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COLUMN DROP: MAKING CNNS INVARIANT TO IMAGE CROPPING
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COLUMN DROP: KPOK 10 IHBAPIAHTHOCTI 3IrOPTKOBUX
HEWMPOHHUNX MEPEXK 10 BUBOPY HIJI30BPAKEHHSI

We introduce a new regularization technique column drop which uses inner structure of CNNs for classification
to make its output invariant to random crops of input image. Use of this regularization eliminates need in data
augmentation by random image cropping under some conditions on architecture of CNN. We show that application of
column drop to pooling layers leads to improvement in generalization compared with use of dropout for pooling layers.
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B crarTi onmcaHO HOBHI METOJ peryispusaiti column drop i HaBYAHHS 3TOPTKOBHX HEHPOHHHUX MEPEXK IS
Kiacuikaiii, 1o poOUTh iX iHBapiaHTHUMH JI0 BHOOpY Min3o0paxkeHHs. BUKopHCTaHHS Takoi peryssipusalii BiAKHIae
HEOOXIiHICTh B PO3LIMPEHHI HaBYAJIBLHOI BHUOIPKU 300pakeHb 3a JIONOMOrOK BHOOpPY BHIAJKOBUX IiI300pa)eHb, 3a
MEBHUX YMOB Ha apXiTeKTypy Mepexi. 3acrocyBanms column drop mo pooling mapis Mepexi MPU3BOAUTH [0 MOKPAIIICHHS
TOYHOCTI Kiacuikamii Ha TecToBiit BUOIpII y MOPIBHSAHHI 3 BUKOpHUCTaHHAM MeToay dropout mist pooling miapis.

KarwuoBi ciioBa: 3roprkoBa HelipoHHA Mepexa, 1HBapIaHTHICTh J0 BHOOpY MiI300payKeHH, peryispu3arlis,

dropout

Introduction

Convolutional neural networks are one
of the most successful models in image
recognition [1]. One of the main reasons
CNNs show good performance is their inner
structure that induces translation invariance of
the model. However, overfitting effect is still
significant, that's why various regularization
techniques are used to improve generalization.
The most popular regularization techniques
are dropout [2] and data augmentation [1]. A
simple way to increase size of the training set
is to use random image cropping. Since
convolutional neural network accepts only
images of the fixed size as input, there are
several ways to use this technique. The first
one is to upsample cropped images to the
initial image size, and feed these to the
network during training. This approach could
produce some artifacts with upsampling,
which could hurt test set performance. The
second approach is to use the image with
black frame around the cropped image into
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the network. Again, the trained network will
expect black frame to appear at the test time,
which could decrease test set accuracy. The
third possibility is to train CNN that accepts
images of the smaller size, with cropped
images as inputs. Then at the test time we
need to select several subimages (usually its
four corner subimages and one middle
subimage) and average network predictions
on them (this can be viewed as ensemble of
five networks). This approach was used for
AlexNet [3] training. It does not suffer from
image distortions as previous approaches, but
requires running resulting network several
times at test time.

At this paper we show that a single
CNN under some conditions on architecture
can be viewed as ensemble of smaller
networks that share parameters and
computations and act on different subimages
of the input. Using a simple regularization
procedure, similar to Dropout, we can enforce
each of these subnetworks to produce correct
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output on each training image, and use
average of them at test time. These will make
the single network trained with column drop
regularization internally invariant to image

cropping.

INPUT (0) CONV+RELU

Column drop description

To illustrate the idea, we consider an
Alex-net style CNN, which consists of several
convolutional layers with nonlinear activation
function, pooling layers, and fully connected
layer with softmax nonlinearity (see Figure 1)
(the same considerations also apply to other
architecture types, such as DenseNet [4]).

CONV+RELU 3 poOL 4 FC+SOFTMAX

Fig. 1. Sample convolutional net

We assume that depth of tensor 3 is the
same as length of vector 4 (so we have full
average pooling before fully connected layer).
Consider arbitrary single column in tensor 3
(with fixed spatial position, denoted by green
on Figure). This column was obtained with
convolution operation from previous layer, so
it depends on green block in tensor 2, which
in turn was obtained by average pooling so it
depends on green block in tensor 1, which in
turn depends on green block in the input
image.

