (@ P A Lup(as i) g

on the orbit space T*(X %) at b e P,, one gets the Hamiltonian function

H(q.p) = %Zpﬁ - Zq,qj (len ;1. 0D +
=l

J',J-

n n

Ao Z > aig; (e £;): Les i) 6591 )

:,_;—l ai=l

describing an unharmonic oscillatory dynamical system of particles on the axis R 3 g,

J= 1, n, interacting with each other by means of a fourth order potential. .

Based on Theorem [, one can formulate the Tollowing result.

Theorem 2. The unharmonic oscillatory dynamical system with Hamiltonian
Sfunction (11) on the orbit space T*(LT(j) with the Poisson brackets (10) is a
completely Liouville — Arnold integrable Hamiltonian system.

Choosing different semisimple Lie algebras G admitting the Hermitian symmetric

expansion G, ® G = G for some clement a € P, where G= KBPis the Cartan
decomposition, one can build all of fourth order potential canonical Hamiltonian

systems on T*(XK1) = T*(R") from [1].
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4. Unharmonic oscillatory Hamiltonian systems on a matrix manifold and
their Lie-algebraic integrability. Consider now a dual matrix manifold M :=
= M, 1 XM, , ofdimension 21, ne€ Z,, endowed with the following natural symp-
lectic structure

o? = Sp(dQT AdF), (12)

where (F, Q) € M and “Sp” means the standard trace operation.
Let A,(A) mean an analytical inside an open ring Dy 3 0 loop group acting on
the manifold M as follows: forany (F,Q)e M and g(A)e A.(\)

A 1
F: &85 Foy = S 2e0, 5 P8 ‘o),

(13)
T. 8, AT 71
Q + Qg(l) = rcsleDu g(%)Q ?\,-—-Q,
where Qe M, , is some matrix whose spectrum o(2) < Dy.
Denote A4, (A) the Lie algebra of the Lie group A, (A), and put
A () = {zzrajkfz a; €sl(ZR), je Z+}.. (14)
JELy

The group action (13) as one can easily verify is Poissonian, leaving the symplectic
structure (12) invariant. Thus if a one parametric subgroup {exp(a(A)t): a(h) e
e A,(A), teR} acts on M, the corresponding Hamiltonian function comes as fol-
lows:

1
A-Q

H, = — res AeDy Sp(QT Fa(l)] . <2LUF QR a(?\.)),. (15)

where

IF.0N) = 107 — (16)

2 A=80

is the momentum mapping [I, 3] and (-,-},, re Z, is a scalar product on A(A, X7")
defined by the expression: '

(IR, a(x)), = resyep A" SpUI(A) a(V)). (17)

It is easy to verify that the momentum mapping [: M— A;(A) defined by (17) is
equivariant [1], that is the diagram
Mo LA
&
{COR LAd i, 18)
Mo 5 Ao
is commutative for all g(1) e A} (\), meaning that the loop group A, (A) action on

M is Hamiltonian.
Define now a Lie algebras homomorphism

o: 4, (A) = G.(A) < PA,(\) © o,R, (19)
where for any a(A)e A, (ML)
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Ot(a](l) 7\-“&(1-} @ ﬂzl G+ (20)

0 | 0 0 1 0
G4 = , O-= and o©p =
0 0 1 0 0 -1

being a sl (2, R) matrix basis.

It is verified that the mapping (19) is a homomorphism and the image o A, (A) =
= G,.(\) constitutes a Lie algebra over R. Thus there exists a loop group G.(A)
whose Lie algebra coincides with this Lie algebra G, (A). Thereby ong can define
now another loop group G, (A)-action on M defined by the formulas (13) but with an
element g(A) e A_(A) replaced by an element o.g (L) € G.(A), where oc: A (A) =
— G,(X) is the corresponding to the mapping (19) loop groups homomorphism.

Therefore, similarly to (16) one finds a momentum mapping lo: M — G (A)

with respect to the modified loop group action G (A)x M AMm equivalent to that of
A (AM)XM = M.
A simple calculation yields

with

IW(F. 00 = I(F, 0\ + Mo, @1
where, by definition,
S (Dt
ez,
When deriving (21) we based on the Hamiltonian function expression
Hy = =2 (Iu(F, & M), a(@)(W)-2 (22)
generated by a one parametric subgroup
{exp(aa\)t) e G, (A): a(h) e A, (X), teR}
and made use of the properties
Sp(cs0®) =1, Sp(o_c*) = 0 = Sp(c,07)
for the dual bi-orthogonal bases {o*,0°} e s1(2; R).
Notice now that the element 7 := 2*6* =26~ € G*(\, A1) is an infinitesimal
character of the Lie subalgebra G, (A), where by definition G(2, Ah = 6.0 @
@ G.(\) and

M. [G: M), G:(M]) 5 = 0 = (n, G- (M) (23)
Owing to the property (23) and AKS-theorem [9 — 11], the extended momentum map-
ping

S(F,Q; 1) == Hot =20 + IL(F, Q1) (24)
generates on the manifold M an involutive with respect to (12) invariants y; € D(M),

j=—1,n, via the expression:

detS(F, Q1) = =A% + Ay_y + 7o + 2 @9

j= =y Q

J
=Ln

b

where we have put for definiteness £ := diag {Q. eR/{0}:J
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0 -1 i
Q :=Fh, h= [ J F = (q' 2 q") e M,
Y P P2 o Pa

As aresult of simple calculation one finds from (25) that

1 2 1 9 s s 1 & 0y ar—pra;)?
i = ——pi + —{(g,Q r — {d, S gt Aok Eiie ;
Yj 2Pi + (a4 ~ (0.9)9 g 4’:;} b Gty

(26)
where j= Ln, and (-,-) is the usual scalar product in R",
The corresponding symplectic structure (12) turns into the following canonical one:

mm)(F: Q)= zm(z)(q, p), where

n
o?(g, p) = Y.dp; A dg;.
j=1

Thus all Hamiltonian flows generated by invariants (26) on the space M = T"(R")
are Liouville — Arnold integrable by quadratures since {y;,y,} =0 forall j, k=

= -1, n.

In particular for the Hamiltonian function
n
I

the corresponding dynamical system on T*(R") is given as follows:

dg; dp; 3
where j= 1, 7.

Conclusion. Similar to (27) oscillatory equations constrained to live on the cotan-
gent space T*(S"™') to the unit sphere §"~' = {geR"; (¢,¢)=1} were for the first
time derived and studied in detail in [6, 15, 16], having been based exclusively on the
algebraic-geometric techniques [17]. Later on these results where rederived in [6, 18]
from the Lie-algebraic viewpoint devised in [7].

One can show straightforwardly based on techniques of [17] that the extended mo-
mentumn mapping (24) satisfies the following dynamical r-matrix identity:

{S(g. M), ®S(g. W)} = [na(A ), S(g, psA) @] — [13; (A1), I ® S(g, p; )], (28)
where 7;(A,1) = rj3(,A) and

5 ,
n ) = 57— - (g, g)-A—p)o_®c”, (29)

Px®y:= y®x forany x, ye R* and all A # W e C. There is an important
problem of deriving this r~matrix (29) from the pure Lie-algebraic viewpoint as it was
done in [19] subject to the Calogero type models.
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