So, if number of convolutional and
pooling layers in the network is small enough,
then each block 1x1xd in the tensor to which
full average pooling is applied, depends on
part of the input image.

At the same time, since we use
convolutional and pooling layers, that share
weights over different spatial regions of the
input and intermediate tensors, so different
1x1xd blocks compute the same mapping,
applied to different subregions of the image.
Strictly saying, it can be viewed as
application of the mapping to the subimage
padded with zeros, as it is shown of Figure 2

44

We can control size of the frame each
tensor block depends on by changing number
of convolutional and pooling layers in the
network. We can adjust it in a way that each
window covers subimage of the needed size.
As we will see further, with column drop
there is a tradeoff between window size,
training accuracy and test accuracy: small
window size  corresponds to  better
generalization at the cost of more complicated
training.

So if the network contains full average
pooling before the fully connected plus
softmax layer, then we can view the single
CNN as ensemble of smaller networks
(having shared architecture and weights)
applied to different subimages padded with
zeros. Thus our aim is to make each of these
subnetworks to predict correct class for each
element in the training set, and average their
predictions to get class label at test time.

We can achieve that by applying such
technique: at training time after the forward
pass select random column of the final tensor,
and copy it to the vector to feed into fully
connected layer. At test time average all the
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columns into the wvector, and apply fully
connected layer.
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LAYER

Fig. 2. Multiple receptive regions

We found that it is beneficial to average
k randomly chosen columns instead of one to
speed up training - it provides faster training
while keeping generalization at similar level.
But as k becomes bigger, generalization
tends to become worse. Random columns to
be pooled are separately selected for each
element in minibatch during training.
Procedure is shown on Figure 3

So main differences from dropout are
that we drop columns instead of separate
elements, and that we fix in advance number
of columns to remain, instead of dropping
them independently with some probability.
This allows avoiding sampling bias at the
stage of making transition to the test setting.
There is no need to make additional
multiplications at test stage, since expectation
of average of k randomly selected columns
equals to average of all columns (in fact this
multiplication is implicit, since during
training each present column is divided byk
and during testing by total number of
columns).

Mathematical properties

Let's denote input image by I, assume
the last tensor before full average pooling has
dimensionality N x N, mapping from a
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corresponding input window 1; to column
(i,j) of that tensor by f(l W ) (function

ij *" Yconv
f is the same for all tensor columns, and
shares the same convolutional parameters
W, ), and weights of the fully connected
layer by W, . Then network output at test

time is such:
ch

y( I’\Nconv ’ch ) = SOﬁmaX( N 2 ZN: ZN: f ( I ij ’Wconv )]

i=1 j=1

Taking W, inside the sum we will

get:
1 N N
Y (1 Wepn, Wi, ) = softmax [sz D W f (1 W, )J
i=1 j=1
indicating that output of the network before
softmax nonlinearity is equal to average of
smaller CNNs.

Cross-entropy error function for a single
input image | with target vector t (we avoid
summation over entire training set to keep
notation uncluttered):

F (WconV ’ch ) = _i tCIn ( Ye ( I’\Nconv ’ch ))
c=1

Cross-entropy error function F is convex [5]
with respect to parameter W, which implies:
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—itcln (softmaxC (%iiwm F (1 Ween, )J] <

c=1 i=1 j=1

_%iiitcln (softmaxc (ch f ( Iij Weony )))

i=1 j=1 c=1

The right side of the inequality is the
average of cross-entropy loss functions for
each separate column in the last tensor. Thus
when we randomly drop all columns except of
one to find the gradient, we are implicitly
applying stochastic gradient descent to the

&

AVERAGE POOL
RANDOM k COLUMNS FC+SOFTMAX

TRAIN TIME

right term of the inequality (we are randomly
choosing one of N? summands at each step).
Thus we are minimizing function that is a
majorant of the cross-entropy error function
of the training set. This inequality guarantees
that when we apply minimization procedure
with column drop, error function for training
set at test time will not exceed expectation of
the error function with randomly dropped
columns at training time.

AVERAGE POOL /

ALL COLUMNS FC+SOFTMAX

TEST TIME

Fig. 3. Train and test time procedures

Let's consider the case we randomly
select several columns that will be kept at
each step. Easy to see that in case arbitrary

function g(-) is convex, then such
inequalities hold:

1M 1M 1 M
— X | <— _— X | <
g(M; j M;g(lvl—l,»_l,j#i JJ

M

LY 3 o[y L3 0(x)
VAN 9 —— X . <=>g(x
(ZM)i1=1i2:l,I2¢i1 M-2 =Lz, : M =
Since cross-entropy error function

C
—Y_t.In(softmax,(-)) is convex, and taking
c=1

W, f (1

average cross entropy error function for N?
models with single columns is a majorant for

W ) as inputs, we will obtain that

ij " “conv

: N? .
average error function of ( ) J models with

2 selected columns, which in turn is a
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NZ
majorant of average error function of ( 3 j

cross-entropy  functions for 3 selected
columns, and so on, that is in turn majorant
for the error function of the model where we
do not apply column drop.

Thus if we train the model where only 1
column is kept at each step, this guarantees
that models where we keep two or more
random columns are also implicitly trained.
From the other side training with such
regularization could be successful only with
bigger models, so balance between these
factors should be found.

Application to inner pooling layers

We found that it is beneficial to apply
column drop regularization also to inner
pooling layers of CNN. In this case we lose
theoretical properties derived in the previous
section: the model we use at test time is not
exactly equal to the average of models at
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training time, thus there are no guarantees that
test model will perform better than any of the
training models (here we have the same
situation as with dropout).

We experimented also with application
of column drop after convolutional layers of
the neural network: it shows worse
generalization compared with dropout applied
after same layers.

Thus recommended way to use column
drop is to apply it to all pooling layers of the
network, and use dropout after convolutional
layers.

Experiments

To test proposed regularization we train
a variant of DenseNet on Cifar-10 [6] dataset,
that consists of 32x32 color natural images.
We follow setting of the paper [4] and use
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structure: BN-Relu-Conv1x1-BN-Relu-
Conv3x3 (here BN stands for batch
normalization [8], Relu is Rectified linear unit
[9]) and concatenation of result with input
tensor. We use 4 dense blocks, separated by
average pooling layers with sizes 2, 2, 2 and 4.
Numbers of bottleneck layers in each dense
block are written as a list in the table 1. We
also use initial convolution with kernel
3x3and depth 2 * growth rate (growth rate and
bottleneck depth are specified in the table 1).

We use transition layers for pooling
with such sequence of layers: BN-Relu-
Conv1x1-Drop-AveragePool with pooling
fraction 0.5. Here Drop could refer to dropout
or column drop, depending on the setting.

bottleneck convolutional

layers of such

Table 1. Classification results.

Network architecture Regularization / Train Test Train Test
Augmentation error error daccuracy daccuracy
Dense-BN, [1,1,1,1] - 0.21 0.65 93.56% 79.59%
Bottleneck depth: 16 Random crop 0.35 0.51 87.91% 82.91%
Growth rate: 16 Column drop 0.2 0.33 0.50 88.38% 82.60%
15388 parameters Drop 0.2 0.34 0.51 88.12% 82.63%
Column drop 0.5 0.55 0.64 80.06% 77.45%
Drop 0.5 0.53 0.63 81.37% 78.19%
Dense BN, [1,1,1,1] - 0.00 0.73 100% 83.11%
Bottleneck depth: 32 Random crop 0.09 0.47 96.94% 86.74%
Growth rate: 32 Column drop 0.2 0.05 0.42 98.86% 87.13%
57406 parameters Drop 0.2 0.03 0.48 99.49% 86.27%
Column drop 0.5 0.22 0.42 92.05% 86.00%
Drop 0.5 0.17 0.44 94.44% 86.52%
Dense BN, [1,1,1,1] - 0.00 0.48 100% 86.44%
Bottleneck depth: 64 Random crop 0.00 0.43 99.97% 89.86%
Growth rate: 64 Column drop 0.2 0.00 0.38 100% 90.36%
221362 parameters Drop 0.2 0.00 0.45 100% 88.59%
Column drop 0.5 0.03 0.33 99.40% 90.64%
Drop 0.5 0.01 0.51 99.96% 87.84%
Dense-BN, [2,2,2,2] - 0.07 0.80 100% 82.77%
Bottleneck depth: 16 Random crop 0.18 0.38 93.39% 87.85%
Growth rate: 16 Column drop 0.2 0.08 0.44 97.54% 86.40%
30002 parameters Drop 0.2 0.07 0.46 98.03% 86.43%
Column drop 0.5 0.23 0.43 91.58% 85.94%
Drop 0.5 0.21 0.46 92.91% 85.72%
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To make unified comparison with
dropout, we apply probabilistic dropping to
our procedure also: at training time we drop
columns of the tensor with probability p, and

multiply values by 1/(1-p) and average

pool all columns, and test time we just apply
average pooling to all columns.

In all cases we train network for 200
epochs with SGD with learning rate 0.1,
momentum 0.9, quadratic weight decay with
coefficient 0.0005. We decrease learning rate
with factor 0.97 after each epoch.

Results of classification for different
architectures are summarized in the table 1

Analysis of experiments

The first 3 network architectures used
have property that each column of the last
tensor before full average pooling depends on
the subset of input. In particular, corner
columns of the tensor depend on 23*23 corner
squares of the input (that has spatial
dimensionality 32*32). For these architectures
column drop regularization shows similar or
better results than random crop augmentation
and dropout for pooling layers.

For the fourth architecture, that has 2
bottleneck layers in each dense block, each
column of the final tensor depends on the
whole input image, that’s why random crop
augmentation shows better results than
column drop and dropout. But these
regularizations are still improving
generalization compared with the case no
augmentation with random cropping is used.

So, as expected, column drop improves
results in case number of pooling and
convolutional layers of the network is small
enough to guarantee that columns of the last
tensor depend on subinput, which is not the
case for state-of-art architectures.

If CNN is deep enough, this method
does not alleviate need in data augmentation
with random image cropping. In this case
column drop still can be used for pooling
layers in combination with data augmentation
of input by cropping and dropout after
convolutional layers to produce even better
results.
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Conclusion

Proposed regularization method column
drop can be used to improve generalization of
convolutional neural networks. It has nice
theoretical interpretation in terms of making
output of CNN invariant to random image
cropping. When applied to pooling layers it
shows superior performance compared with
dropout — widely used regularization method.

Drawback of this method is that it holds
its theoretical properties of making output
invariant to image crops only under certain
conditions on CNN architecture: if receptive
field of the columns of the last tensor does not
cover entire input image.
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PE3IOME

B.B. lynap, B.B. Cemenon

Column Drop: kpox a0 iHBapian-
THOCTi 3rOpTKOBHX HEHPOHHHUX Mepex /10
BUOOpY nmig300pakeHHs

VY crarTi OonucaHo HOBUI METOJI PEryIisi-
puzamii 3TOPTKOBMX HEWPOHHHUX MEPEK
Column Drop. [lanmii Meton 6a3zyerbcsi Ha
3arajlbHOBIIOMOMY METOA1  peryispusarii
Dropout, sikuii mokpaiitye TOYHICTb Kilacui-
Kallii HeHPOHHUX MEpeX 3a paxyHOK TNpea-
CTaBJICHHS HEWPOHHOI Mepexl K aHcaMOIIo
Mepek (110 MICTATh MIAMHOKHWHU HEMpOHIB
[IOYaTKOBOT MEpeXK1) 1 TPEHYBaHHS BUIIaIKOBO
BHOpaHUX MmigMepex aHcamoOmo. B nmaniit
poOOTI TMOKa3aHO, WO 3TOPTKOBAa Mepeka
MOX€E PO3MIBIIATUCH K aHCAMOJIb MIMEPEX,
0 MalOTh CIUIbHI MapamMeTpu, ajie JiI0Th Ha
pI3H1 yacTMHM 300paxkeHHs. TpeHylouu BHU-
MaJKOBO BHOpaH1 MiAMEpPEeXi, MU JTOCATAEMO
TOTO, IO KOXHA 3 MiIMEPeX Ja€ MPaBUIbHY
kinacudikaiiro BXigHOTO 300paxkeHHs. B Tec-
TOBOMY DPE&XHMI BiAOYBA€ThCS YCEPEIHECHHS
MIMEPEK, 3a PaxXyHOK HYOTO 1 JOCSTAEThCS
MTOKpaIIeHHsI TOYHOCTI Ha TECTOBIM BUOIpIII.

Mexanidm 3actocyBanHs Column Drop
TaKWif: M 4Yac TPEeHYBaHHS BHIIAJKOBUM YH-
HOM 3 TIEBHOIO MMOBIPHICTIO BUIAJISIFOTHCS CTOB-
IMYUKA TEH30pIB HEUPOHHOI Mepexki (KOKeH
CTOBIMYMK Ma€ (PIKCOBaHY MPOCTOPOBY IO3U-
IIF0), CTOBMYMKMA 10 3IUIIAINACH, JIOMHO-
XKYIOTBCSI Ha KOE(QIIIEHT TaKAM YHHOM, II00
MaTeMaTUyHe OYIKyBaHHS KOXKHOTO €JIEeMEHTa
TeH30pa OyJa0 cTayM. Y TECTOBOMY PEXHMI
CTOBITYMKY TE€H30PIB HE BUJAIISIOTHCS.

3anpomnoHOBaHUIl  aIrOpuT™M  POOUTH
MEpeKy IHBapiaHTHOIO J0 BUOOpY BHUIIA]-
KOBOTO MiA300pakeHHsI 32 YMOBH 110 CTOBIII1
OCTaHHBOTO TEH30PY Mepexi (Iepel MOBHUM
MyJIIHTOM) 3aJ1€KaTh JIUIIE Bif Mig300pakeHb
BXIJIHOTO 300pakKeHHSI, 110 BUKOHYETHCS IS
HETrNIMOOKUX MEPEK.

JIns TecTyBaHHS [AHOTO TMIAXOMy Oyiu
MPOBEJIeHI TIOPIBHSHHS TOYHOCTEH HA TECTOBIN
BuOipii CIFAR-10 mst nexinmpkox KoHDIryparriit
3rOPTKOBHX MEPEX, sIKi OyaM HaTpeHOBaHI 0e3
peryasipuzaitii, 3 perymsipusaiiiero dropout, 3a-
MPOTNIOHOBAaHMM MeTozioM column drop, Ta Ge3
perymsipuzaiii aie 3 PO3MMUPEHHSM HaBUATbHOL
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BHOIPKM 3a JOTIOMOTOI0 BHOOPY BHITQKOBUX
nimo0pakeHb. Pe3ynbTaTé TecTyBaHHS IOKaza-
mu, o Column Drop nokasye kpaiiii pe3yJibTa-
T HDK Dropout ta po3mmpeHHst HaB4aIbHOT BU-
OipKy 3a JIOTIOMOTOK0 BHOOPY MiI300paKeHb, 3a
YMOBH HIO CTOBIIIII OCTAHHBOTO TEH30pa Mepe-xKi
3aJIe)KaTh BiJl YaCTHHH BXITHOTO 300payKEeHHSL.

SIKmo s ymMoBa HE BUKOHYETHCS, TOJI
Column Drop moxe Oytu ckOMOiHOBaHMH 3
PO3LIMPEHHSM HaBYaJbHOI BUOIPKHM UM 1HILIU-
MU METOJaMHU Peryasipu3anii st JOCATHEHHS
KpallluX pe3ysbTaTiB.
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